To see the other types of publications on this topic, follow the link: Type of power plant.

Dissertations / Theses on the topic 'Type of power plant'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Type of power plant.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Rathamarit, Yosapol. "State estimation of a drum type power plant boiler using unscented filters." Thesis, University of Strathclyde, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.443121.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

De, Klerk Gary. "A methodology to investigate the cause of quenching in once-through tower type power plant boilers." Doctoral thesis, Faculty of Engineering and the Built Environment, 2021. http://hdl.handle.net/11427/32629.

Full text
Abstract:
Due to the penetration of variable renewable energy (VRE) sources, conventional coal fired power plants need to operate with greater flexibility via two-shifting or low load operation whilst remaining reliable and conserving the lifetime of components. Thick sectioned components are prone to thermal fatigue cracking as a result of through-wall temperature gradients during start up and shutdown. These temperature gradients can be significantly amplified during quenching when components at high temperature are unintentionally exposed to colder liquid or steam. Such quench events are known to occur during two-shift operation of a large once-through coal fired tower type boiler, which is the subject of this study. The purpose of this study is to develop and demonstrate a methodology to determine the root cause of quenching in a once-through tower type boiler and provide information that can be used to predict the impact on thick-walled components by estimating the through-wall temperature gradients. The first modelling element in the methodology is a simplified transient heat transfer model for investigating condensation of steam in the superheater. The model is presented and verified by comparison with real plant data. The second element is a liquid tracking model that approximates the liquid level in the superheater as a function of time to predict the location and magnitude of through-wall temperature gradients. The complex geometry of the superheater was divided into a number of control volumes and a dynamic thermo-fluid process model was developed to solve the transient conservation of mass and energy equations for each volume using a semi-implicit time wise integration scheme. The liquid tracking model was verified by comparison with a similar model constructed in Flownex and also by comparison with plant data. Varying levels of discretisation were applied to a particular quench event and the results are presented. The third modelling element is a two-dimensional transient pipe wall conduction model that is used at selected localities to evaluate the temperature gradients within the pipe wall. The temperature gradients and internal heat flux were verified by temperature measurements from the outer surface of a main steam pipe undergoing quenching. The stresses associated with the temperature gradients were also briefly considered. The real plant quenching problem is analysed in detail and found to be caused by liquid overflow from the separators. A particular plant configuration creates a previously unidentified siphon of water from the separating and collecting vessel system into the superheater. This situation is not recognised by plant operators and thus persists for some time and causes flooding of the superheater. Analysis of the resultant through-wall temperature gradients show that quenching causes significant stresses which can be avoided. By understanding the causes and preventing the occurrence of quenching, the life of thick-walled high temperature components can be conserved.
APA, Harvard, Vancouver, ISO, and other styles
3

Densing, Martin. "Hydro-electric power plant dispatch-planning : multi-stage stochastic programming with time-consistent constraints on risk /." Zürich : ETH, 2007. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=17244.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

LOPEZ, LUIZ A. N. M. "Concepcao e simulacao estatica do circuito secundario de usinas nucleares de pequena potencia." reponame:Repositório Institucional do IPEN, 1989. http://repositorio.ipen.br:8080/xmlui/handle/123456789/10275.

Full text
Abstract:
Made available in DSpace on 2014-10-09T12:36:47Z (GMT). No. of bitstreams: 0<br>Made available in DSpace on 2014-10-09T13:57:28Z (GMT). No. of bitstreams: 1 04288.pdf: 4625254 bytes, checksum: 9001b53adf99cafca24341f1052507a2 (MD5)<br>Dissertacao (Mestrado)<br>IPEN/D<br>Escola Politecnica, Universidade de Sao Paulo - POLI/USP
APA, Harvard, Vancouver, ISO, and other styles
5

Unver, Ozge. "A Modelling Study For The Health Risk Posed By Nuclear Power Plant In Bulgaria At Different Parts Of Turkey." Master's thesis, METU, 2003. http://etd.lib.metu.edu.tr/upload/729053/index.pdf.

Full text
Abstract:
In this study, following a severe accident at Kozloduy nuclear plant in Bulgaria how Turkey would be affected was investigated. The severe accident refers to core meltdown accident with catastrophic failure of containment. The model used is HySPLIT model developed in America. The worst day was predicted considering deposition of radionuclides. For initial runs, accidental release of I-131 and Cs-137 radionuclides was modeled for each day of year 2000 to find the worst day, seen to result from release beginning on April 7th 2000. After modeling release of all radionuclides for the worst day, radiation dose at different receptors, 12 most populated cities over Turkey has been calculated via different pathways. Late effects, fatal cancer, non-fatal cancer and hereditary risks, has been investigated for these receptors. The mostly affected part of Turkey was Marmara region and fatal cancer risk therein was 7x10-2 %. The collective health risk throughout Turkey was approximately 20 600 people. The same approach was then applied for investigating health risk of proposed nuclear reactor at Akkuyu, Turkey. In this case, the worst day was resulted from release beginning on 21st of February 2000. The worst affected part was the narrow strip in Central Anatolia extending to the north-eastern cost and fatal cancer risk in this region was 3.4x10-1 %. The collective health risk over Turkey was approximately 30 600 people. The results showed that Kozloduy nuclear plant has dominating effect throughout Turkey, but proposed Akkuyu reactor affects very limited region.
APA, Harvard, Vancouver, ISO, and other styles
6

Toprak, Alperen. "Cmos Readout Electronics For Microbolometer Type Infrared Detector Arrays." Master's thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/3/12610390/index.pdf.

Full text
Abstract:
This thesis presents the development of CMOS readout electronics for microbolometer type infrared detector arrays. A low power output buffering architecture and a new bias correction digital-to-analog converter (DAC) structure for resistive microbolometer readouts is developed<br>and a 384x288 resistive microbolometer FPA readout for 35 &micro<br>m pixel pitch is designed and fabricated in a standard 0.6 &micro<br>m CMOS process. A 4-layer PCB is also prepared in order to form an imaging system together with the FPA after detector fabrication. The low power output buffering architecture employs a new buffering scheme that reduces the capacitive load and hence, the power dissipation of the readout channels. Furthermore, a special type operational amplifier with digitally controllable output current capability is designed in order to use the power more efficiently. With the combination of these two methods, the power dissipation of the output buffering structure of a 384x288 microbolometer FPA with 35 &micro<br>m pixel pitch operating at 50 fps with two output channels can be decreased to 8.96% of its initial value. The new bias correction DAC structure is designed to overcome the power dissipation and noise problems of the previous designs at METU. The structure is composed of two resistive ladder DAC stages, which are capable of providing multiple outputs. This feature of the resistive ladders reduces the overall area and power dissipation of the structure and enables the implementation of a dedicated DAC for each readout channel. As a result, the need for the sampling operation required in the previous designs is eliminated. Elimination of sampling prevents the concentration of the noise into the baseband, and therefore, allows most of the noise to be filtered out by integration. A 384x288 resistive microbolometer FPA readout with 35 &amp<br>#956<br>m pixel pitch is designed and fabricated in a standard 0.6 &amp<br>#956<br>m CMOS process. The fabricated chip occupies an area of 17.84 mm x 16.23 mm, and needs 32 pads for normal operation. The readout employs the low power output buffering architecture and the new bias correction DAC structure<br>therefore, it has significantly low power dissipation when compared to the previous designs at METU. A 4-layer imaging PCB is also designed for the FPA, and initial tests are performed with the same PCB. Results of the performed tests verify the proper operation of the readout. The rms output noise of the imaging system and the power dissipation of the readout when operating at a speed of 50 fps is measured as 1.76 mV and 236.9 mW, respectively.
APA, Harvard, Vancouver, ISO, and other styles
7

Fasquelle, Thomas. "Modélisation et caractérisation expérimentale d’une boucle solaire cylindro-parabolique intégrant un stockage de type thermocline." Thesis, Perpignan, 2017. http://www.theses.fr/2017PERP0040/document.

Full text
Abstract:
Comme les autres technologies liées aux énergies renouvelables, le solaire à concentration souffre des problèmes liés à l’intermittence de la ressource. La technologie thermocline est une solution prometteuse qui réduirait le coût du stockage thermique dans les centrales solaires de ce type. Cependant, aucune étude n’a jusqu’ici porté sur l’impact de la variation de la température en sortie du réservoir de stockage de type thermocline sur les autres composants de la centrale. Ce travail de thèse a pour but d’améliorer les connaissances sur ce sujet, grâce à l’utilisation d’une mini boucle solaire cylindro parabolique intégrant un stockage thermocline.En premier lieu, la compatibilité entre le fluide de transfert de la centrale (huile synthétique) et les potentiels matériaux de garnissage de la cuve de stockage (Cofalit, briques de cendres volantes, alumine) est vérifiée. Puis les performances de chacun des composants de la centrale (cuve de stockage, collecteurs solaires, générateur de vapeur) sont analysées expérimentalement et numériquement. Enfin, le comportement du système global est étudié, avec un accent porté sur l’impact de la variation de la température de sortie de la cuve thermocline sur les autres composants.Il a été montré qu’avec un dimensionnement et une stratégie de contrôle appropriés, la technologie thermocline diminue très peu les performances de la centrale solaire par rapport à la technologie conventionnelle à deux cuves (maximum 3 4 % de diminution de la production électrique)<br>Like other renewable energy technologies, concentrated solar power (CSP) suffers from resource intermittence. Thermocline technology is a promising solution to decrease cost of thermal energy storage in CSP plants. Thermocline behavior has thoroughly been studied in the past years and its behavior is considered well known. However no study treated of thermocline tanks integrated in CSP plants. Thus, the impact of the varying outlet temperature of the thermocline storage has not been assessed yet. This work aims to fill this lack of knowledge by studying a mini parabolic trough power plant integrating a thermocline tank as storage.First, the compatibility between the heat transfer fluid of the plant (synthetic oil) and various potential filler materials (Cofalit, coal fly ash bricks, alumina) of the storage tank is verified. Then, some performance studies are performed on the three main components of the power plant (energy storage tank, solar collectors, steam generator). Finally, the behavior of the whole system is assessed, with a focus on the impact of the varying fluid temperature at the outlet of the thermocline tank on the other components.It has been shown that, with a proper sizing and an appropriate control strategy, thermocline technology induces very low decrease of the solar power plant performance in comparison to the conventional two tank technology (maximum 3-4% of electrical power production difference)
APA, Harvard, Vancouver, ISO, and other styles
8

Studený, Jan. "Power - plant." Master's thesis, Vysoké učení technické v Brně. Fakulta architektury, 2015. http://www.nusl.cz/ntk/nusl-216180.

Full text
Abstract:
The "POWER - PLANT" deals with the rehabilitation of the former Central Power Conversion and Dale Schoeller (Nejedly I and III) in the village Libušín Mine. Will be newly designed for building the power plant technology with progressive fluidized bed boiler to biomass steam turbine with an output of 7 MW and absorption (trigeneration) unit producing heat, cooling and electricity, which also will function as a cooler primary circuits. The source of water for the power plant will not only former mining pit Nejedlý I which is currently flooded drinking water at about 12 ° C. This system uses high efficiency embedded fuel (biomass), which is ultimately required less. A greater proportion of electricity generated and part of the heat will be distributed to the public network. In most areas will be proposed publicly accessible greenhouses of steel-aluminum construction filled ETFE foil forming the heat insulating membrane filled with air. The reason is to create conditions for the cultivation of tropical and subtropical plants. Greenhouses will be connected to the absorption unit power (underground meanders through which water will circulate), the ventilation shaft mine and mine water - therefore it will be possible to manage the conditions of the internal environment of the building without the influence of the season and especially without mounting other technological devices. It will provide for cooperation with the absorption unit for cooling the primary circuit - therefore eliminating the need for cooling towers or fans. The project will build a detached departments of the Faculty of Mechanical Engineering in Prague - Institute of progressive technologies and systems for energy and the Faculty of Agronomy and Natural Resources CULS. The reason is to allow students and scientists actively and in practice mainly participate in the operation and especially the development of the issue. The public in the area besides themselves open to the greenhouses indoor and outdoor thermal swimming. Part of the entrance hall is a bistro and foremost lecture hall. The aim is decentralized botanical-energy complex of buildings that produce electricity, heat, cooling, and biomass, and creating recreational, educational and research conditions.
APA, Harvard, Vancouver, ISO, and other styles
9

Velayuthan, Manohar. "Cogeneration power plant." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape11/PQDD_0012/MQ52488.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Perez, de Larraya Espinosa Mikel. "Photovoltaic Power Plant Aging." Thesis, Högskolan i Gävle, Avdelningen för byggnadsteknik, energisystem och miljövetenskap, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-33252.

Full text
Abstract:
One of the most pressing problems nowadays is climate change and global warming. As it name indicates, it is a problem that concerns the whole earth. There is no doubt that the main cause for this to happen is human, and very related to non-renewable carbon-based energy resources. However, technology has evolved, and some alternatives have appeared in the energy conversion sector. Nevertheless, they are relatively young yet. Since the growth in renewable energies technologies wind power and PV are the ones that have taken the lead. Wind power is a relatively mature technology and even if it still has challenges to overcome the horizon is clear. However, in the PV case the technology is more recent. Even if it is true that PV modules have been used in space applications for more than 60 years, large scale production has not begun until last 10 years. This leaves the uncertainty of how will PV plants and modules age. The author will try to analyse the aging of a specific 63 kWp PV plant located in the roof of a building in Gävle, monitoring production and ambient condition data, to estimate the degradation and the new nominal power of the plant. It has been found out that the degradation of the system is not considerable. PV modules and solar inverters were studied, and even if there are more elements in the system, those are the principal ones. PV modules suffered a degradation of less than 5%, while solar inverters’ efficiency dropped from 95,4% to around 93%.
APA, Harvard, Vancouver, ISO, and other styles
11

Lopez, Ashley Karisa. "Power Plant, Plant-Based Nutrition Services| A Business Plan." Thesis, California State University, Long Beach, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10639050.

Full text
Abstract:
<p> Today, obesity has become the number one concern of kids and teens. About one in three Americans are overweight or obese. This in part is due to the consumption of highly commercialized and processed foods that lack the essential nutrients in maintaining a healthy weight in addition to normal cholesterol and blood pressure levels. Studies have shown that eating habits are learned early in life and are carried on throughout the rest of their lives. As children grow older into their adolescent years, they are more aware of their eating habits and have gained more autonomy in regards to food choices. </p><p> Plant-based foods have shown to drastically improve the overall health of individuals with high cholesterol, high blood pressure, and excess weight. </p><p> Power Plant is a facility that intends offer plant-based nutritional services in the form of informative lectures, interactive workshops, one-on-one nutritional guidance by appointment, with access to peer-mentors for additional support and guidance. Power Plant will dedicate their services to the Whittier Union high school district, surrounding community colleges, and universities in the Los Angeles County area. </p><p> Power Plant&rsquo;s unique program design, physician referrals and the critical need of our generations to come, are all factors that will contribute to its success in the Los Angeles County community and for years to come.</p><p>
APA, Harvard, Vancouver, ISO, and other styles
12

Khabrana, Ahmed, and Jaber Ageeli. "Producing Electricity in Power Plant." Thesis, Blekinge Tekniska Högskola, Institutionen för tillämpad signalbehandling, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-1979.

Full text
Abstract:
Abstract This Bachelor thesis has been written at the Blekinge Institute of Technology. The thesis describes electricity production in Shoaiba Steam Power plant in Saudi Arabia. Shoaiba Power Plant is located 100 km South of Jeddah city in Saudi Arabia. Total power production ability reaches 4400 MW. Shoaiba Power Plant has two stages and is constructed with 11 units, each unit produces 400 MW at line voltage 24 kV and line current 16 kA. Main pieces of equipment and their function in the station are as follows: A Steam Generator (boiler), produces steam by burning natural gas or crude oil in the furnace. The steam is superheated and is passed into a steam turbine, which converts the thermal energy of the steam into mechanical power, in form of rotary motion. The turbine drives a generator, which converts the rotary energy of the turbine into electric power. Steam generator, steam turbine and electrical generator are components that are described in the thesis. When the flow of steam to the turbine is controlled, then the amount of thermal energy that changes to mechanical energy in the steam turbine is controlled. The electrical generator is where the final energy conversion takes place. The mechanical energy from the turbine is converted by the generator into electrical energy, which is transmitted to the service area by help of electrical transmission lines. The plant cycle is an essential part of the energy flow path. Without the plant cycle, the conversion of thermal energy into mechanical energy would not occur, The plant cycle is a closed loop that allows the same water to be used over and over again. Always, the power plants are situated far from residential areas and located outside cities and close to the sea, because the steam is produced from seawater. The advantages of the steam power stations are as follows: They can produce high amounts of electrical energy from small amounts of fuel. They have low initial costs, obstetrics and maintenance costs are not high, and the stations do not need much space to be built and they have usually high capacity. The disadvantages of steam stations are the following: They cause environmental pollution, they have low efficiency, and require very big quantities of cooling water, and the stations must be built away from populated areas.<br>Conclusion: Converting in steam power plant is one of many ways to produce electrical energy in the world. It can be done in any country because it can be done with different chemical sources. In Saudi Arabia we use oil, because it easier and cheaper than any other chemical source for us. As any country would use what is better for them. The thesis has described circulation system in Shoaiba power plant by converting chemical energy to thermal energy in the boiler, then the turbine converts thermal energy to mechanical energy. Then the mechanical energy is converted to electrical energy in the generator. The advantages of the steam stations are as follows: production of high amounts of electrical energy from small amounts of fuel, low cost of the initial costs, obstetrics and maintenance costs are not high, the station does not need much space to build and they are usually high capacity. The disadvantages of steam stations are the following: environmental pollution, low efficiency, requires very big amounts of cooling water, and these stations must be built away from population areas.<br>0706397524
APA, Harvard, Vancouver, ISO, and other styles
13

Abacar, Armando. "Optimization of Maputo Power Plant." Thesis, KTH, Kraft- och värmeteknologi, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-124249.

Full text
Abstract:
The Electricidade de Moçambique, E.P. (EDM) is the power utility in Mozambique, responsible to generate, transport and distribute electricity all over the country. The company has three gas turbines installed at Maputo Power Plant. All units burn diesel oil and are used only for back up. Currently only the unit #2 is available for operation. The main constraint that EDM faces is the high operation costs due to diesel price. Hence the company is considering converting units #2 and #3 to burn natural gas, resource available locally. The country is currently exporting natural gas to the neighbouring Republic of South Africa. This MSc thesis project calculates the power output of all gas turbines when burning natural gas and optimizes the power plant capacity by proposing modifications of the current power turbine cycles to allow sustainable operation
APA, Harvard, Vancouver, ISO, and other styles
14

Tarrasó, Martínez Jaime. "Virtually synchronous power plant control." Doctoral thesis, Universitat Politècnica de Catalunya, 2022. http://hdl.handle.net/10803/674036.

Full text
Abstract:
During the last century, the electrical energy infrastructures have been governed by synchronous generators, producing electrical energy to the vast majority of the population worldwide. However, power systems are no longer what they used to be. During the last two decades of this new millennium the classical, centralized and hierarchical networks have experienced an intense integration of renewable energy sources, mainly wind and solar, thanks also to the evolution and development of power conversion and power electronics industry. Although the current electrical system was designed to have a core of generation power plants, responsible of producing the necessary energy to supply end users and a clear power flow, divided mainly into transmission and distribution networks, as well as scalable consumers connected at different levels, this scenario has dramatically changed with the addition of renewable generation units. The massive installation of wind and solar farms, connected at medium voltage networks, as well as the proliferation of small distributed generators interfaced by power converters in low voltage systems is changing the paradigm of energy generation, distribution and consumption. Despite the feasibility of this integration in the existing electrical network, the addition of these distributed generators made grid operators face new challenges, especially considering the stochastic profile of such energy producers. Furthermore, the replacement of traditional generation units for renewable energy sources has harmed the stability and the reliable response during grid contingencies. In order to cope with the difficult task of operating the electrical network, transmission system operators have increased the requirements and modified the grid codes for the newly integrated devices. In an effort to enable a more natural behavior of the renewable systems into the electrical grid, advanced control strategies were presented in the literature to emulate the behavior of traditional synchronous generators. These approaches focused mainly on the power converter relying on their local measurement points to resemble the operation of a traditional generating unit. However, the integration of those units into bigger systems, such as power plants, is still not clear as the effect of accumulating hundreds or thousands of units has not been properly addressed. In this regard, the work of this thesis deals with the study of the so-called virtual synchronous machine (VSM) in three control layers. Furthermore, an in-depth analysis of the general structure used for the different virtual synchronous machine approaches is presented, which constitutes the base implementation tree for all existent strategies of virtual synchronous generation. In a first stage, the most inner control loop is studied and analyzed regarding the current control on the power converter. This internal regulator is in charge of the current injection and the tracking of all external power reference. Afterward, the synchronous control is oriented to the device, where the generating unit relies on its local measurements to emulate a synchronous machine in the power converter. In this regard, a sensorless approach to the virtual synchronous machine is introduced, increasing the stability of the power converter and reducing the voltage measurements used. Finally, the model of the synchronous control is extrapolated into a power plant control layer to be able to regulate multiple units in a coordinated manner, thus emulating the behavior of a unique synchronous machine. In this regard, the local measurements are not used for the emulation of the virtual machine, but they are switched to PCC measurements, allowing to set the desired dynamic response at the power plant level.<br>Sistemes d'energia elèctrica
APA, Harvard, Vancouver, ISO, and other styles
15

Rabbani, Michael, and Michael Rabbani. "Zero-Emissions Solar Power Plant." Thesis, The University of Arizona, 2017. http://hdl.handle.net/10150/625125.

Full text
Abstract:
With energy demand continuously increasing in the United States, renewable energy development is critical to combatting the effects of global climate change. The objective of the project was to create a design for a zero-emissions solar plant. The project group designed a plant to provide electricity to all of residential Chandler, a city with about 100,000 homes. An estimated 543,880 metric tons of carbon dioxide equivalent is produced to power residential Chandler. In contrast, the proposed solar plant will produce zero emissions. Unfortunately, the proposed process is not currently economically feasible. The proposed process is a concentrating solar power (CSP) tower plant. A central receiver on top of a 175 meter tower absorbs heat reflected off of a field of reflective heliostats. A chloride molten salt mixture flows to the receiver where it is heated to approximately 1000°C. The heated molten salt flows back into a tank where it can be stored for later use or pumped directly to a series of heat exchangers. The working fluid, supercritical carbon dioxide (s-CO2), gains heat from the heat exchanger and powers highly efficient turbines. Waste heat is recovered from the turbines using the closed-loop Brayton Cycle and the s- CO2 is recompressed.
APA, Harvard, Vancouver, ISO, and other styles
16

Oliveira, Heloisa Maria Santos. "Avaliação numérica do comportamento à fratura de um protótipo de vaso de pressão de reator PWR submetido a choque térmico pressurizado." CNEN - Centro de Desenvolvimento da Tecnologia Nuclear, Belo Horizonte, 2005. http://www.bdtd.cdtn.br//tde_busca/arquivo.php?codArquivo=41.

Full text
Abstract:
Nenhuma<br>No circuito primário de uma usina nuclear do tipo PWR (Pressurized Water Reactor), o refrigerante do reator é mantido a uma temperatura interna por volta de 300 C e pressão interna da ordem de 15,0 MPa, durante operação normal. O Vaso de Pressão do Reator (VPR) contém os elementos combustíveis e é considerado o componente mais importante do circuito primário. A integridade do VPR deve ser assegurada durante toda a vida útil da usina, de forma a proteger os trabalhadores da usina e o público em geral dos danos decorrentes da liberação de material radioativo.Uma das condições de carregamento mais severas que pode ameçar a integridade do VPR é causada por um transitório conhecido como Choque Térmico Pressurizado (PTS - Pressurized Thermal Shock). O VPR estará sujeito a tal condição durante um acidente com perda de refrigerante do núcleo do reator. Em um evento como este, o sistema de refrigeração de emergência do núcleo é ativado, o que provoca a injeção de água fria no interior do VPR e, consequentemente, um súbito resfriamento da parede do vaso. As tensões térmicas, resultantes deste choque térmico, associadas às tensões causadas pela repressurização do sistema, resultam em tensões de tração bastante elevadas, atingindo um valor máximo na superfície interna da parede do vaso. Além disso, a baixa temperatura provoca uma redução na tenacidade à fratura do material. Tal cenário pode levar à propagação de trincas relativamente pequenas através da parede do vaso. Portanto, ferramentas para prever o comportamento de trincas durante um evento de PTS são importantes e necessárias. O tema do presente trabalho se insere neste contexto. Em primeiro lugar, foi feito um estudo das principais questões envolvidas com o problema de PTS em vasos de pressão de reatores PWR. Essas questões dizem respeito ao comportamento à fratura de aços ferríticos na região de transição frágil-dúctil, aos procedimentos de análise de PTS disponíveis em documentos normativos e ao uso de ferramentas de análise numérica para cálculo de distribuição de temperaturas e tensões, e para obtenção de parâmetro de mecânica da fratura representativo da força motriz da trinca. Como principal objetivo do trabalho, foram desenvolvidos modelos de elementos finitos para avaliação do comportamento estrutural de um protótipo de VPR, contendo trincas em sua superfície, utilizado em um experimento de PTS. Procedimentos de mecânica da fratura foram também aplicados para prever eventuais crescimentos de trinca através da espessura da parede do vaso. Resultados das análises numéricas foram comparados com aqueles obtidos com o uso de método simplificado e com medições realizadas no experimento de PTS.<br>In the primary system of a pressurized water reactor (PWR) nuclear power plant, the reactor coolant is kept at internal temperature around 300 C and internal pressure in the order of 15,0 MPa, during normal operation. The reactor pressure vessel (RPV) contains the fuel assemblies and is considered the most important component of the reactor primary system. The RPV integrity must be assured all along its useful life to protect the general public against radiation liberation damage. One of the most severe load conditions that may threaten the integrity of a RPV is caused by a transient known as pressurized thermal shock (PTS). The RPV may be subjected to such a condition during a loss of coolant accident. In an event like that, the emergency core cooling system is activated, what leads to a sudden cooling of the RPV wall. The thermal stresses due to this thermal shock on the vessel wall, in combination with the pressure stresses from repressurization of the system, results in large tensile stresses, which are maximum at the inside surface of the vessel. In addition, the low temperature causes a decrease in the material fracture toughness. Such a scenario may lead to the propagation of relatively small cracks through the vessel wall. Therefore, analysis tools to predict crack growth behavior during a PTS event are important and necessary. The theme of the present work is connected with this research area. In the first place, the critical issues involved with the PTS problem were reviewed. These issues are related to the fracture behavior of ferritic steels in the ductile-to-brittle transition region, the PTS analysis procedures available in industry codes and standards, and the use of numerical analysis tools for calculation of temperature and stress distribution and for computation of crack driving force parameter. As the main goal, finite element models were developed for the assessment of the structural behavior of a RPV prototype, containing surface cracks, used in a PTS experiment. Fracture mechanics procedures were applied to predict crack growth through the vessel wall. The results of numerical analyses were compared with those obtained with the use of a simplified methodology and measurements from the PTS experiment.
APA, Harvard, Vancouver, ISO, and other styles
17

Pretorius, Johannes Petrus. "Solar Tower Power Plant Performance Characteristics." Thesis, Stellenbosch : University of Stellenbosch, 2004. http://hdl.handle.net/10019.1/16413.

Full text
Abstract:
Thesis (MScIng)--University of Stellenbosch, 2004.<br>ENGLISH ABSTRACT: This study investigates energy generation by large-scale solar tower power plants. The performance characteristics of a so-called reference plant with a 4000 m diameter glass collector roof and a 1500 m high, 160 m diameter tower are determined for a site located in South Africa. The relevant draught and conservation equations are derived, discretized and implemented in a numerical model which solves the equations using speci ed meteorological input data and determines the power delivered by the plant. The power output of a solar tower power plant over a twenty-four hour period is presented. Corresponding temperature distributions in the ground under the collector are shown. Variations in seasonal generation are evaluated and the total annual electrical output is determined. The dependency of the power output on collector diameter and tower height is illustrated, while showing that greater power production can be facilitated by optimizing the roof shape and height. The minor in uence of the tower shadow falling across the collector is evaluated, while the e ect of prevailing winds on the power generated is found to be signi cant.<br>AFRIKAANSE OPSOMMING: Hierdie studie ondersoek elektrisiteitsopwekking deur grootskaalse sontoringkragstasies. Die uitsetkarakteristieke van 'n sogenaamde verwysings-kragstasie met 'n 4000 m deursnee glas kollektor en 'n 1500 m hoë, 160 m deursnee toring word ondersoek vir 'n spesi eke ligging in Suid-Afrika. Die toepaslike trek- en behoudsvergelykings word afgelei, gediskretiseer en geimplementeer in 'n numeriese rekenaarmodel. Die rekenaarmodel los die betrokke vergelykings op deur gebruik te maak van gespesi seerde meteorologiese invoerdata en bepaal dan die uitset gelewer deur die kragstasie. Die uitset van 'n sontoring-kragstasie oor 'n periode van vier-en-twintig uur word getoon. Ooreenstemmende temperatuurverdelings in die grond onder die kollektor word geïllustreer. Die variasie in seisoenale elektrisiteitsopwekking word ondersoek en die totale jaarlikse elektriese uitset bepaal. Die invloed wat die kragstasie dimensies (kollektor deursnee en toring hoogte) op die uitset het, word bestudeer en resultate getoon. Daar is ook bevind dat verhoogde uitset meegebring kan word deur die vorm en hoogte van die kollektordak te optimeer. Die geringe e ek van die toringskadu op die kollektor word bespreek, terwyl bevind is dat heersende winde 'n beduidende e ek op die kragstasie uitset het.
APA, Harvard, Vancouver, ISO, and other styles
18

Fletcher, Sam. "Guided waves for power plant applications." Thesis, Imperial College London, 2012. http://hdl.handle.net/10044/1/10562.

Full text
Abstract:
This study explores the possibility of using the guided wave non-destructive testing technique for power plant applications. Guided waves are already used extensively in the petrochemical industry, however the nature of pipework in a power station has meant that guided waves have not been studied for use in this environment. Power station pipework is more challenging to inspect than petrochemical pipework using guided waves because the pipelines tend to be shorter, and the feature density is much higher, with welds, hangers, supports and bends all contributing to make analysis of results more difficult. A particular focus of the study was detecting axially aligned defects in pipes, a problem that emerged in the UK coal power station fleet in 2006. Guided waves provided a desirable inspection technique because large volumes of pipework can be screened quickly, this being particularly advantageous due to the high volume of pipework that requires inspection. Two guided wave approaches to detecting axial cracks in pipes were pursued. Long- range guided waves were initially examined as they are able to examine large quantities of pipework in a short amount of time. Unfortunately, long-range guided waves are sensitive to the change in cross-sectional-area of a pipe, and axially aligned defects produce only a very small change in cross-section. Therefore long-range guided waves were not sensitive enough to detect a critically sized axial crack. The sensitivity of long- range guided waves was improved using a synthetic focusing algorithm, although this was still insufficient to detect a critically sized defect. The second guided wave approach was to utilise circumferential guided waves to detect axial cracks in pipes. Although many of the advantages of long-range guided waves are lost, using circumferential guided waves is much faster than an alternative manual ultrasonic inspection. The results of circumferential guided wave experiments suggest that they would be capable of detecting a critically sized axial crack in a pipe. Besides attempting to detect axial cracks guided waves have been tested on a small number of other power station pipework systems. These systems were tested as a way to examine the viability of using guided waves as a general inspection tool at a power station. Although guided waves are not suitable for every application, there are a good number of potential applications due to the wide variety of pipework systems at a power station.
APA, Harvard, Vancouver, ISO, and other styles
19

Pun, Lok Bahadur 1952. "SEDIMENT EXCLUSION FROM POWER PLANT INTAKES." Thesis, The University of Arizona, 1986. http://hdl.handle.net/10150/276848.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

SILVA, FRANCISCO CARLOS SANTANNA DA. "ACTUAL REACTIVE POWER CAPABILITY EVALUATION IN AN ELECTRICAL POWER PLANT." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2002. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=2472@1.

Full text
Abstract:
ELETROBRAS - CENTRAIS ELÉTRICAS BRASILEIRAS S. A.<br>As curvas de capacidade de geração de potência reativa fornecidas pelos fabricantes são elaboradas em função dos parâmetros de projeto do gerador, e geralmente não consideram as condições de operação da planta e do sistema como fatores limitantes. É sabido que as condições de operação da planta, tais como tensões nominais do terminal do gerador e das barras auxiliares, valores limites dos reguladores de tensão, potência máxima da turbina e dispositivos de limitação e proteção de sub e sobreexcitação podem ser fatores limitantes da capacidade de geração e absorção de potência reativa. Neste trabalho foi elaborado um método e desenvolvida uma ferramenta computacional para identificar a curva de capacidade real de geração de potência reativa para qualquer ponto de operação. Este trabalho pode ser estendido para qualquer gerador, conhecidas as características da usina. Nos estudos de caso apresentados pôde-se verificar que é possível ampliar a capacidade de geração reativa da usina apenas conhecendo seus reais limites, não necessitando portanto, de grandes investimentos para o aumento dessa capacidade.<br>They show that different generator loads produce greater heating in different parts of generator. A method is described and a software is presented to evaluate the actual reactive power capability curve considering the operating condition.This paper shows that it is possible to enlarge the reactive power capability only by knowing the actual capability limitations, without raising costs and keeping operation safe.It is important to the generator agent to know its capabilities if it is desidered to provide reactive support as an ancillary service in the new competitive environment.
APA, Harvard, Vancouver, ISO, and other styles
21

Shafik, Ziyad M. "Toroidal field power supply for the spherical tokamak power plant." Thesis, University of Strathclyde, 2011. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=15658.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Meyer, Anthony Steven. "Tidal Power Plant: Capturing Tidal Power Using an Oscillating Wing." Thesis, The University of Arizona, 2010. http://hdl.handle.net/10150/146041.

Full text
Abstract:
This report describes the iterative process and steps taken to build a tidal power generator which works efficiently while causing no harm to marine life or habitat. A tidal power generator is a device that converts the mechanical energy from the horizontal tides in the ocean (or any flowing water body) into electrical energy. The design was undertaken as an interdisciplinary capstone project for seniors in mechanical and electrical engineering. The results will be used for research purposes in determining the efficiency of the specific design used and the overall feasibility of tidal power generation. A preliminary prototype consisting of the mechanical linkages and an airfoil was built and tested in the air to prove the various concepts employed work. Based on the results obtained, a full scale model was built and tested in the wind tunnel. An elliptical airfoil was used in harnessing the mechanical energy from the tidal flow. A deflector mounted on the system was to make the elliptical airfoil work bi-directionally. The mechanical linkage consisted of a belt and four sprockets which enable the generator to only see rotary motion in one direction. Finally, a small electric motor was used as a generator to convert the mechanical energy harnessed into electrical energy. The tests performed show that tidal power generation through airfoils is a viable technology with a lot of potential. Using a bi-symmetric airfoil, 5mW of power was produced with a small six volt motor in 40miles/hour wind, with the airfoil moving at over 200 rpm. Rudimentary testing of the same system with an 85% efficient permanent magnet DC generator shows possibilities of over 50W. Given more time in the wind tunnel and the water tunnel (which were fully occupied by graduate students and broken respectively), more elaborate tests could have been performed on the tidal generator. Some improvements which can be made to the system include using lighter bellows seals that can collapse under their own weight, this would decrease the force required to move the airfoil and hence increase the rpm and power generation. Also, an improved design should include a control system that takes into account the flow speed of the water and consequently adjusts the angle of attack of the airfoil. The switching mechanism for the airfoil should also be improved to allow for bi-directional functionality of the system. The system met the majority of its functional requirements and with some minor improvements and more testing has the potential to be very successful.
APA, Harvard, Vancouver, ISO, and other styles
23

Curran, Amy Christina. "Regulatory mechanisms of plant P-type ATPases /." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 1999. http://wwwlib.umi.com/cr/ucsd/fullcit?p9951424.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Altzar, Oskar. "Crack initiation in hydro power plant rotor rim sheets : A failure case study for Juktan hydro power plant." Thesis, KTH, Materialvetenskap, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-152588.

Full text
Abstract:
In 2013, cracks were found in the radius of the dovetail slots of the rotor rim sheets in generator 1 of Juktan hydro power plant in Västerbotten, Sweden. The cracks were estimated to be too deep to be able to repair and Alstom conducted an investigation on the cause of fracture. The investigation came to the conclusion that the radius was too small and that the new rotor rim sheets should have a six times greater fillet radius. However, it has not been investigated whether the material structure or the manufacturing process may have an impact on the crack initiation and following propagation that is the focus of this report.Parts of the dovetail slots were cut out and characterized with XRF, SEM and LOM. Further mechanical characterizations were done according to Vickers.From the SEM and LOM micrographs a high amount of large (10μm) and cubic particles were found in the microstructure. The micrographs also showed a deformation of the microstructure and the hardness test showed a deformation hardening near the edge where the sheet had been punched. The edge surface of the sheet also had notches.The large and hard particles in the microstructure impair the mechanical properties of the steel. Furthermore, the hardening effect combined with the notches will make a good crack initiation point. Therefore, there is a higher possibility that a crack will initiate in the radius of the dovetail slots where large stresses occur.
APA, Harvard, Vancouver, ISO, and other styles
25

Bengtsson, Sara. "Modelling of a Power System in a Combined Cycle Power Plant." Thesis, Uppsala universitet, Elektricitetslära, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-149318.

Full text
Abstract:
Simulators for power plants can be used for many different purposes, like training for operators or for adjusting control systems, where the main objective is to perform a realistic behaviour for different operating conditions of the power plant. Due to an increased amount of variable energy sources in the power system, the role of the operators has become more important. It can therefore be very valuable for the operators to try different operating conditions like island operation. The aim of this thesis is to model the power system of a general combined-cycle power plant simulator. The model should contain certain components and have a realistic behaviour but on the same time be simple enough to perform simulations in real time. The main requirements are to simulate cold start, normal operation, trip of generator, a controlled change-over to island operation and then resynchronisation. The modelling and simulations are executed in the modelling software Dymola, version 6.1. The interface for the simulator is built in the program LabView, but that is beyond the scope of this thesis. The results show a reasonable performance of the power system with most of the objectives fulfilled. The simulator is able to perform a start-up, normal load changes, trip of a generator, change-over to island operation as well as resynchronisation of the power plant to the external power grid. However, the results from the changing-over to island operation, as well as large load losses during island operation, show an unreasonable behaviour of the system regarding the voltage magnitude at that point. This is probably due to limitations in calculation capacity of Dymola, and the problem has been left to further improvements due to lack of time. There has also been a problem during the development of a variable speed regulated induction motor and it has not been possible to make it work due to lack of enough knowledge about how Dymola is performing the calculations. Also this problem has been left to further improvements due to lack of time.
APA, Harvard, Vancouver, ISO, and other styles
26

Pagone, Emanuele. "Advanced low carbon power systems - the advanced zero emissions power plant." Thesis, Cranfield University, 2009. http://dspace.lib.cranfield.ac.uk/handle/1826/8293.

Full text
Abstract:
The global warming issue is becoming more and more important in the public opinion, because its effects on everyday life of the entire mankind are starting to become appreciable. On the next (2009) December will be held in Copenhagen the fifteenth United Nations Climate Change Conference which is expected to be crucial for the future choices to deal with the anthropogenic greenhouse gases issue. The power generation sector is one of the most important contributors to the emissions of greenhouse gases (of which the carbon dioxide is the main anthropogenic example), and it is facing in the last decades a problem that will exacerbate surely the already alarming effect on the global warming: the rapid increase of the world power demand. For these reasons the carbon capture topic is gaining nowadays a lot of attention, especially in the industrial sector, since it will be a strategic field for the power generation in the short-medium term. In fact, it is really likely that will be introduced soon a so-called “cap and trade” system, with the trading of pollution licences related to the CO2 emissions, as the USA president Obama has recently proposed to the Congress. This option would turn out in a completely new scenario in the power generation sector with novel, cleaner concepts being economically more attractive than the conventional ones. This project investigates the performance of a novel thermodynamic cycle with carbon capture, called Advanced Zero Emissions Power plant (AZEP), which has been analysed in the open literature just partially and superficially up to now. Since this project is part of a bigger one in which several carbon capture novel cycles options will be compared, the main objective is to provide a flexible, modular, modern computational tool, called eAZEP, developed from scratch. The second objective is the evaluation of the four main layouts of the AZEP concept as a stand alone power plant, assessing their inclination to be included in an unfired combined cycle featured with an Heat Recovery Steam Generator (HRSG). A final, third objective is the development of a routine for the off-design performance calculation to be included in on old pre-existing computational tool. The original contribution of this work to the knowledge on the topic comprises 1. the conception of two new layouts for the AZEP cycle (the Post Expan-sion Heat exchanger layouts); 2. the performance evaluation of the long term potential for the power plant; 3. a sensitivity analysis of the thermodynamic concept. The best suitable arrangements of the plant layout are identified together with the main parameters which influence their performance, both for the combined cycle perspective implementation and for the stand alone option. Thanks to the flexibility of eAZEP will be easy to consider, in a future work, a pretty wide number of alternative concepts and investigate more cycle parameters in order to broaden the conclusions obtained in this work. Moreover the combined cycle off-design new routine must be debugged and validated.
APA, Harvard, Vancouver, ISO, and other styles
27

Rosso, Stefano. "Power Plant Operation Optimization Economic dispatch of combined cycle power plants." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-264350.

Full text
Abstract:
As electricity production from renewable sources increases, higher flexibility is required by fossil fuel generation to cope with the inherent fluctuations of solar and wind power. This results in shorter operating cycles and steeper ramps for the turbines, and more uncertainty for the operators. This thesis work applies mathematical optimization and statistical learning to improve the economic dispatch of a combined cycle power plant composed by two separate blocks of two gas turbines and one steam turbine. The goal is to minimize the input fuel to the gas turbines while respecting a series of constraints related to the demand the plant faces, power generation limits etc. This is achieved through the creation of a mathematical model of the plant that regulates how the plant can operate. The model is then optimized to reduce fuel consumption at a minimum. Machine learning techniques have been applied to sensor data from the plant itself to realistically simulate the behavior of the turbines. Input-Output curves have been obtained for power and exhaust heat generation of all the turbines using ordinary least squares on monthly data with a ten minutes sampling rate. The model is cross-validated and proven statistically valid. The optimization problem is formulated through generalized disjunctive programming in the form of a mixed-integer linear problem (MILP) and solved using a branch-and-bound algorithm. The output of the model is a one-week dispatch, in fifteen minutes intervals, carried out for two months in total. Lower fuel consumption is achieved using the optimization model, with a weekly reduction of fuel consumed in the range of 2-4%. A sensitivity analysis and a correlation matrix are used to highlights the demand and the maximum available capacity as critical parameters. Results show that the most efficient machines (alternatively, the ones with highest available capacity) should be operated at maximum load while still striving for an efficient utilization of the exhaust gas.<br>När elproduktionen från förnybara källor ökar krävs högre flexibilitet av fossil bränsleproduktion för att hantera fluktuationerna från sol- och vindkraft. Detta resulterar i kortare driftscykler och brantare ramper för turbinerna och mer osäkerhet för operatörerna. Detta avhandlingsarbete tillämpar matematisk optimering och statistisk inlärning för att förbättra det ekonomiska utnyttjandet av en kombicykel i ett kraftverk som består av två separata block med två gasturbiner och en ångturbin. Målet är att minimera bränsleförbrukningen hos gasturbinerna samtidigt som man tar hänsyn till en serie av villkor relaterade till efterfrågan som anläggningen står inför, kraftproduktionsbegränsningar etc. Detta uppnås genom skapandet av en matematisk modell för anläggningen som reglerar hur anläggningen kan fungera. Modellen är sedan optimerad för minsta möjliga bränsleförbrukning. Maskinteknik har använts på sensor data från själva anläggningen för att realistiskt simulera turbinernas beteende. In och utdata kurvor har erhållits för kraftproduktion och avgasvärmeproduktion med hjälp av ordinary least squares (OLS) med månads data och med en tio minuters samplingshastighet. Modellen är korsvaliderad och bevisad statistiskt giltig. Optimeringsproblemet formuleras genom en generaliserad disjunktiv programmering i form av ett mixed-integer linear problem (MILP) och löses med hjälp av en Branch-and-Bound algoritm. Resultatet från modellen är en veckas värden, med femton minuters intervall, totalt i två månader. Lägre bränsleförbrukning uppnås med hjälp av optimeringsmodellen, med en vecka minskad bränsleförbrukning i intervallet 2-4%. En känslighetsanalys och en korrelationsmatris används för att visa efterfrågan och den maximala tillgängliga kapaciteten som kritiska parametrar. Resultaten visar att de mest effektiva maskinerna (alternativt de med högsta tillgängliga kapacitet) bör drivas med maximal belastning medan de fortfarande strävar efter ett effektivt utnyttjande av avgaserna.
APA, Harvard, Vancouver, ISO, and other styles
28

Drange, Line Sjødin. "Dimensioning of Kirne Power Plant in Nepal." Thesis, Norwegian University of Science and Technology, Department of Energy and Process Engineering, 2009. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-8989.

Full text
Abstract:
<p>Kirne Power Plant is a planned expansion of Khimti I Hydro Power Plant in Nepal. During the monsoon period there is a lot of excess water, and the the plan is to utilize this water in an extra power plant during the monsoon. The same tunnel as for Khimti I is to be used for the whole volume flow. A new external pressure shaft is planned for the water down to the new power house of Kirne. The hydrology is studied in this thesis, and a flow of 11 m3/s can be utilized in Kirne through 80% of the monsoon, through the rest of the period, the flow is lower, on the average. The flow limit is found based on the head loss and surges in the water way. The sediment basin will have to be doubled in size to handle the doubling of the volume flow. The placing of the basin can be on the opposite riverbank of the existing settling basin. Another possibility is to build the planned power plant Khimti II upstream Khimti I, and handle the sediments there. Excavation of a volume of 170 m3 is necessary at the top of the surge shaft, to give room for the upsurges. The down-surges are reduced by prolonging the opening time of the turbines and valves. The new pressure shaft will be a 1800 meter long external shaft of steel, with an optimal pipe diameter of 2,16 meter. The shaft will be external due to difficult conditions in the rock, and experiences of the building of Khimti I. It will be shown that the best solution for Kirne is to install one Pelton turbine wiht five nozzles, or two Pelton turbines with three nozzles each, in the power plant. Two Pelton turbines will give a better production than one, but at the same time the costs of the power house, and the turbines will increase. The size of the turbine will be 64 MW for one turbine, and 32 MW each, if two smaller turbines are chosen. The production will be about 240 GWh depending of the flow through the year, which can be up to 30% less than the average. The income of Kirne will be about 13-14 MUSD, depending on the final choices. In order to finish this thesis, a lot of assumptions are made. The power evacuation and agreements with locals and national governments are not investigated. This is done to narrow the scope of the thesis, but at these points, the largest risks of the project are placed.</p>
APA, Harvard, Vancouver, ISO, and other styles
29

Kemp, Richard. "Alloy design for a fusion power plant." Thesis, University of Cambridge, 2006. https://www.repository.cam.ac.uk/handle/1810/218376.

Full text
Abstract:
Fusion power is generated when hot deuterium and tritium nuclei react, producing alpha particles and 14 MeV neutrons. These neutrons escape the reaction plasma and are absorbed by the surrounding material structure of the plant, transferring the heat of the reaction to an external cooling circuit. In such high-energy neutron irradiation environments, extensive atomic displacement damage and transmutation production of helium affect the mechanical properties of materials. Among these effects are irradiation hardening, embrittlement, and macroscopic swelling due to the formation of voids within the material. To aid understanding of these effects, Bayesian neural networks were used to model irradiation hardening and embrittlement of a set of candidate alloys, reduced-activation ferritic-martensitic steels. The models have been compared to other methods, and it is demonstrated that a neural network approach to modelling the properties of irradiated steels provides a useful tool in the future engineering of fusion materials, and for the first time, predictions are made on irradiated property changes based on the full range of available experimental parameters rather than a simplified model. In addition, the models are used to calculate optimised compositions for potential fusion alloys. Recommendations on the most fruitful ways of designing future experiments have also been made. In addition, a classical nucleation theory approach was taken to modelling the incubation and nucleation of irradiation-induced voids in these steels, with a view to minimising this undesirable phenomenon in candidate materials. Using these models, recommendations are made with regards to the engineering of future reduced-activation steels for fusion applications, and further research opportunities presented by the work are reviewed.
APA, Harvard, Vancouver, ISO, and other styles
30

Bertilsson, Richard. "Information Inadequacy in Nuclear Power Plant Accidents." Thesis, Linnéuniversitetet, Institutionen för informatik (IK), 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-34390.

Full text
Abstract:
The aim of this study is to compare the cause of the, to date, three onlycommercial nuclear power plant accidents. These are very complex incidents,which have dire impact on society and the environment and therefore benefitfrom further investigation, if there lays a possibility of identifying factors thatcould prevent further accidents in the future. In order to investigate this theactions and decisions that lead up to each nuclear meltdown was identified andcompared.The investigation was based on a qualitative study on three cases of nuclearmeltdown accidents. They are based on text analysis of official reports anddocumentaries on the subject. The theoretical background for this study wasKajtazi’s (2011) work on Information Inadequacy. The study was limited to theevents leading up to the accidents and do not include activities afterwards.The study shows that each case had different underlying reasons. It alsoshows that we seem to have learned something from our previous mistakes, andacted on them accordingly. From the Fukushima Daiichi accident we canrecommend that organizations in charge should take early warnings seriouslyand act upon them as soon as they are presented.
APA, Harvard, Vancouver, ISO, and other styles
31

Setiawan, Eko Adhi. "Concept and controllability of virtual power plant." Kassel : Kassel Univ. Press, 2007. http://www.uni-kassel.de/hrz/db4/extern/dbupress/publik/abstract.php?978-3-89958-309-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Gjevik, Kristin. "Micro Power Plant at Marangu Hotel, Kilimanjaro." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for energi- og prosessteknikk, 2014. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-26069.

Full text
Abstract:
Development of micro-hydropower schemes in rural areas of developing countries is largely depended on simple and affordable systems. The contra-rotating pipe turbine, produced by GreenEnergy is a one-piece and easily operated turbine, designed as the Rolls-Royce of turbines with good operational qualities. Suitable for low head sites, this turbine is easily installed in existing plants, for minimum passage flows or independent schemes supplying electricity to rural areas.The contra-rotating prototype will now be donated to a site in a developing country and the river Una, near Marangu Hotel in Tanzania has been chosen as a potential site. Thereby the turbine could produce clean and needed electricity, and at the same time test its versatility and easy operation.Field work was performed in Tanzania in February, to gain necessary groundwork for this thesis. A proper site review was conducted with a focus on head and distance measurements of the potential scheme. An introduction to the local conditions, both technically and socially was also in focus.The contra-rotating prototype was tested in the Waterpower Laboratory, to assess the condition after the generator upgrades performed by BEVI. Results showed a disappointingly increase of efficiency at design operation. This might imply an inaccurate position of the runner and generator hubs. A full scheme design is presented with all components necessary in addition to an economical review and evaluation local conditions. Designed scheme has a goal of easy operation and minimum maintenance demand, which has been ensured by installation of a Coanda intake and simple control system.Hydrological data of the area has been assessed from data of a nearby area, from a PhD thesis on the hydrological study of the area. This turned out to be one of the large uncertainties presented in this project. The adapted data gave a low expected river discharge, compared to what would secure a sustainable installation.Further progress is now dependent on the partners involved, especially GreenEnergy. Eventual future activities will require thorough discharge measurements from Una.
APA, Harvard, Vancouver, ISO, and other styles
33

Robson, Joseph Douglas. "Modelling of precipitation in power plant steels." Thesis, University of Cambridge, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.627058.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Rajbansi, A. M. "Capital Allowances on a power generating plant." Diss., University of Pretoria, 2013. http://hdl.handle.net/2263/41571.

Full text
Abstract:
South Africa emerged as a country that fought and overcame arduous oppression.. Following the democratic revolution of 1994, the new government regime embarked on an enormous electrification rollout with the mandate of ensuring all households in the country have access to electricity. This did not come without huge challenges and the electricity supply network was already under pressure. This led to load shedding and in turn impeded economic growth. Consequently South Africa requires significant investment in new electricity infrastructure. In order to ensure sustainable economic growth, the provision of reliable electricity is a critical strategic imperative. One of the objectives (according to the Electricity Regulation Act, No. 4 of 2006) is to facilitate investment in the electricity supply industry. To empower and encourage electricity producers, including foreign investors, to enter into the market, it is imperative to critically assess the current tax allowances available for the construction of power station assets within South Africa's domestic shores. In addition, the concept of load shedding is not limited to South Africa, but is a form of reducing demand on the energy generating system and is experienced internationally. To understand the tax incentives offered by international countries to reduce demand on the electricity supply network, will form part of this assessment. Benchmarking will be done on South Africa's domestic tax incentives offered to local electricity generators against international suppliers of electricity.<br>Dissertation (MCom)--University of Pretoria, 2013.<br>lmchunu2014<br>Taxation<br>unrestricted
APA, Harvard, Vancouver, ISO, and other styles
35

Moreno, Roman Miguel 1963. "Exergoeconomic analysis of a nuclear power plant." Diss., The University of Arizona, 1997. http://hdl.handle.net/10150/288727.

Full text
Abstract:
Exergoeconomic analysis of a nuclear power plant is a focus of this dissertation. Specifically, the performance of the Palo Verde Nuclear Power Plant in Arizona is examined. The analysis combines thermodynamic second law exergy analysis with economics in order to assign costs to the loss and destruction of exergy. This work was done entirely with an interacting spreadsheets notebook. The procedures are to first determine conventional energy flow, where the thermodynamic stream state points are calculated automatically. Exergy flow is then evaluated along with destruction and losses. The capital cost and fixed investment rate used for the economics do not apply specifically to the Palo Verde Plant. Exergy costing is done next involving the solution of about 90 equations by matrix inversion. Finally, the analysis assigns cost to the exergy destruction and losses in each component. In this work, the cost of electricity (exergy), including capital cost, leaving the generator came to 38,400 $/hr. The major exergy destruction occurs in the reactor where fission energy transfer is limited by the maximum permissible clad temperature. Exergy destruction costs were: reactor--18,207 $/hr, the low pressure turbine--2,000 $/hr, the condenser--1,700 $/hr, the steam generator--1,200 $/hr. The inclusion of capital cost and O&M are important in new system design assessments. When investigating operational performance, however, these are sunk costs; only fuel cost needs to be considered. The application of a case study is included based on a real modification instituted at Palo Verde to reduce corrosion steam generator problems; the pressure in the steam generator was reduced from 1072 to 980 psi. Exergy destruction costs increased in the low pressure turbine and in the steam generator, but decreased in the reactor vessel and the condenser. The dissertation demonstrates the procedures and tools required for exergoeconomic analysis whether in the evaluation of a new nuclear reactor system concept, or in the assessment of the economic performance in operating plants.
APA, Harvard, Vancouver, ISO, and other styles
36

Nicholas, Jack Robert. "Heat transfer for fusion power plant divertors." Thesis, University of Oxford, 2017. http://ora.ox.ac.uk/objects/uuid:efedf39b-401b-418f-b510-386a512314a8.

Full text
Abstract:
Exhausting the thermal power from a fusion tokamak is a critical engineering challenge. The life of components designed for these conditions has a strong influence on the availability of the machine. For a fusion power plant this dependence becomes increasingly important, as it will influence the cost of electricity. The most extreme thermal loading for a fusion power plant will occur in the divertor region, where components will be expected to survive heat fluxes in excess of 10 MW/m<sup>2</sup> over a number of years. This research focussed on the development of a heat sink module for operation under such conditions, drawing on advanced cooling strategies from the aerospace industry. A reference concept was developed using conjugate Computational Fluid Dynamics. The results were experimentally validated by matching Reynolds numbers on a scaled model. Heat transfer data was captured using a transient thermochromic liquid crystal technique. The results showed excellent agreement with the corresponding numerical simulations. To facilitate comparison against other divertor heat sink proposals, a nondimensional figure of merit for cooling performance was developed. When plotted against a non-dimensional mass flow rate, the reference heat sink was shown to have superior cooling performance to all other divertor proposals to date. Results from Finite Element Analysis were used in conjunction with the ITER structural design criteria to life the heat sink. The sensitivity of life to both boundary conditions, and local geometric features, were explored. The reference design was shown to be capable of exceeding the life requirements for heat fluxes in excess of 15 MW/m<sup>2</sup>. A number of heat sinks, based on the reference design, were fabricated. These underwent non-destructive testing, before experimentation in a high-heat flux facility developed by the author. The heat transfer performance of the tested modules was found to exceed that predicted by numerical modelling, which was concluded to be caused by the fabrication processes used.
APA, Harvard, Vancouver, ISO, and other styles
37

Elzubair, Arwa. "Using CHP plant to regulate wind power." Thesis, Högskolan i Halmstad, Akademin för ekonomi, teknik och naturvetenskap, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-39657.

Full text
Abstract:
Sweden is working on increasing the share of wind energy, but it comes along with many challenges,one of those challenges is the uncertainty of the wind power; CHP could be an option for betterutilizing of wind power by adapting the power to heat ratio according to wind energy fluctuation.The potential for utilizing installed wind energy in Sweden using CHP plant has been studied. A CHPplant installed in the South of Sweden was considered as studied case. To match the heat andelectricity demand requested by the region with the output from the CHP plant two scenarios weresimulated. Results showed that 5.3 MW of installed wind energy in Sweden could be adjusted andset to a level of 73.6 MW if the CHP plant alone were to cover the heat demand, and 25.4 MW ofinstalled wind power in Sweden could be adjusted and set to a level of 54.2 MW with an additionalheat supply of 8 MW in the studied case.
APA, Harvard, Vancouver, ISO, and other styles
38

Bergström, Jarl, and Conny Franzon. "Thermo-economic optimization of a combined heat and power plant in Sweden : A case study at Lidköping power plant." Thesis, Blekinge Tekniska Högskola, Institutionen för industriell ekonomi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-20766.

Full text
Abstract:
Energy production in power plants comes with both high costs and turnover whereas variations in the production strategy—that is, which boilers, coolers, or generators that should be running—have big impact on the economic result. This is especially true for a combined heat and power (CHP) plant where the production of district heating and electricity is linked, thus allowing for a higher flexibility in the production strategy and potential of increasing the revenue. Previous research states that thermo-economic optimization can have a great impact on economic result of power plants, but every power plant is operating under a unique set of conditions depending on its location, operating market, load demand, construction, surrounding, and the like, and comparable studies on CHP plants in Sweden are very few. This study aims to fill this research gap by evaluating savings potential of a CHP plant in Lidköping, Sweden by utilizing thermo-economic optimization with the approach of combining actual historical data from the power plant with mass-flow equations and constraints to construct a mathematical MODEST model that is optimized by linear programming. The result demonstrates a clear theoretical potential to improve earnings and the conclusion that the studied CHP would benefit by implementing optimization procedures or software to schedule production. The result was also comparable to previous research but varied over time, which highlights how unique conditions may impact the result.
APA, Harvard, Vancouver, ISO, and other styles
39

Van, der Helm Mark Johan 1972. "Power plant degradation : a modular secondary plant and integral flow accelerated corrosion model." Thesis, Massachusetts Institute of Technology, 2000. http://hdl.handle.net/1721.1/8867.

Full text
Abstract:
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Nuclear Engineering, February 2001.<br>Includes bibliographical references (leaves 198-204).<br>Flow Accelerated Corrosion (FAC) is the most prevalent material degradation mechanism for low carbon steel in steam-water flow systems. The band of uncertainty in predictions of wear rate due to FAC spans one to two orders of magnitude. Such a wide range of uncertainty inhibits the ability to devise safe and economical repair and replacement schedules. The goal of this thesis is to reduce uncertainty of predictions of wear caused by FAC. Reduction in the uncertainty in FAC wear rate predictions is achieved through the development of a new predictive FAC model, the incorporation of this model in a flow system analysis environment, and the use of this environment to identify improved methodologies for predicting FAC wear rate. The new FAC model is based on a published empirical model, published data, and physical mechanisms identified to be significant in the wear process. The new FAC model is shown to have less uncertainty for single phase lab data and single and two phase plant data. The flow system analysis environment is an interactive program that calculates parameters relevant to the FAC phenomenon based on plant description. Functionality of this environment is validated for each of the four calculations it performs: thermodynamic, thermal hydraulic, chemistry, and degradation rate. Additionally, this environment can be used to analyze contributions to uncertainty that are not yet identified. This environment was used to analyze the contribution to uncertainty from the current method of incorporating chemistry parameters in predictions of FAC wear. Based on this analysis, suggestions are made to improve these methods, thereby reducing prediction uncertainty and improving the knowledge necessary for safer and more economical plant operation.<br>by Mark Johan van der Helm.<br>Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
40

Westman, Snorre Foss. "Power plant with CO2 capture based on adsorption." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for energi- og prosessteknikk, 2012. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-18504.

Full text
Abstract:
A dynamic one-dimensional homogeneous model for a packed bed sorption-enhanced water-gas shift (SEWGS) reactor has been developed, describing the non-isothermal, non-adiabatic and non-isobaric operation of this type of reactor. The model was developed to describe a SEWGS reactor designed to work under operating conditions and syngas feeds encountered in a coal-fed Integrated Gasification Combined Cycle power plant utilizing an oxygen-fed gasifier. Different from previous integration designs reported in literature, the feasibility of leaving out the conventional high-temperature water-gas shift (WGS) reactor upstream of the SEWGS reactor has been investigated. The reactor was assumed to be packed with a mixture of K2CO3-promoted hydrotalcite CO2 adsorbent and commercial high-temperature FeCr-based water-gas shift catalyst pellets. Utilizing the reactor model, a mathematical modelling framework for the operation of eight SEWGS reactors in a SEWGS cycle has been developed. This system model accounts for all the necessary interactions between the reactors during the SEWGS cycle, including the exchange of mass in the feed, rinse, equalization and repressurization steps. In contrast to available open literature, the mathematical framework describes in detail how the necessary switches in the boundary conditions for the reactors have been realized.Simulations of several SEWGS cycles were carried out. The results were compared with experimental and modelling data from literature. Due to inconsistencies in the parameters and implementation of the model in the simulation software employed, results were in most aspects quantitatively not comparable to results from literature. However, the qualitative trends and physical mechanisms expected were observed and confirmed by the model. The temperatures in the reactors reached an unacceptable high level with respect to the tolerable operating conditions of the catalyst and adsorbent. It is planned to continue the work on the model, and implementing it within a full power plant model to investigate the effects of changes in the power production and thus the required amount of syngas to be treated.
APA, Harvard, Vancouver, ISO, and other styles
41

Chen, Zhenwei. "Virtual Power Plant Simulation and Control Scheme Design." Thesis, KTH, Industriella informations- och styrsystem, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-116752.

Full text
Abstract:
Virtual Power Plant (VPP) is a concept that aggregate Distributed Energy Resources (DER) together, aims to overcome the capacity limits of single DER and the intermit-ted natural characteristics of renewable energy sources like wind and solar. The whole system can be viewed as a single large-capacity power plant from the system‘s point of view. In this project, the literature review of VPP concept, architecture, existed project and the survey of VPP in Sweden are being conducted first. Secondly, the simplified VPP model is built on MATLAB/Simulink software. The simplified system contains a wind farm, a hydro power plant, a dynamic system load and an infinite bus representing the large transmission grid. During the simulation process, the generation and consump-tion unites are running according to the real history data located in external database. In the third place, optimized control schemes for the hydro unit in VPP model to decrease its effects on transmission grid are implemented in Simulink model. At the same time, hydro turbine should be controlled in an optimized way that without large turbulence. Basically, the hydro power plant is responsible for balancing the active power between the wind farm and dynamic load. Since there is a limit for the hydro turbine output, the rest of either power shortage or surplus power need to be com-pensated by the grid. This is the fundamental control scheme, so called run time con-trol scheme. The advanced control schemes here are based on the moving average control method and forecast compensation control method. The forecast compensa-tion control method use the 24 hours ahead load forecasting data generated by Artifi-cial Neural Network. Later on, analysis of those three control schemes will be pre-sented. The last part of the project is the conclusion of the different control schemes according to comparison of their control results.
APA, Harvard, Vancouver, ISO, and other styles
42

Ekre, Kjetil Vinjerui. "Novel Processes for Power Plant with CO2 Capture." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for energi- og prosessteknikk, 2012. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-19372.

Full text
Abstract:
The purpose of this thesis was to examine different technologies, which enhances the CO2 partial pressure in the flue gas from the natural gas combined cycle. A base case has been created as a reference for comparison of the other cycles. The base case includes a MEA capture plant with a reboiler duty of 3,6 MJ/kg CO2. To simulate the process in this thesis HYSYS and GT PRO have been used as simulation tools. The thesis has also looked into ways of extracting steam from the steam cycle to be used in the reboiler. The chosen extraction point was the crossover between the intermediate-pressure turbine and the low-pressure turbine, the steam was saturated with water from the low-pressure boiler and have a pressure and temperature of 3,6 bar and 140 °C into the reboiler. Four different technologies have been evaluated in this thesis; a natural gas combined cycle with the use of exhaust gas recycle and, three elevated pressure cycles; post-compression CO2 capture, post-expansion CO2 capture, and tail-end CO2 capture. These processes have been compared against each other with regards to the net plant efficiency, absorber size at the capture plant, and the technological maturity. The most promising of these technologies is the natural gas combined cycle with exhaust gas recycle and the tail-end CO2 capture processes, with respectively 52 % and 51,7 % net plant efficiency. The smallest absorber size is achieved by the use of post-compression CO2 capture, with a diameter of 2,9 m and a height of 10,5 m. The elevated pressure cycles have also been tested with the use of MDEA as solvent in the capture plant. By use of elevated pressure and MDEA the reboiler duty was reduced to 2 MJ/ kg CO2.
APA, Harvard, Vancouver, ISO, and other styles
43

Jingchao, Sun. "Prediction of Sound Propagation From Power Transmission Plant." Thesis, KTH, MWL Marcus Wallenberg Laboratoriet, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-121356.

Full text
Abstract:
In ABB, Soundplan is the usually used software to predict the industrial noise for power transmission plants. However, the sound sources in Soundplan are modeled as point sources between which there are no sound reflections. For the real situation, the sound sources are very big and can be regarded as noise barriers. So it is important to take the reflections between sound sources into consideration.COMSOL Multiphysics is Finite Element Method (FEM) software which can model acoustic object with sound-reflective boundaries. First, the COMSOL model for single component inside the power transmission plant will be discussed. Then the COMSOL model for the whole plant will be calculated at different frequencies. The total sound pressure level at different receivers will be compared between COMSOL and Soundplan results. COMSOL can be used to predict the sound propagation of the power transmission plant and it can give different results when the outline of the plant is changed.
APA, Harvard, Vancouver, ISO, and other styles
44

Messina, Marco. "Secondary particulate formation from solid fuel power plant." Thesis, Imperial College London, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.420599.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Saad, Abdullah Aziz. "Cyclic plasticity and creep of power plant materials." Thesis, University of Nottingham, 2012. http://eprints.nottingham.ac.uk/12538/.

Full text
Abstract:
The thermo-mechanical fatigue (TMF) of power plant components is caused by the cyclic operation of power plant due to startup and shutdown processes and due to the fluctuation of demand in daily operation. Thus, a time-dependent plasticity model is required in order to simulate the component response under cyclic thermo-mechanical loading. The overall aim behind this study is to develop a material constitutive model, which can predict the creep and cyclic loading behaviour at high temperature environment, based on the cyclic loading test data of the P91 and the P92 steels. The tests on all specimens in the study were performed using the Instron 8862 TMF machine system with a temperature uniformity of less than ±10°C within the gauge section of the specimen. For the isothermal tests on the P91 steel, fully-reversed, strain-controlled tests were conducted on a parent material of the steel at 400, 500 and 600˚C. For the P92 steel, the same loading parameters in the isothermal tests were performed on a parent material and a weld metal of the steels at 500, 600 and 675°C. Strain-controlled thermo-mechanical fatigue tests were conducted on the parent materials of the P91 and the P92 steels under temperature ranges of 400-600°C and 500-675°C, respectively, with in-phase (IP) and out-of-phase (OP) loading. In general, the steels exhibit cyclic softening behaviour throughout the cyclic test duration under both isothermal and anisothermal conditions. The cyclic softening behaviour of the P91 steel was further studied by analyzing stress-strain data at 600°C and by performing microstructural investigations. Scanning electron microscope (SEM) and transmission electron microscope (TEM) images were used to investigate microstructural evolution and the crack initiation of the steel at different life fractions of the tests. The TEM images of the interrupted test specimens revealed subgrain coarsening during the cyclic tests. On the other hand, the SEM images showed the initiation of microcracks at the end of the stabilisation period and the cracks were propagated in the third stage of cyclic softening. A unified, Chaboche, viscoplasticity model, which includes combined isotropic softening and kinematic hardening with a viscoplastic flow rule for time-dependent effects, was used to model the TMF behaviour of the steels The constants in the viscoplasticity model were initially determined from the first cycle stress-strain data, the maximum stress evolution during tests and the stress relaxation data. Then, the initial constants were optimized using a least-squares optimization algorithm in order to improve the general fit of the model to experimental data. The prediction of the model was further improved by including the linear nonlinear isotropic hardening in order to obtain better stress-strain behaviour in the stabilisation period. The developed viscoplasticity model was subsequently used in the finite element simulations using the ABAQUS software. The focus of the simulation is to validate the performance of the model under various types of loading. Simulation results have been compared with the isothermal test data with different strain ranges and also the anisothermal cyclic testing data, for both in-phase and out-of-phase loadings. The model’s performance under 3-dimensional stress conditions was investigated by testing and simulating the P91 steel using a notched specimen under stress-controlled conditions. The simulation results show a good comparison to the experimental data.
APA, Harvard, Vancouver, ISO, and other styles
46

Rice, Enda Padraig. "Modelling and co-ordinated control of power plant." Thesis, Queen's University Belfast, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.481810.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Cregan, J. "Thermoeconomic monitoring of power plant condenser sub system." Thesis, Queen's University Belfast, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.411755.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Godswill, Uchechukwu Megwai. "Process Simulations of Small Scale Biomass Power Plant." Thesis, Högskolan i Borås, Institutionen Ingenjörshögskolan, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-17969.

Full text
Abstract:
Power generation from biomass based renewable energy technologies is a promising option in retrofitting our dependence in conventional power generation processes. The development of any society is not possible without sustainable energy and access to energy creates that environment that allows the world to thrive. Electricity access especially in developing regions of the world is of particular interest. This work provides results on electricity efficiency, the economic feasibility and environmental impact of biomass based power technologies in small scale setting using Aspen Plus software. The power generation processes analysed on standalone basis include - micro gas turbine, gas turbine, steam turbine, Stirling engine and internal combustion engine. Some of the processes are optimized in the design to suit the specific climate and available wood waste stream in Nigeria is considered in this work. Simulation results indicate that gas engines power technologies gave a better electric performance of more than 30% with its integration with biomass gasification technology in production of fuel gas. The stirling engine power technology shows a good prospect despite its yet to be commercial status. The modification of the engine (removal regenerator) gives a better electric efficiency. Also result shows that internal combustion engine process emits more of nitric oxides compared to other technologies which create doubts over its environmental compatibility. Economic studies show that for small scale power generation, internal combustion engines and stirling engines are economic feasible. Also, steam turbine and gas turbine illustrate why they are mostly applied in medium/large scale biomass power generation specially recommended to regions where more biomass resource are produced. The micro gas turbine power technology can also be applied in small scale despite its high total investment capital. Furthermore, the study shows that about from 1.8 million tonnes per year of saw dust (wood waste) produced from lumber industries in Nigeria, about 1.3 TWh of electricity can be generated from 1000 MW power plant. Power generation via the utilization of biomass prove to be a possible path to Nigeria’s economic, social and environmental sustainability but the extent to which this can achieved is strongly dependent institutional framework, investment, incentives and information policies.<br>Program: Masterutbildning i energi- och materialåtervinning
APA, Harvard, Vancouver, ISO, and other styles
49

Li, Qiang. "Microstructure-property relationships in a power plant steel." Thesis, University of Cambridge, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.624951.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Wiberg, Anders. "Industrial design engineering study of PCM power plant." Thesis, KTH, Maskinkonstruktion (Inst.), 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-99317.

Full text
Abstract:
En studie av en mindre kraftstation har gjorts i samarbete med Exencotech som forskar inom energi-återvinning. Deras kraftstation behandlar återvinning av värme från uppvärmt vatten som annars inte hade använts utan ansetts som ren förlust. Den studie som genomförts har gjorts på ett 100kW system med en så stor möjlighet till modularitet som är möjligt för anpassning och flexibel installation. Studien har även innefattat en 5kW prototyp och en modulär version av 100kW systemet upp till 0,5MW. Applikationen har som krav att framför allt minska volymen och storleken på systemet. Studien innefattar även en ergonomisk och användarvänlig inriktning vilket har påverkat designen och konstruktionen hos systemet. För att finna lämpliga lösningar och koncept till projektet har flera konceptgenereringar gjorts, liksom utvärderingar av lösningar. Som en förstudie till projektet har andra kraftstationer undersökts liksom deras kontroll och övervakningssystem. Ett koncept har tagits fram där en energicells modul (delen som utvinner energi) är designad att ge 50kW (initialt, dock kommer detta öka i takt med optimeringar) och tar upp 9m3, denna används tillsammans med en vattendistributionsmodul och en hydraulmodul. Då underhåll ska kunna genomföras på systemet har en speciell applikation tagits fram vilken underlättar arbetet med att komma åt ochkunna byta ut delar utan att operatörens ergonomiska påfrestningar blir för stora. Modulen är konstruerad för att kunna producera energi även om en mindre del av den stängs av för reparation. Energicellsmodulens hållfasthet har studerats och analyserats för att klara de laster som systemet ger. Ett grafiskt gränssnitt har även konceptuellt tagits fram för att ge ett förslag på hur det skulle kunna designas för att förbättra användarvänligheten och förståelsen i kraftstationen.<br>A study has been made of a smaller power station on behalf of Exencotech who is researching energy-recycling possibilities. Their station extracts energy from heated water which otherwise would have been discarded as a loss. The study has been conducted on a 100kW system with a high option of modularity which makes the system flexible and adjustable when installing. The study also treats a 5kW prototype and a modular version of the 100kW system up to 0,5MW. The application is designed to minimze the volume and weight of the system. It has also been analyzed ergonomically and in ways of its usability which has affected the design. To define appropriate solutions for the project several concepts has been conducted as well as evaluations of solutions. As a prestudy for the project other power stations has been looked at as well as control and surveillance systems. A concept has been developed where the energy cell module (the module extracting energy) is designed to give 50kW (initially, though optimization will heighten this), using 9m3 volume, this is used together with a water distribution module and a hydraulic module. As maintenance is meant to be easily performed, a special application has been developed which helps the procedure of access and extraction of desired parts whitout causing the operator too large ergonomical stress. The system is designed to be able to operate even when a part of it is shut down for repairs. The module has been constructed and dimensioned to withold the loads it would cause into the system. A graphic interface has also been designed to improve the usability and understanding of the system.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!