Academic literature on the topic 'U-Pb'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'U-Pb.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "U-Pb"
Iwano, H., Y. Orihashi, M. Ogasawara, and T. Hirata. "Zircon multichronology: Fission-track, U-Pb, and combined fission-track-U-Pb studies." Island Arc 22, no. 3 (August 28, 2013): 261–63. http://dx.doi.org/10.1111/iar.12042.
Full textYang, Wei, Yang-Ting Lin, Jian-Chao Zhang, Jia-Long Hao, Wen-Jie Shen, and Sen Hu. "Precise micrometre-sized Pb-Pb and U-Pb dating with NanoSIMS." Journal of Analytical Atomic Spectrometry 27, no. 3 (2012): 479. http://dx.doi.org/10.1039/c2ja10303f.
Full textJahn, Bor-ming, and Henri Cuvellier. "PbPb and UPb geochronology of carbonate rocks: an assessment." Chemical Geology 115, no. 1-2 (July 1994): 125–51. http://dx.doi.org/10.1016/0009-2541(94)90149-x.
Full textSharman, Glenn R., and Matthew A. Malkowski. "Modeling apparent Pb loss in zircon U–Pb geochronology." Geochronology 6, no. 1 (January 19, 2024): 37–51. http://dx.doi.org/10.5194/gchron-6-37-2024.
Full textAmelin, Yuri. "U–Pb ages of angrites." Geochimica et Cosmochimica Acta 72, no. 1 (January 2008): 221–32. http://dx.doi.org/10.1016/j.gca.2007.09.034.
Full textIto, Hisatoshi. "Simultaneous U–Pb and U–Th Dating Using LA-ICP-MS for Young (<0.4 Ma) Minerals: A Reappraisal of the Double Dating Approach." Minerals 14, no. 4 (April 22, 2024): 436. http://dx.doi.org/10.3390/min14040436.
Full textVermeesch, Pieter. "Unifying the U–Pb and Th–Pb methods: joint isochron regression and common Pb correction." Geochronology 2, no. 1 (May 11, 2020): 119–31. http://dx.doi.org/10.5194/gchron-2-119-2020.
Full textBonamici, Chloë E., and Tyler B. Blum. "Reconsidering initial Pb in titanite in the context of in situ dating." American Mineralogist 105, no. 11 (November 1, 2020): 1672–85. http://dx.doi.org/10.2138/am-2020-7274.
Full textFrebel, Anna, and Karl-Ludwig Kratz. "Stellar age dating with thorium, uranium and lead." Proceedings of the International Astronomical Union 4, S258 (October 2008): 449–56. http://dx.doi.org/10.1017/s1743921309032104.
Full textAbdullin, Fanis, Luigi A. Solari, Jesús Solé, and Carlos Ortega-Obregón. "Technical note: LA–ICP-MS U–Pb dating of unetched and etched apatites." Geochronology 3, no. 1 (January 20, 2021): 59–65. http://dx.doi.org/10.5194/gchron-3-59-2021.
Full textDissertations / Theses on the topic "U-Pb"
Sparrenberger, Irena. "A cassiterita da subprovíncia do Rio Paranã (GO): datações U-Pb e Pb-Pb e caracterização mineral." Universidade de São Paulo, 1998. http://www.teses.usp.br/teses/disponiveis/44/44134/tde-29092015-103828/.
Full textThe purpose of this work was to set up the cassiterite U-Pb method of dating at Centro de Pesquisas Geocronologicas of Universidade de São Paulo. Samples of tin mineralization from the subprovíncia do Rio Paranã, Goiás State, were used to perform the experience. The area includes units of transamazonian minimum ages, represented by complexo Granito-Gnáissico and formação Ticunzal , overlayed by metamorphosed sandstones mainly, with ages close to 1.770 Ma, and intruded by paleo to mesoproterozoic tin granites. Pegmatites that cut the first and second units correspond to another manifestation of tin mineralization in the area. Muscovite K-Ar ages situated the pegmatites mineralization between 2,000 Ma and 2,130 Ma. The cassiterite U-Pb analyses confirmed these values in most cases. In relation to the granitoids, one single U-Pb age in cassiterite of 1,535 \'+ ou -\' 57 Ma was obtained. The cassiterite U-Pb methodology proved useful since caution is taken, as dating of many distinct samples and mineralogical characterization of the phase prior to dating in order to select samples without inclusions of pb-bearing minerals. The most radiogenic isotopic composition of Pb was verified in cassiterite from a granitoid rock, in analogy to what was reported by Gulson & Jones (1992). This suggests that the method can give better results if applied to mineralization in such rocks. The occurrence of at least two mineralized distinct facies was characterized in the pegmatites, based on its inclusions peculiarities.
Freitas, Vivian Azor de. "A geração de magmas ácidos na Província Magmática Paraná, região de Piraju-Ourinhos (SP): uma contribuição da geoquímica isotópica e de elementos traço em rochas e minerais." Universidade de São Paulo, 2009. http://www.teses.usp.br/teses/disponiveis/44/44143/tde-08062009-153408/.
Full textDacitic rocks from Piraju-Ourinhos, State of São Paulo, outcrop for ca. 60 km along the Paranapanema River valley, and constitute the northernmost expositions of the Parana Magmatic Province acid magmatism. They rest directly over the Botucatu Formation eolic sandstones and are recovered by Pitanga-type high Ti basalt flows. Basalt dykes and sills that occur in the region show different chemical relationship and can be compared to the Paranapanema, Urubici and Pitanga basalt types. Chemically classified as trachydacites, these rocks are porphyritic with 5 to 15% plagioclase, clinopyroxene, opaque minerals and apatite phenocrysts. Aphanitic to phaneritic groundmass is composed of glass, plagioclase, clinopyroxene, quartz and alkali feldspar. Glass can make up 10 to 90% of the original groundmass and is usually devitrified, being recognized by relict quenching textures. Vesicles and amygdalas are abundants in such trachydacites varieties and can achieve to 40% of rock. In this work, the age of the acid magmatism was obtained by U-Pb TIMS in baddeleyite and zircon concentrates. The value [134.4 0,9 (2\'sigma\')], is more accurate and precise compared with ages previously obtained in the trachydacites from region [133 -134 ± 6 Ma (K-Ar); 128.7 ± 1 Ma (\'ANTPOT.40 Ar\'/\'39 ANTPOT.Ar\')], and within the short age interval currently admitted for the Paraná volcanism climax. Initial \'ANTPOT.87 Sr\'/\' ANTPOT.86 Sr\' ratios of the trachydacites (0.7078 to 0.7080) are slightly more radiogenic than those of associated basalts (0.7056 to 0.7068), whereas \'épsilon\'\'Nd IND.134\' are more negative (~ -5 versus -4). These differences suggest that, although the basalts must have a genetic link with the acid magmatism of region, some crustal contribution may exist in the acid magmas. Initial \'ANTPOT.87 Sr\'/\'ANTPOT.86 Sr\' obtained by LA-ICPMS show identical values for the groundmass and plagioclase and apatite phenocrysts (~0.7077), consistent with equilibrium crystallization. Most of the clinopyroxene phenocrysts have initial \'ANTPOT.87 Sr\'/\'ANTPOT.86 Sr\' different from the groundmass (usually smaller; 0.7045-0.7071; only one crystal is more radiogenic, 0.7084). Together with two the plagioclase phenocrysts (with initial \'ANTPOT.87 Sr\'/\'ANTPOT.86 Sr\'= 0.7083 and 0.7074), they did not crystallize in equilibrium to the groundmass, and are likely antecrysts. Geochemical modelling using major elements and both compatible and incompatible trace-elements show that it is possible to obtain the acid magmas after 60 to 80% fractional crystalization of a Pitanga-type basalt. The main obstacle for such model would be the wide compositional silic gap between acid and basic magmas.; however, this gap could result from physical limitations to crystal-liquid separation at intermediate compositions and to the extraction by filter pressing of more evolved residual liquids. The small differences in Sr-Nd isotopic signature between acid and basic rocks can be explained by an AFC model, with 60% of basaltic magma crystalization plus ~10-30% assimilation of a granitic liquid derived from the pre- Cambrian basament. On the other hand, a model of remelting of basalt underplates generates acid magmas with higher contents of compatible elements contents (Ni, Cr, V) and therefore would demand some fractionation to achieve the observed trachydacite compositions.
Godeau, Nicolas. "Développement et application de la méthode Uranium-Plomb à la datation des carbonates diagénétiques dans les réservoirs pétroliers, et apport à la reconstruction temporelle de l'évolution des propriétés réservoir." Thesis, Aix-Marseille, 2018. http://www.theses.fr/2018AIXM0149.
Full textAbsolute chronological constraints on the different events and processes that have shaped the Earth constitute a major challenge in numerous realms in Earth and Environmental sciences. In particular this is the case for sedimentary basins that play a major economic role as being source of important hydrocarbon resources. The objective of this thesis is to develop absolute uranium-lead dating methodology on secondary carbonate minerals. This ubiquitous mineral phase in petroleum reservoirs testifies their complex geodynamic and diagenetic histories. In this study, several developments were implemented in order to circumvent the limits of U-Pb methodology. Innovative analysis techniques such as laser ablation coupled with SF-ICP-MS or ion probe were tested to increase the spatial resolution of the U-Pb analysis by several orders of magnitude. These methodologies coupled to the more traditional isotope dilution was successfully applied in different oil exploration context allowing to bring absolute constraints on key diagenetic events such as creation/preservation of reservoir properties or hydrocarbon migration. The results obtained during this study allowed to draw a synthetic model of the most favorable contexts for U-Pb method and gives an overview of the U-Pb dating potential to secondary carbonates applied to petroleum reservoirs
Santos, Zalduegui Jose Francisco. "Evolution du complexe mafique-ultramafique du cabo ortegal (espagne) : etude isotopique des systemes u-pb, rb-sr et pb-pb." Paris 7, 1994. http://www.theses.fr/1994PA077329.
Full textGengo, Rafaela Machado. "Petrologia de ortognaisses e granitóides do Domínio Socorro, Nappe Socorro-Guaxupé, Seção Extrema-Camanducaia." Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/44/44143/tde-03122014-095629/.
Full textThe Socorro - Guaxupé Nappe represents an ancient magmactic arc formed during the collisional phase of the Southern Brasília Orogen), one of the important Neoproterozoic orogenic events, responsible for the agglutination of the western portion of Gondwana paleo continent. In the southeastern portion of the Socorro Domain, many NE-SW shear zones controlled the intrusion of many bodies and batholiths of potássic calc-alkaline granitoids, generated by sin-orogenic crustal melting of the nappe in a shallow-depth, high-temperature environment, during the metamorphic peak. The orthogneisses and migmatites that crop out in the area are not related to the stromatic pelitic to semi-pelitic migmatites that are predominant in the nappe\'s Metatexitic Unit. So far, these rocks were considerated to be part of the Amparo Complex, which is the basement of the Socorro Granitoid Complex. This work present new geochemical, isotopic and geochronological data for rocks from the region between Extrema and Camanducaia, southern Minas Gerais, which allow the characterization of the magmatism that originated those orthogneisses and its crustal evolution, and also the determination of its age in the Neoproterozoic context of the Socorro-Guaxupé Nappe. U-Pb zircon ages obtained from dioritic paleossome of the metatexitic orthogneisses provided ages of 662,1 ± 5,1 My. Sporadic older ages from 770 to 834 My were found only in inherited cores. On dioritic to granodioritic orthogneiss where partial melting processes were not started, zircon crystals from an orthogneiss of dioritic composition provided 660 to 630 My U-Pb ages, implying an active Neoproterozoic magmatism during the pre- to sin-collisional period of the Socorro-Guaxupé Nappe, in a static magmatic arc environment for ate least 30 My, which is a condition similar to the present-day Japan\'s magmatic arc occurrence. The magmatism which originated the dioritic to granodioritic orthogneisses has affinities with the high-K calc-alkaline series and geochemical and isotopic characteristics similar to I-Type granites. \'ANTPOT.87 Sr\'/ \'ANTPOT.86 \'Sr IND.i\' rates and negative \'épsilon\'Nd values point to a crustal source depleted in incompatible elements. At the tardi- to post- collisional phase of the nappe, during the period from 609 to 598 My, the last pulses of dioritic magmatism gave place to a monzodioritic and monzonitic magmatism which resulted in the intrusion of many rock bodies with an A-Type geochemical signature similar to the post-collisional Piracaia Pluton, part of which exhibit magma interaction and magma mixing features.
Triantafyllou, Antoine. "Évolution géodynamique d’un arc insulaire néoprotérozoïque de l’Anti -Atlas marocain : caractérisation des processus de croissance intra-océanique et d’accrétion." Thesis, Nantes, 2016. http://www.theses.fr/2016NANT4031/document.
Full textRelics of an intra-oceanic arc system are exposed in the Anti-Atlas in southern Morocco, in the Sirwa and Bou Azzer windows. Both of these areas form a highly tectonized patchwork made of a back-arc ophiolitic sequence to the north thrusted onto accreted arc complexes to the south. These arc complexes (Tachakoucht, Tazigzaout and Bougmane complexes) are made of granodioritic gneisses and amphibolites with typical oceanic arc signature and for which igneous ages range from 750 to 730 Ma. These magmas were buried, deformed and metamorphosed under MP-MT conditions in Tachakoucht (700°C - 8kbar) and HP-MT in Bougmane (750°C - 10 kbar) prior to several magmatic events dated at 700 and 650 Ma and the intrusion of hydrous basic magmas (hornblende gabbros, hornblendites) with oceanic arc signatures. This episodic magmatism strongly perturbed the thermal regime of the arc leading to the granulitization of the host rocks at different levels of the arc crust and to the genesis of intermediate to felsic magmas (granodioritic to granitic). These ones have been segregated through the crustal section intruding both stacked paleo-arc and ophiolitic remnants. This field, petrological, geochemical and geochronological study established that oceanic arc magmatism in the Anti-Atlas occurred in three flare-ups on a 120 Ma long time span (760 to 640 Ma). The growth of the arc was controlled and driven both by successive magmatic inputs and intra-oceanic tectonic thickening processes while final collision of the intraoceanic system with the West African Carton occurred later, around 630-600 Ma
SANTOS, Lucilene dos. "Caracterização petrológica e geoquímica dos granitoides intrudidos ao longo da zona de cisalhamento Coxixola, Província Borborema, NE Brasil: plutons Serra Branca e Coxixola." Universidade Federal de Pernambuco, 2013. https://repositorio.ufpe.br/handle/123456789/10434.
Full textMade available in DSpace on 2015-03-04T17:34:48Z (GMT). No. of bitstreams: 2 DISSERTAÇÃO Lucilene dos Santos.pdf: 10057943 bytes, checksum: 487d4e94f2325e876643a0f22bf56873 (MD5) license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Previous issue date: 2013-07-26
CNPq
Os granitoides estudados (plutons Serra Branca - GPSB e Coxixola - GPC) intrudem ortognaisses e migmatitos paleoproterozóicos a arqueanos, e rochas supracrustais Neoproterozóicas. Os GPSB, sienogranitos leucocráticos, equigranulares, contendo localmente enclaves de granitos porfiríticos (GPC) e dioritos, compreendem intrusão alojada em terminações extensionais de zonas de cisalhamento NE-SW transcorrentes sinistrais, ramificações da zona de cisalhamento Coxixola (ZCC), destral com direção E-W. Os GPC compreendem quartzo sienitos, quartzo monzonitos e sieno a monzogranitos, porfiríticos, deformados no estado sólido, com anfibólio de composição ferro - edenita, edenita e Mg - hornblenda. Enxames de enclaves máficos, quartzo dioritos a quartzo monzonitos, ocorrem orientados na direção E - W. A fO2 varia de intermediária (GPSB) a elevada (GPC). Estimativas de temperaturas liquidus utilizando saturação em zircão, variam entre 836 °C - 893 °C (GPC) e 783 °C - 843 °C (GPSB). Os granitoides estudados mostram valores fortemente negativos de εNd(t) e idades modelo (TDM) paleoproterozóicas. U-Pb em zircão por SHRIMP definiu uma idade de 560 ± 5 Ma para os GPSB, e por LA-ICP-MS definem idades de 573 ± 3 Ma para um dique de leucogranito que corta os GPC e de 580 ± 7 Ma para os GPC. Os GPSB são ricos em SiO2 (> 70%), levemente peraluminosos, com padrões ETR fracionados, mostrando profundas anomalias negativa de Eu, e padrões Spidergram com depressões em Nb, Ta, Sr, P e Ti. São classificados como granitoides trans-alcalinos ferrosos, tipo-A pós-orogênico. Os GPC mostram teores intermediários de SiO2 de 55-67 %, são metaluminosos, magnesianos, tipo-I mostrando padrões de ETR fracionados e caracterizados pela ausência ou anomalias fracamente positivas de Eu, e padrões Spidergram com depressões em Th, Nb, Ta, Ti. Assinaturas isotópicas e geoquímicas sugerem que os granitoides estudados foram originados pela mistura de magmas gerados pela fusão de crosta paleoproterozóica ou arqueana e pequena fração de material Neoproterozóico em diferentes épocas da história evolutiva da ZCC.
Pineda, Ramírez Camila Andrea. "Geocronología U/Pb en circones de la ignimbrita Pudahuel." Tesis, Universidad de Chile, 2015. http://repositorio.uchile.cl/handle/2250/137862.
Full textLa Ignimbrita Pudahuel corresponde a un depósito asociado al Complejo Volcánico Maipo perteneciente la Zona Volcánica Sur de la Cordillera de los Andes, en la zona central de Chile. Su génesis es asociada a la formación de la Caldera Diamante y se infiere que se trató de una gran erupción, cuyo volumen se estima en aproximadamente 450 km3. La edad de esta ignimbrita es un tema controversial debido a las diferencias encontradas en los trabajos geocronológicos realizados en ella que, mediante diferentes métodos de datación, entregan edades de 0,45 Ma, 2,3 Ma y 0,15 Ma aproximadamente. Se observan afloramientos tanto en Chile como en Argentina, sin embargo, el presente trabajo considera solo localidades en la zona chilena. Se realizaron mediciones químicas en fenocristales de plagioclasa encontrados en el depósito, a partir de las cuales se infiere que el magma en que se originaron estos cristales posee un carácter diferenciado y aparentemente no sufrió grandes variaciones composicionales en la cámara magmática. El grueso de este trabajo consistió en el estudio morfológico y geocronológico de aproximadamente 900 circones separados de la Ignimbrita Pudahuel. El estudio morfológico y textural de estos cristales se realizó mediante imágenes de cátodo- luminiscencia obtenidas con el equipo SEM, mientras que la determinación de isótopos de U/Pb para geocronología se realizó con el equipo LA-ICPMS-MC del Departamento de Geología de la Universidad de Chile. Los datos obtenidos indican una fuerte presencia de tres poblaciones de edades para estos cristales. La localización de las muestras que presentan estas poblaciones indica que aparentemente no existe un nexo entre ellas ya que su presencia no está restringida a alguna de las facies definidas para la Iginimbrita, a algún cauce particular por donde se pudo haber desplazado o a una cierta distancia de la fuente. Por lo anterior se piensa que la ausencia de estas poblaciones en algunas localidades puede deberse a errores estadísticos. Las dos poblaciones más antiguas que pueden ser identificadas (una de: 10,17 +0,08 -0,22; y otra de: 5,22 +0,06 -0,03) son asociadas a eventos diferentes del que originó a la Ignimbrita Pudahuel, probablemente de carácter local en la zona donde posteriormente se formó la Caldera Diamante. La otra población identificada posee edades menores a 1 Ma. La edad más probable para esta población es de 0,13 +0,03 -0,02 Ma, sin embargo, los datos que representan esta edad pertenecen principalmente a una sola muestra. Si no se considera esta muestra la edad más probable es de 0,39 +0,03 -0,06 Ma. Ambas edades son coherentes con trabajos de dataciones realizados anteriormente en la Ignimbrita, pero de todas formas corresponderían a una edad más joven que la considerada actualmente. Según lo anterior se propone que la edad de 0,13 Ma corresponde a la del evento eruptivo que originó a la Ignimbrita Pudahuel, mientras que la de 0,39 Ma correspondería a cristales que se encontraban en la cámara magmática previos a la erupción y que por lo tanto el tiempo de residencia del magma silíceo al que pertenecían sería de aproximadamente 300 ka. Si bien el método analítico utilizado no es el más adecuado para este tipo de muestras, las edades obtenidas se pueden corregir. Debido a la controversia existente en torno a la edad de la Ignimbrita Pudahuel es de vital importancia realizar dichas correcciones para validar estos datos e integrarlos al debate.
Neace, Erika R. "Zircon LA-ICPMS Geochronology of the Cornubian Batholith, SW England." Ohio University / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1448912006.
Full textMaurin, Jean-Christophe. "Analyse de zônes décrochantes dans le Fossé de la Benoue (Nigéria) et systématiques U-Pb et Pb-Pb appliquées aux minéralisations uranifères et Pb-Zn associées." Grenoble : ANRT, 1985. http://catalogue.bnf.fr/ark:/12148/cb37594951d.
Full textBooks on the topic "U-Pb"
Petrovich, Shcherbak Nikolaĭ, ed. Mineralʹnye U-Pb vozrasty dokembrii͡a vostochnoĭ chasti Baltiĭskogo shchita. Leningrad: Izd-vo "Nauka," Leningradskoe otd-nie, 1987.
Find full textGuerrot, C. Archéen et protérozoïque dans la chaîne hercynienne ouest-européenne: Géochimie isotopique (Sr-Nd-Pb) et géochronologie U-Pb sur zircons. Rennes, France: Editions du C.A.E.S.S., Université de Rennes I, 1989.
Find full textTeufel, Stephan. Vergelichende U-Pb- und Rb-Sr-Alterbestimmungen an Gesteinen des Ubergangsbereiches Saxthuringikum/Moldanubikum,NE-Bayern. Gottingen: Im Selbstverlag der Geologischen Inst.der Georg-August-Univ., 1988.
Find full textToth, Margo I. Constraints on the formation of the Bitterroot lobe of the Idaho Batholith, Idaho and Montana, from U-Pb zircon geochronology and feldspar Pb isotopic data. Washington, DC: U.S. G.P.O., 1992.
Find full textE, Villeneuve M., ed. Tectonic subdivision and U-Pb geochronology of the crystalline basement of the Alberta Basin, western Canada. Ottawa, Canada: Geological Survey of Canada, 1993.
Find full textA, Agar Robert, Saudi Arabia. Deputy Ministry for Mineral Resources, and Geological Survey (U.S.), eds. U-Pb isotopic evidence for accretion of a continental microplate in the Zalm region of the Saudi Arabian Shield. [Reston, Va.?]: Dept. of the Interior, U.S. Geological Survey, 1986.
Find full textA, Agar Robert, Saudi Arabia. Deputy Ministry for Mineral Resources., and Geological Survey (U.S.), eds. U-Pb isotopic evidence for accretion of a continental microplate in the Zalm region of the Saudi Arabian Shield. [Reston, Va.?]: Dept. of the Interior, U.S. Geological Survey, 1986.
Find full textA, Agar Robert, Saudi Arabia. Deputy Ministry for Mineral Resources., and Geological Survey (U.S.), eds. U-Pb isotopic evidence for accretion of a continental microplate in the Zalm region of the Saudi Arabian Shield. [Reston, Va.?]: Dept. of the Interior, U.S. Geological Survey, 1986.
Find full textA, Agar Robert, Saudi Arabia. Deputy Ministry for Mineral Resources., and Geological Survey (U.S.), eds. U-Pb isotopic evidence for accretion of a continental microplate in the Zalm region of the Saudi Arabian Shield. [Reston, Va.?]: Dept. of the Interior, U.S. Geological Survey, 1986.
Find full textA, Agar Robert, Saudi Arabia. Deputy Ministry for Mineral Resources., and Geological Survey (U.S.), eds. U-Pb isotopic evidence for accretion of a continental microplate in the Zalm region of the Saudi Arabian Shield. [Reston, Va.?]: Dept. of the Interior, U.S. Geological Survey, 1986.
Find full textBook chapters on the topic "U-Pb"
Amelin, Yuri. "Meteorites (U–Pb)." In Encyclopedia of Marine Geosciences, 559–62. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-007-6304-3_111.
Full textAmelin, Yuri. "Meteorites (U–Pb)." In Encyclopedia of Scientific Dating Methods, 1–6. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-007-6326-5_111-1.
Full textGetty, Stephen R., and Donald J. Depaolo. "U-Pb and Th-Pb Geochronology in Quaternary Rocks." In AGU Reference Shelf, 121–29. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/rf004p0121.
Full textVillars, P., K. Cenzual, J. Daams, R. Gladyshevskii, O. Shcherban, V. Dubenskyy, V. Kuprysyuk, and I. Savysyuk. "(Sr,Pb)(Y,U)(Ti,Fe)20O38." In Structure Types. Part 9: Space Groups (148) R-3 - (141) I41/amd, 82. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-02702-4_44.
Full textChelle-Michou, Cyril, and Urs Schaltegger. "U–Pb Dating of Mineral Deposits: From Age Constraints to Ore-Forming Processes." In Isotopes in Economic Geology, Metallogenesis and Exploration, 37–87. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-27897-6_3.
Full textSu, Ben-Xun. "Zircon U–Pb Geochronlogy and Hf–O Isotopes." In Mafic-ultramafic Intrusions in Beishan and Eastern Tianshan at Southern CAOB: Petrogenesis, Mineralization and Tectonic Implication, 69–106. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-54262-6_5.
Full textSuzuki, Kazuhiro, and Daniel J. Dunkley. "Uranium–Lead, Chemical Isochron U–Pb Method (CHIME)." In Encyclopedia of Scientific Dating Methods, 863–69. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-007-6304-3_200.
Full textSuzuki, Kazuhiro, and Daniel J. Dunkley. "Uranium-Lead, Chemical Isochron U-Pb Method (CHIME)." In Encyclopedia of Scientific Dating Methods, 1–9. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-007-6326-5_200-1.
Full textHarrison, T. Mark, Elizabeth J. Catlos, and Jean-Marc Montel. "14. U-Th-Pb Dating of Phosphate Minerals." In Phosphates, edited by Matthew J. Kohn, John Rakovan, and John M. Hughes, 523–58. Berlin, Boston: De Gruyter, 2002. http://dx.doi.org/10.1515/9781501509636-017.
Full textTolosana-Delgado, R., K. G. van den Boogaart, E. Fišerová, K. Hron, and I. Dunkl. "Joint Compositional Calibration: An Example for U–Pb Geochronology." In Springer Proceedings in Mathematics & Statistics, 181–209. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-44811-4_12.
Full textConference papers on the topic "U-Pb"
Smye, Andrew. "Applications and Limitations of U-Pb Thermochronology." In Goldschmidt2020. Geochemical Society, 2020. http://dx.doi.org/10.46427/gold2020.2417.
Full textSmye, Andrew J. "APPLICATIONS AND LIMITATIONS OF U-PB THERMOCHRONOLOGY." In GSA Annual Meeting in Seattle, Washington, USA - 2017. Geological Society of America, 2017. http://dx.doi.org/10.1130/abs/2017am-302498.
Full textSundell, Kurt E., and Joel E. Saylor. "UNMIXING DETRITAL ZIRCON U-PB AGE DISTRIBUTIONS." In GSA Annual Meeting in Seattle, Washington, USA - 2017. Geological Society of America, 2017. http://dx.doi.org/10.1130/abs/2017am-305507.
Full textSchaltegger, Urs, Nicolas Greber, Maria Ovtcharova, Sean Gaynor, Blair Schoene, Jörn-Frederik Wotzlaw, Joshua Davies, and Federico Farina. "U-Pb geochronology at 100ppm age uncertainty." In Goldschmidt2021. France: European Association of Geochemistry, 2021. http://dx.doi.org/10.7185/gold2021.5741.
Full textNeymark, Leonid, Richard Moscati, Anatoly Larin, and John Slack. "How Robust is the Cassiterite U-Pb Geochronometer?" In Goldschmidt2020. Geochemical Society, 2020. http://dx.doi.org/10.46427/gold2020.1917.
Full textGlorie, Stijn, Alexander Simpson, Jack Gillespie, Martin Hand, Sarah Gilbert, and Chris Kirkland. "Detrital apatite Lu-Hf and U-Pb geochronology." In Goldschmidt2021. France: European Association of Geochemistry, 2021. http://dx.doi.org/10.7185/gold2021.4941.
Full textStephens, Travis Scott, Chad J. Pritchard, and Paul O’Sullivan. "U-PB GEOCHRONOLOGY OF SILVER HILL, SPOKANE COUNTY, WASHINGTON." In GSA Annual Meeting in Seattle, Washington, USA - 2017. Geological Society of America, 2017. http://dx.doi.org/10.1130/abs/2017am-298572.
Full textHofmann, Albrecht. "Pb isotopic evidence for U exchange with the core?" In Goldschmidt2021. France: European Association of Geochemistry, 2021. http://dx.doi.org/10.7185/gold2021.5468.
Full textBeranoaguirre, Aratz, Leo Millonig, Richard Albert, Horst Marschall, and Axel Gerdes. "U-Pb dating of metamorphic Ilmenite by LA-ICPMS." In Goldschmidt2023. France: European Association of Geochemistry, 2023. http://dx.doi.org/10.7185/gold2023.18381.
Full textMillonig, Leo, Aratz Beranoaguirre, Richard Albert, Horst Marschall, and Axel Gerdes. "Garnet reference material for in situ U-Pb dating." In Goldschmidt2023. France: European Association of Geochemistry, 2023. http://dx.doi.org/10.7185/gold2023.20819.
Full textReports on the topic "U-Pb"
Parrish, R. R., and J. W. H. Monger. New U - Pb Dates From southwestern British Columbia. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1992. http://dx.doi.org/10.4095/132915.
Full textParrish, R. R. Miscellaneous U - Pb Zircon Dates From Southeast British Columbia. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1992. http://dx.doi.org/10.4095/132919.
Full textBickerton, L., D. J. Kontak, I. M. Samson, J. B. Murphy, and D A Kellett. U-Pb geochronology of the South Mountain Batholith, Nova Scotia. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2018. http://dx.doi.org/10.4095/306421.
Full textBevier, M. L., and J. B. Whalen. U-Pb geochronology of Silurian granites, Miramichi Terrane, New Brunswick. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1990. http://dx.doi.org/10.4095/129075.
Full textMonger, J. W. H., and V. J. McNicoll. New U-Pb dates from southwestern Coast Belt, British Columbia. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1993. http://dx.doi.org/10.4095/193341.
Full textDavidson, A., and O. van Breemen. U-Pb ages of granites near the Grenville Front, Ontario. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1994. http://dx.doi.org/10.4095/195176.
Full textJones, S. L., J. R. Anderson, G. L. Fraser, C. J. Lewis, and S. M. McLennan. A U-Pb Geochronology Compilation for Northern Australia: Version 2, 2018. Geoscience Australia, 2018. http://dx.doi.org/10.11636/record.2018.049.
Full textTuzzolino, A. L., P. B. O'Sullivan, L. K. Freeman, and R. J. Newberry. Zircon U-Pb age data, Ray Mountains area, Bettles Quadrangle, Alaska. Alaska Division of Geological & Geophysical Surveys, May 2016. http://dx.doi.org/10.14509/29662.
Full textMortensen, J. K., R. I. Thorpe, W. A. Padgham, J. E. King, and W J Davis. U-Pb zircon ages for felsic volcanism in Slave Porvince, N.W.T. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1988. http://dx.doi.org/10.4095/126606.
Full textBevier, M. L., and R. G. Anderson. U - Pb and K - Ar Geochronometry, Iskut River area, Nw B.c. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1990. http://dx.doi.org/10.4095/131192.
Full text