Journal articles on the topic 'Ubiquitine ligases'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Ubiquitine ligases.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
de Palma, Luigi, Mario Marinelli, Matteo Pavan, and Alessandro Orazi. "Rôle des ubiquitine ligases MuRF1 et MAFbx dans l’atrophie musculaire chez l’homme." Revue du Rhumatisme 75, no. 1 (2008): 56–60. http://dx.doi.org/10.1016/j.rhum.2007.04.021.
Full textReboud-Ravaux, Michèle. "Dégradation induite des protéines par des molécules PROTAC et stratégies apparentées : développements à visée thérapeutique." Biologie Aujourd’hui 215, no. 1-2 (2021): 25–43. http://dx.doi.org/10.1051/jbio/2021007.
Full textDumétier, Baptiste, Aymeric Zadoroznyj, and Laurence Dubrez. "IAP-Mediated Protein Ubiquitination in Regulating Cell Signaling." Cells 9, no. 5 (2020): 1118. http://dx.doi.org/10.3390/cells9051118.
Full textTaillandier, Daniel. "Contrôle des voies métaboliques par les enzymes E3 ligases : une opportunité de ciblage thérapeutique." Biologie Aujourd’hui 215, no. 1-2 (2021): 45–57. http://dx.doi.org/10.1051/jbio/2021006.
Full textLee, Jaeseok, Youngjun Lee, Young Mee Jung, Ju Hyun Park, Hyuk Sang Yoo, and Jongmin Park. "Discovery of E3 Ligase Ligands for Target Protein Degradation." Molecules 27, no. 19 (2022): 6515. http://dx.doi.org/10.3390/molecules27196515.
Full textWang, Xiangyi S., Jenny Jiou, Anthony Cerra, et al. "The RBR E3 ubiquitin ligase HOIL-1 can ubiquitinate diverse non-protein substrates in vitro." Life Science Alliance 8, no. 6 (2025): e202503243. https://doi.org/10.26508/lsa.202503243.
Full textDel Prete, Dolores, Richard C. Rice, Anjali M. Rajadhyaksha, and Luciano D'Adamio. "Amyloid Precursor Protein (APP) May Act as a Substrate and a Recognition Unit for CRL4CRBN and Stub1 E3 Ligases Facilitating Ubiquitination of Proteins Involved in Presynaptic Functions and Neurodegeneration." Journal of Biological Chemistry 291, no. 33 (2016): 17209–27. http://dx.doi.org/10.1074/jbc.m116.733626.
Full textCatlett, Jerrel Lewis, Zhijie Deng, Youngeun Lee, Yan Xiong, Husnu Ü. Kaniskan, and Jian Jin. "Abstract 3758: Discovery of a bridged proteolysis targeting chimera (PROTAC) recruiting the SPOP E3 ubiquitin ligase for targeted protein degradation." Cancer Research 85, no. 8_Supplement_1 (2025): 3758. https://doi.org/10.1158/1538-7445.am2025-3758.
Full textKim, Jong Hum, Seok Keun Cho, Tae Rin Oh, Moon Young Ryu, Seong Wook Yang, and Woo Taek Kim. "MPSR1 is a cytoplasmic PQC E3 ligase for eliminating emergent misfolded proteins in Arabidopsis thaliana." Proceedings of the National Academy of Sciences 114, no. 46 (2017): E10009—E10017. http://dx.doi.org/10.1073/pnas.1713574114.
Full textWindheim, Mark, Mark Peggie, and Philip Cohen. "Two different classes of E2 ubiquitin-conjugating enzymes are required for the mono-ubiquitination of proteins and elongation by polyubiquitin chains with a specific topology." Biochemical Journal 409, no. 3 (2008): 723–29. http://dx.doi.org/10.1042/bj20071338.
Full textQian, Hao, Ying Zhang, Boquan Wu, et al. "Structure and function of HECT E3 ubiquitin ligases and their role in oxidative stress." Journal of Translational Internal Medicine 8, no. 2 (2020): 71–79. http://dx.doi.org/10.2478/jtim-2020-0012.
Full textTracz, Michał, Ireneusz Górniak, Andrzej Szczepaniak, and Wojciech Białek. "E3 Ubiquitin Ligase SPL2 Is a Lanthanide-Binding Protein." International Journal of Molecular Sciences 22, no. 11 (2021): 5712. http://dx.doi.org/10.3390/ijms22115712.
Full textAshitomi, Honoka, Tadashi Nakagawa, Makiko Nakagawa, and Toru Hosoi. "Cullin-RING Ubiquitin Ligases in Neurodevelopment and Neurodevelopmental Disorders." Biomedicines 13, no. 4 (2025): 810. https://doi.org/10.3390/biomedicines13040810.
Full textKelley, Dior R. "E3 Ubiquitin Ligases: Key Regulators of Hormone Signaling in Plants." Molecular & Cellular Proteomics 17, no. 6 (2018): 1047–54. http://dx.doi.org/10.1074/mcp.mr117.000476.
Full textMartin-Serrano, Juan, Scott W. Eastman, Wayne Chung, and Paul D. Bieniasz. "HECT ubiquitin ligases link viral and cellular PPXY motifs to the vacuolar protein-sorting pathway." Journal of Cell Biology 168, no. 1 (2004): 89–101. http://dx.doi.org/10.1083/jcb.200408155.
Full textMarblestone, Jeffrey G., K. G. Suresh Kumar, Michael J. Eddins, et al. "Novel Approach for Characterizing Ubiquitin E3 Ligase Function." Journal of Biomolecular Screening 15, no. 10 (2010): 1220–28. http://dx.doi.org/10.1177/1087057110380456.
Full textYoshida, Yukiko, Yasushi Saeki, Arisa Murakami, et al. "A comprehensive method for detecting ubiquitinated substrates using TR-TUBE." Proceedings of the National Academy of Sciences 112, no. 15 (2015): 4630–35. http://dx.doi.org/10.1073/pnas.1422313112.
Full textIbarra, Rebeca, Heather R. Borror, Bryce Hart, Richard G. Gardner, and Gary Kleiger. "The San1 Ubiquitin Ligase Avidly Recognizes Misfolded Proteins through Multiple Substrate Binding Sites." Biomolecules 11, no. 11 (2021): 1619. http://dx.doi.org/10.3390/biom11111619.
Full textHorn-Ghetko, Daniel, David T. Krist, J. Rajan Prabu, et al. "Ubiquitin ligation to F-box protein targets by SCF–RBR E3–E3 super-assembly." Nature 590, no. 7847 (2021): 671–76. http://dx.doi.org/10.1038/s41586-021-03197-9.
Full textSievers, Quinlan, Jessica Gasser, Glenn Cowley, John G. Doench, Eric Fischer, and Benjamin L. Ebert. "Genome-Scale Screen Reveals Genes Required for Lenalidomide-Mediated Degradation of Aiolos By CRL4-CRBN." Blood 128, no. 22 (2016): 5139. http://dx.doi.org/10.1182/blood.v128.22.5139.5139.
Full textWang, Jinnan, Tianye Zhang, Aizhu Tu, et al. "Genome-Wide Identification and Analysis of APC E3 Ubiquitin Ligase Genes Family in Triticum aestivum." Genes 15, no. 3 (2024): 271. http://dx.doi.org/10.3390/genes15030271.
Full textSaravanan, Konda Mani, Muthu Kannan, Prabhakar Meera, Nagaraj Bharathkumar, and Thirunavukarasou Anand. "E3 ligases: a potential multi-drug target for different types of cancers and neurological disorders." Future Medicinal Chemistry 14, no. 3 (2022): 187–201. http://dx.doi.org/10.4155/fmc-2021-0157.
Full textBhaduri, Utsa, and Giuseppe Merla. "Ubiquitination, Biotech Startups, and the Future of TRIM Family Proteins: A TRIM-Endous Opportunity." Cells 10, no. 5 (2021): 1015. http://dx.doi.org/10.3390/cells10051015.
Full textRothweiler, Elisabeth M., Paul E. Brennan, and Kilian V. M. Huber. "Covalent fragment-based ligand screening approaches for identification of novel ubiquitin proteasome system modulators." Biological Chemistry 403, no. 4 (2022): 391–402. http://dx.doi.org/10.1515/hsz-2021-0396.
Full textSung, George. "Similar but Different: RBR E3 Ligases and their Domains that are Crucial for Function." McGill Science Undergraduate Research Journal 12, no. 1 (2017): 50–53. http://dx.doi.org/10.26443/msurj.v12i1.45.
Full textRittinger, Katrin. "Ubiquitin-dependent regulation of immune and inflammatory signaling pathways." Acta Crystallographica Section A Foundations and Advances 70, a1 (2014): C241. http://dx.doi.org/10.1107/s2053273314097587.
Full textConway, James A., Grant Kinsman, and Edgar R. Kramer. "The Role of NEDD4 E3 Ubiquitin–Protein Ligases in Parkinson’s Disease." Genes 13, no. 3 (2022): 513. http://dx.doi.org/10.3390/genes13030513.
Full textPu, Zuo-Xian, Jun-Li Wang, Yu-Yang Li, et al. "A Bacterial Platform for Studying Ubiquitination Cascades Anchored by SCF-Type E3 Ubiquitin Ligases." Biomolecules 14, no. 10 (2024): 1209. http://dx.doi.org/10.3390/biom14101209.
Full textZhu, Liguo, Ying Li, Longyuan Zhou, et al. "Role of RING-Type E3 Ubiquitin Ligases in Inflammatory Signalling and Inflammatory Bowel Disease." Mediators of Inflammation 2020 (August 10, 2020): 1–10. http://dx.doi.org/10.1155/2020/5310180.
Full textSpratt, Donald E., Helen Walden, and Gary S. Shaw. "RBR E3 ubiquitin ligases: new structures, new insights, new questions." Biochemical Journal 458, no. 3 (2014): 421–37. http://dx.doi.org/10.1042/bj20140006.
Full textGiardina, Sarah F., Elena Valdambrini, Michael Peel, et al. "Cure-PROs: Next-generation targeted protein degraders." Journal of Clinical Oncology 41, no. 16_suppl (2023): e15101-e15101. http://dx.doi.org/10.1200/jco.2023.41.16_suppl.e15101.
Full textTan, Xu, and Ning Zheng. "Hormone signaling through protein destruction: a lesson from plants." American Journal of Physiology-Endocrinology and Metabolism 296, no. 2 (2009): E223—E227. http://dx.doi.org/10.1152/ajpendo.90807.2008.
Full textCooper, Jonathan A., Tomonori Kaneko, and Shawn S. C. Li. "Cell Regulation by Phosphotyrosine-Targeted Ubiquitin Ligases." Molecular and Cellular Biology 35, no. 11 (2015): 1886–97. http://dx.doi.org/10.1128/mcb.00098-15.
Full textZhang, Ting, Yue Xu, Yanfen Liu, and Yihong Ye. "gp78 functions downstream of Hrd1 to promote degradation of misfolded proteins of the endoplasmic reticulum." Molecular Biology of the Cell 26, no. 24 (2015): 4438–50. http://dx.doi.org/10.1091/mbc.e15-06-0354.
Full textGanesan, Ishaar P., and Hiroaki Kiyokawa. "A Perspective on Therapeutic Targeting Against Ubiquitin Ligases to Stabilize Tumor Suppressor Proteins." Cancers 17, no. 4 (2025): 626. https://doi.org/10.3390/cancers17040626.
Full textLi, Zhongyan, Jingting Wan, Shangfu Li, et al. "Multi-Omics Characterization of E3 Regulatory Patterns in Different Cancer Types." International Journal of Molecular Sciences 25, no. 14 (2024): 7639. http://dx.doi.org/10.3390/ijms25147639.
Full textFredrickson, Eric K., Joel C. Rosenbaum, Melissa N. Locke, Thomas I. Milac, and Richard G. Gardner. "Exposed hydrophobicity is a key determinant of nuclear quality control degradation." Molecular Biology of the Cell 22, no. 13 (2011): 2384–95. http://dx.doi.org/10.1091/mbc.e11-03-0256.
Full textLukashchuk, Natalia, and Karen H. Vousden. "Ubiquitination and Degradation of Mutant p53." Molecular and Cellular Biology 27, no. 23 (2007): 8284–95. http://dx.doi.org/10.1128/mcb.00050-07.
Full textMatsuhisa, Koji, Shinya Sato, and Masayuki Kaneko. "Identification of E3 Ubiquitin Ligase Substrates Using Biotin Ligase-Based Proximity Labeling Approaches." Biomedicines 13, no. 4 (2025): 854. https://doi.org/10.3390/biomedicines13040854.
Full textAntoniou, Nikolaos, Nefeli Lagopati, Dimitrios Ilias Balourdas, et al. "The Role of E3, E4 Ubiquitin Ligase (UBE4B) in Human Pathologies." Cancers 12, no. 1 (2019): 62. http://dx.doi.org/10.3390/cancers12010062.
Full textFuseya, Yasuhiro, and Kazuhiro Iwai. "Biochemistry, Pathophysiology, and Regulation of Linear Ubiquitination: Intricate Regulation by Coordinated Functions of the Associated Ligase and Deubiquitinase." Cells 10, no. 10 (2021): 2706. http://dx.doi.org/10.3390/cells10102706.
Full textMintis, Dimitris G., Anastasia Chasapi, Konstantinos Poulas, George Lagoumintzis, and Christos T. Chasapis. "Assessing the Direct Binding of Ark-Like E3 RING Ligases to Ubiquitin and Its Implication on Their Protein Interaction Network." Molecules 25, no. 20 (2020): 4787. http://dx.doi.org/10.3390/molecules25204787.
Full textKelsall, Ian R., Jiazhen Zhang, Axel Knebel, J. Simon C. Arthur, and Philip Cohen. "The E3 ligase HOIL-1 catalyses ester bond formation between ubiquitin and components of the Myddosome in mammalian cells." Proceedings of the National Academy of Sciences 116, no. 27 (2019): 13293–98. http://dx.doi.org/10.1073/pnas.1905873116.
Full textCabana, Valérie C., and Marc P. Lussier. "From Drosophila to Human: Biological Function of E3 Ligase Godzilla and Its Role in Disease." Cells 11, no. 3 (2022): 380. http://dx.doi.org/10.3390/cells11030380.
Full textRen, Jihui, Younghoon Kee, Jon M. Huibregtse, and Robert C. Piper. "Hse1, a Component of the Yeast Hrs-STAM Ubiquitin-sorting Complex, Associates with Ubiquitin Peptidases and a Ligase to Control Sorting Efficiency into Multivesicular Bodies." Molecular Biology of the Cell 18, no. 1 (2007): 324–35. http://dx.doi.org/10.1091/mbc.e06-06-0557.
Full textWei, Wei, Jian-ye Chen, Ze-xiang Zeng, Jian-fei Kuang, Wang-jin Lu, and Wei Shan. "The Ubiquitin E3 Ligase MaLUL2 Is Involved in High Temperature-Induced Green Ripening in Banana Fruit." International Journal of Molecular Sciences 21, no. 24 (2020): 9386. http://dx.doi.org/10.3390/ijms21249386.
Full textMárquez-Cantudo, Laura, Ana Ramos, Claire Coderch, and Beatriz de Pascual-Teresa. "Proteasomal Degradation of Zn-Dependent Hdacs: The E3-Ligases Implicated and the Designed Protacs that Enable Degradation." Molecules 26, no. 18 (2021): 5606. http://dx.doi.org/10.3390/molecules26185606.
Full textToma-Fukai, Sachiko, and Toshiyuki Shimizu. "Structural Diversity of Ubiquitin E3 Ligase." Molecules 26, no. 21 (2021): 6682. http://dx.doi.org/10.3390/molecules26216682.
Full textPalomba, Tommaso, Giusy Tassone, Carmine Vacca, et al. "Exploiting ELIOT for Scaffold-Repurposing Opportunities: TRIM33 a Possible Novel E3 Ligase to Expand the Toolbox for PROTAC Design." International Journal of Molecular Sciences 23, no. 22 (2022): 14218. http://dx.doi.org/10.3390/ijms232214218.
Full textOswald, Jessica, Mathew Constantine, Adedolapo Adegbuyi, Esosa Omorogbe, Anna J. Dellomo, and Elana S. Ehrlich. "E3 Ubiquitin Ligases in Gammaherpesviruses and HIV: A Review of Virus Adaptation and Exploitation." Viruses 15, no. 9 (2023): 1935. http://dx.doi.org/10.3390/v15091935.
Full text