Journal articles on the topic 'Tyrosine kinom'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Tyrosine kinom.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Bardelli, A. "Mutational Analysis of the Tyrosine Kinome in Colorectal Cancers." Science 300, no. 5621 (2003): 949. http://dx.doi.org/10.1126/science.1082596.
Full textCreeden, Justin F., Khaled Alganem, Ali S. Imami, et al. "Kinome Array Profiling of Patient-Derived Pancreatic Ductal Adenocarcinoma Identifies Differentially Active Protein Tyrosine Kinases." International Journal of Molecular Sciences 21, no. 22 (2020): 8679. http://dx.doi.org/10.3390/ijms21228679.
Full textLoriaux, Marc, Ross Levine, Jeffrey Tyner, et al. "High-Throughput Sequence Analysis of the Tyrosine Kinome in Acute Myeloid Leukemia." Blood 110, no. 11 (2007): 886. http://dx.doi.org/10.1182/blood.v110.11.886.886.
Full textTyner, Jeffrey W., Denise K. Walters, Stephanie G. Willis, et al. "RNAi screening of the tyrosine kinome identifies therapeutic targets in acute myeloid leukemia." Blood 111, no. 4 (2008): 2238–45. http://dx.doi.org/10.1182/blood-2007-06-097253.
Full textAngus, Steven P., Timothy Stuhlmiller, Noah Sciaky, et al. "TBCRC 036: Window of opportunity clinical trial reveals adaptive kinome reprogramming in single and combination HER2-targeting in breast cancer (BrCa)." Journal of Clinical Oncology 35, no. 15_suppl (2017): 1027. http://dx.doi.org/10.1200/jco.2017.35.15_suppl.1027.
Full textHa, Jacqueline R., Peter M. Siegel, and Josie Ursini-Siegel. "The Tyrosine Kinome Dictates Breast Cancer Heterogeneity and Therapeutic Responsiveness." Journal of Cellular Biochemistry 117, no. 9 (2016): 1971–90. http://dx.doi.org/10.1002/jcb.25561.
Full textTong, Jiefei, Mohamed Helmy, Florence M. G. Cavalli, et al. "Integrated analysis of proteome, phosphotyrosine-proteome, tyrosine-kinome, and tyrosine-phosphatome in acute myeloid leukemia." PROTEOMICS 17, no. 6 (2017): 1600361. http://dx.doi.org/10.1002/pmic.201600361.
Full textTyner, Jeffrey W., Marc Loriaux, Stephanie G. Willis, et al. "RNAi Screening of the Tyrosine Kinome Identifies Therapeutic Targets in Leukemia Patients." Blood 112, no. 11 (2008): 758. http://dx.doi.org/10.1182/blood.v112.11.758.758.
Full textTyner, Jeffrey W., Stephanie Willis, Michael W. N. Deininger, and Brian J. Druker. "RNAi Functional Screening of the Tyrosine Kinome Identifies Therapeutic Targets in Acute Myeloid Leukemia Patients." Blood 110, no. 11 (2007): 208. http://dx.doi.org/10.1182/blood.v110.11.208.208.
Full textLoriaux, Marc M., Ross L. Levine, Jeffrey W. Tyner, et al. "High-throughput sequence analysis of the tyrosine kinome in acute myeloid leukemia." Blood 111, no. 9 (2008): 4788–96. http://dx.doi.org/10.1182/blood-2007-07-101394.
Full textJohnson, Gary L., Keith D. Amos, James S. Duncan, et al. "Kinome reprogramming response to MEK inhibition: A window-of-opportunity trial in triple-negative breast cancer (TNBC)." Journal of Clinical Oncology 31, no. 15_suppl (2013): 512. http://dx.doi.org/10.1200/jco.2013.31.15_suppl.512.
Full textLoh, Mignon L., Jinghui Zhang, Richard C. Harvey, et al. "Tyrosine kinome sequencing of pediatric acute lymphoblastic leukemia: a report from the Children's Oncology Group TARGET Project." Blood 121, no. 3 (2013): 485–88. http://dx.doi.org/10.1182/blood-2012-04-422691.
Full textPrickett, Todd D., Neena S. Agrawal, Xiaomu Wei, et al. "Analysis of the tyrosine kinome in melanoma reveals recurrent mutations in ERBB4." Nature Genetics 41, no. 10 (2009): 1127–32. http://dx.doi.org/10.1038/ng.438.
Full textTyner, J. W., M. M. Loriaux, H. Erickson, et al. "High-throughput mutational screen of the tyrosine kinome in chronic myelomonocytic leukemia." Leukemia 23, no. 2 (2008): 406–9. http://dx.doi.org/10.1038/leu.2008.187.
Full textElst, Arja ter, Maikel P. Peppelenbosch, Sander H. Diks, et al. "Kinome Profiling in Acute Myeloid Leukemia as a New Approach for Target Discovery." Blood 112, no. 11 (2008): 1201. http://dx.doi.org/10.1182/blood.v112.11.1201.1201.
Full textBozulic, L., P. J. Morin, T. Hunter, and B. A. Hemmings. "Meeting Report: Targeting the Kinome--20 Years of Tyrosine Kinase Inhibitor Research in Basel." Science's STKE 2007, no. 374 (2007): pe8. http://dx.doi.org/10.1126/stke.3742007pe8.
Full textVyse, Simon, Howard Desmond, and Paul H. Huang. "Advances in mass spectrometry based strategies to study receptor tyrosine kinases." IUCrJ 4, no. 2 (2017): 119–30. http://dx.doi.org/10.1107/s2052252516020546.
Full textLogie, Emilie, Chandra S. Chirumamilla, Claudina Perez-Novo, et al. "Covalent Cysteine Targeting of Bruton’s Tyrosine Kinase (BTK) Family by Withaferin-A Reduces Survival of Glucocorticoid-Resistant Multiple Myeloma MM1 Cells." Cancers 13, no. 7 (2021): 1618. http://dx.doi.org/10.3390/cancers13071618.
Full textClaudio, Jaime O., Razi Khaja, Lihua Zhuang, et al. "Sequencing the Multiple Myeloma Kinome: Absence of Mutation in Known Malignancy-Associated Kinases." Blood 104, no. 11 (2004): 783. http://dx.doi.org/10.1182/blood.v104.11.783.783.
Full textKrayem, Mohamad, Philippe Aftimos, Ahmad Najem, et al. "Kinome Profiling to Predict Sensitivity to MAPK Inhibition in Melanoma and to Provide New Insights into Intrinsic and Acquired Mechanism of Resistance." Cancers 12, no. 2 (2020): 512. http://dx.doi.org/10.3390/cancers12020512.
Full textMi, Tian, Zhengqi Wang, and Kevin Bunting. "The Cooperative Relationship between STAT5 and Reactive Oxygen Species in Leukemia: Mechanism and Therapeutic Potential." Cancers 10, no. 10 (2018): 359. http://dx.doi.org/10.3390/cancers10100359.
Full textSmithberger, Erin, Abigail Shelton, Madison Butler, et al. "CSIG-10. GENOTYPE – KINOME GUIDED DEVELOPMENT OF PRECISION EGFR-TARGETED THERAPEUTICS FOR GLIOBLASTOMA." Neuro-Oncology 22, Supplement_2 (2020): ii29. http://dx.doi.org/10.1093/neuonc/noaa215.122.
Full textChang, Long-Sheng, Janet L. Oblinger, Abbi E. Smith, et al. "Brigatinib causes tumor shrinkage in both NF2-deficient meningioma and schwannoma through inhibition of multiple tyrosine kinases but not ALK." PLOS ONE 16, no. 7 (2021): e0252048. http://dx.doi.org/10.1371/journal.pone.0252048.
Full textPucelik, Barbara, Agata Barzowska, Janusz M. Dąbrowski та Anna Czarna. "Diabetic Kinome Inhibitors—A New Opportunity for β-Cells Restoration". International Journal of Molecular Sciences 22, № 16 (2021): 9083. http://dx.doi.org/10.3390/ijms22169083.
Full textGrey, William, Rakhee Chauhan, Manuel Garcia-Albornoz, Hector Huerga Encabo, Neil McDonald та Dominique Bonnet. "Activation of the Receptor Tyrosine Kinase (RET) By GDNF/GFRα1 Improves Cord Blood-Derived HSC in Vitro expansion and In Vivo engraftment". Blood 134, Supplement_1 (2019): 1924. http://dx.doi.org/10.1182/blood-2019-121331.
Full textCho, Nancy L., Chi-Iou Lin, Jinyan Du, et al. "Global tyrosine kinome profiling of human thyroid tumors identifies Src as a promising target for invasive cancers." Biochemical and Biophysical Research Communications 421, no. 3 (2012): 508–13. http://dx.doi.org/10.1016/j.bbrc.2012.04.034.
Full textShelton, Abigail, Erin Smithberger, Madison Butler, et al. "DDRE-24. ACQUIRED RESISTANCE TO TARGETED INHIBITORS IN EGFR-DRIVEN GLIOBLASTOMA: IDENTIFICATION OF DUAL KINASE TARGETS." Neuro-Oncology 22, Supplement_2 (2020): ii66. http://dx.doi.org/10.1093/neuonc/noaa215.269.
Full textNinio, Nissani, Meirson, et al. "Hepatitis C Virus Enhances the Invasiveness of Hepatocellular Carcinoma via EGFR-Mediated Invadopodia Formation and Activation." Cells 8, no. 11 (2019): 1395. http://dx.doi.org/10.3390/cells8111395.
Full textZhao, Xiaohong, Huijuan Jiang, Michelle Wang, et al. "Targeting Kinome Reprogramming for Overcoming Ibrutinib-Resistance (IR) in Mantle Cell Lymphoma (MCL)." Blood 132, Supplement 1 (2018): 2651. http://dx.doi.org/10.1182/blood-2018-99-116756.
Full textDruillennec, Sabine, Coralie Dorard, and Alain Eychène. "Alternative Splicing in Oncogenic Kinases: From Physiological Functions to Cancer." Journal of Nucleic Acids 2012 (2012): 1–14. http://dx.doi.org/10.1155/2012/639062.
Full textKampen, Kim R., Arja ter Elst, Sander H. Diks, et al. "Insights in Dynamic Kinome Reprogramming As a Consequence of MEK Inhibition in MLL-Rearranged AML." Blood 120, no. 21 (2012): 2338. http://dx.doi.org/10.1182/blood.v120.21.2338.2338.
Full textVerkhivker, G. M. "Exploring sequence-structure relationships in the tyrosine kinome space: functional classification of the binding specificity mechanisms for cancer therapeutics." Bioinformatics 23, no. 15 (2007): 1919–26. http://dx.doi.org/10.1093/bioinformatics/btm277.
Full textMurrow, Lyndsay M., Sireesha V. Garimella, Tamara L. Jones, Natasha J. Caplen, and Stanley Lipkowitz. "Identification of WEE1 as a potential molecular target in cancer cells by RNAi screening of the human tyrosine kinome." Breast Cancer Research and Treatment 122, no. 2 (2009): 347–57. http://dx.doi.org/10.1007/s10549-009-0571-2.
Full textBrown, Jennifer R., Ross Levine, Elke Raderschall, Christina Thompson, D. Gary Gilliland, and Arnold S. Freedman. "Systematic Genomic Screen for Tyrosine Kinase Mutations in CLL." Blood 110, no. 11 (2007): 2069. http://dx.doi.org/10.1182/blood.v110.11.2069.2069.
Full textCheng, Peng, Emma Phillips, Sung-Hak Kim, et al. "Kinome-wide shRNA Screen Identifies the Receptor Tyrosine Kinase AXL as a Key Regulator for Mesenchymal Glioblastoma Stem-like Cells." Stem Cell Reports 4, no. 5 (2015): 899–913. http://dx.doi.org/10.1016/j.stemcr.2015.03.005.
Full textSergeys, Jurgen, Inge Van Hove, Tjing-Tjing Hu, et al. "The retinal tyrosine kinome of diabetic Akimba mice highlights potential for specific Src family kinase inhibition in retinal vascular disease." Experimental Eye Research 197 (August 2020): 108108. http://dx.doi.org/10.1016/j.exer.2020.108108.
Full textQiu, Yuran, Xiaolan Yin, Xinyi Li, et al. "Untangling Dual-Targeting Therapeutic Mechanism of Epidermal Growth Factor Receptor (EGFR) Based on Reversed Allosteric Communication." Pharmaceutics 13, no. 5 (2021): 747. http://dx.doi.org/10.3390/pharmaceutics13050747.
Full textTyner, Jeffrey W., Luke Fletcher, Wayne Yang, et al. "Development of a Small-Molecule Inhibitor Screen to Rapidly Identify Key Signaling Pathways in Leukemogenesis." Blood 114, no. 22 (2009): 708. http://dx.doi.org/10.1182/blood.v114.22.708.708.
Full textPflug, Alexander, Marianne Schimpl, J. Willem M. Nissink, et al. "A-loop interactions in Mer tyrosine kinase give rise to inhibitors with two-step mechanism and long residence time of binding." Biochemical Journal 477, no. 22 (2020): 4443–52. http://dx.doi.org/10.1042/bcj20200735.
Full textKiflemariam, Sara, Viktor Ljungström, Fredrik Pontén, and Tobias Sjöblom. "Tumor Vessel Up-Regulation of INSR Revealed by Single-Cell Expression Analysis of the Tyrosine Kinome and Phosphatome in Human Cancers." American Journal of Pathology 185, no. 6 (2015): 1600–1609. http://dx.doi.org/10.1016/j.ajpath.2015.02.019.
Full textBoyanova, Desislava, Santosh Nilla, Ingvild Birschmann, Thomas Dandekar, and Marcus Dittrich. "PlateletWeb: a systems biologic analysis of signaling networks in human platelets." Blood 119, no. 3 (2012): e22-e34. http://dx.doi.org/10.1182/blood-2011-10-387308.
Full textMehta, Amitkumar N., Christopher Willey, Michael Crowley, et al. "Integrated comprehensive high-throughput kinomics profiling and whole exome sequencing of penile squamous cell cancer (PSCC)." Journal of Clinical Oncology 32, no. 4_suppl (2014): 383. http://dx.doi.org/10.1200/jco.2014.32.4_suppl.383.
Full textMehta, Amitkumar N., Christopher Douglas Willey, Joshua Anderson, et al. "Comprehensive kinase profiling to classify clear cell (cc)-renal cell carcinoma (RCC)." Journal of Clinical Oncology 32, no. 4_suppl (2014): 409. http://dx.doi.org/10.1200/jco.2014.32.4_suppl.409.
Full textShelton, Abigail, Erin Smithberger, Madison Butler, et al. "DRES-07. DEFINING THE MECHANISMS OF ACQUIRED RESISTANCE TO TYROSINE KINASE INHIBITORS IN EGFR-DRIVEN GLIOBLASTOMAS USING INTEGRATED KINOME AND TRANSCRIPTOME PROFILING." Neuro-Oncology 20, suppl_6 (2018): vi77. http://dx.doi.org/10.1093/neuonc/noy148.314.
Full textTyner, Jeffrey W., Heidi Erickson, Stephen Oh, et al. "Small-Molecule Inhibitor Screen Rapidly Identifies Key Signaling Pathways in Leukemogenesis." Blood 112, no. 11 (2008): 2519. http://dx.doi.org/10.1182/blood.v112.11.2519.2519.
Full textZuchman, Rina, Roni Koren, and Benjamin A. Horwitz. "Developmental Roles of the Hog1 Protein Phosphatases of the Maize Pathogen Cochliobolus heterostrophus." Journal of Fungi 7, no. 2 (2021): 83. http://dx.doi.org/10.3390/jof7020083.
Full textZhang, Jinghui, Charles Mullighan, Richard Harvey, et al. "Lack of Somatic Sequence Mutations In Protein Tyrosine Kinase Genes Other Than the JAK Kinase Family In High Risk B-Precursor Childhood Acute Lymphoblastic Leukemia (ALL): A Report From the Children's Oncology Group (COG) High-Risk (HR) ALL TARGET Project." Blood 116, no. 21 (2010): 2752. http://dx.doi.org/10.1182/blood.v116.21.2752.2752.
Full textWang, Michelle, Xiaohong Zhao, Huijuan Jiang, et al. "CDK9 As a New Therapeutic Vulnerability for Ibrutinib Resistance Mantle Cell Lymphoma (MCL)." Blood 136, Supplement 1 (2020): 34–35. http://dx.doi.org/10.1182/blood-2020-141386.
Full textVerkhivker, Gennady M. "Computational proteomics of biomolecular interactions in the sequence and structure space of the tyrosine kinome: Deciphering the molecular basis of the kinase inhibitors selectivity." Proteins: Structure, Function, and Bioinformatics 66, no. 4 (2006): 912–29. http://dx.doi.org/10.1002/prot.21287.
Full textArnaldez, Fernanda Irene, Choh L. Yeung, Carly J. Smith, Natasha Caplen, and Lee J. Helman. "Identification of TNK2 as a critical kinase in rhabdomyosarcoma through a loss of function shRNA screen." Journal of Clinical Oncology 30, no. 15_suppl (2012): 9511. http://dx.doi.org/10.1200/jco.2012.30.15_suppl.9511.
Full text