Academic literature on the topic 'Uda-yagi'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Uda-yagi.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Uda-yagi"
Rahmatia, Suci, Putri Wulandari, Nurul Khadiko, and Fitria Gani Sulistya. "Perbandingan Desain Antena Dipole dan Yagi-Uda Menggunakan Material Aluminium pada Frekuensi 470 – 890 MHz." JURNAL Al-AZHAR INDONESIA SERI SAINS DAN TEKNOLOGI 3, no. 3 (December 20, 2017): 140. http://dx.doi.org/10.36722/sst.v3i3.219.
Full textP., Ramesh, and V. Mathivanan. "Yagi-Uda Antenna for Navigational Aids Using HFSS." Indonesian Journal of Electrical Engineering and Computer Science 8, no. 3 (December 1, 2017): 627. http://dx.doi.org/10.11591/ijeecs.v8.i3.pp627-630.
Full textMaksymov, Ivan S., Isabelle Staude, Andrey E. Miroshnichenko, and Yuri S. Kivshar. "Optical Yagi-Uda nanoantennas." Nanophotonics 1, no. 1 (July 1, 2012): 65–81. http://dx.doi.org/10.1515/nanoph-2012-0005.
Full textTeisbaek, H. B., and K. B. Jakobsen. "Koch-Fractal Yagi-Uda Antenna." Journal of Electromagnetic Waves and Applications 23, no. 2-3 (January 1, 2009): 149–60. http://dx.doi.org/10.1163/156939309787604337.
Full textZang, Jiawei, Xuetian Wang, Alejandro Alvarez-Melcon, and Juan Sebastian Gomez-Diaz. "Nonreciprocal Yagi–Uda Filtering Antennas." IEEE Antennas and Wireless Propagation Letters 18, no. 12 (December 2019): 2661–65. http://dx.doi.org/10.1109/lawp.2019.2947847.
Full textLerosey, Geoffroy. "Yagi–Uda antenna shines bright." Nature Photonics 4, no. 5 (May 2010): 267–68. http://dx.doi.org/10.1038/nphoton.2010.78.
Full textTaguchi, Yujiro, Qiang Chen, and Kunio Sawaya. "Broadband monopole Yagi-Uda antenna." Electronics and Communications in Japan (Part I: Communications) 85, no. 1 (January 2002): 49–57. http://dx.doi.org/10.1002/ecja.1067.
Full textHan, Kyung-Ho, Yong-Bae Park, Ho-Sung Choo, and Ik-Mo Park. "A Broadband CPS-Fed Yagi-Uda Antenna." Journal of Korean Institute of Electromagnetic Engineering and Science 20, no. 7 (July 31, 2009): 608–16. http://dx.doi.org/10.5515/kjkiees.2009.20.7.608.
Full textDurachman, Yusuf. "Fabrication of Horn Antenna for Microwave Application." International Innovative Research Journal of Engineering and Technology 6, no. 2 (December 30, 2020): EC—17—EC—27. http://dx.doi.org/10.32595/iirjet.org/v6i2.2020.138.
Full textFormato, Richard A. "Improving Bandwidth of Yagi-Uda Arrays." Wireless Engineering and Technology 03, no. 01 (2012): 18–24. http://dx.doi.org/10.4236/wet.2012.31003.
Full textDissertations / Theses on the topic "Uda-yagi"
Křepela, Pavel. "Yagi-Uda antény v planárním a drátěném provedení." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2017. http://www.nusl.cz/ntk/nusl-316421.
Full textVelásquez, Silva Jhoel. "Optimización del diseño de antenas Yagi-Uda usando algoritmos genéticos." Bachelor's thesis, Pontificia Universidad Católica del Perú, 2013. http://tesis.pucp.edu.pe/repositorio/handle/123456789/4846.
Full textTesis
Mohamed, Younes. "Design and Application of a New Planar Balun." Thesis, University of North Texas, 2014. https://digital.library.unt.edu/ark:/67531/metadc500144/.
Full textGoncharova, Iuliia. "Investigation of a small-sized omnidirectional antenna." Thesis, Linnéuniversitetet, Institutionen för datavetenskap, fysik och matematik, DFM, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-17835.
Full textDavids, Vernon Pete. "Design and Implementation of an Integrated Solar Panel Antenna for Small Satellites." Thesis, Cape Peninsula University of Technology, 2019. http://hdl.handle.net/20.500.11838/3044.
Full textThis dissertation presents a concept for a compact, low-profile, integrated solar panel antenna for use on small satellites in low Earth orbit. To date, the integrated solar panel antenna design approach has primarily been, patch (transparent or non-transparent) and slot radiators. The design approach presented here is proposed as an alternative to existing designs. A prototype, comprising of an optically transparent rectangular dielectric resonator was constructed and can be mounted on top of a solar panel of a Cube Satellite. The ceramic glass, LASF35 is characterised by its excellent transmittance and was used to realise an antenna which does not compete with solar panels for surface area. Currently, no closed-form solution for the resonant frequency and Q-factor of a rectangular dielectric resonator antenna exists and as a first-order solution the dielectric waveguide model was used to derive the geometrical dimensions of the dielectric resonator antenna. The result obtained with the dielectric waveguide model is compared with several numerical methods such as the method of moments, finite integration technique, radar cross-section technique, characteristic mode analysis and finally with measurements. This verification approach was taken to give insight into the resonant modes and modal behaviour of the antenna. The interaction between antenna and a triple-junction gallium arsenide solar cell is presented demonstrating a loss in solar efficiency of 15.3%. A single rectangular dielectric resonator antenna mounted on a ground plane demonstrated a gain of 4.2 dBi and 5.7 dBi with and without the solar cell respectively. A dielectric resonator antenna array with a back-to-back Yagi-Uda topology is proposed, designed and evaluated. The main beam of this array can be steered can steer its beam ensuring a constant flux density at a satellite ground station. This isoflux gain profile is formed by the envelope of the steered beams which are controlled using a single digital phase shifter. The array achieved a beam-steering limit of ±66° with a measured maximum gain of 11.4 dBi. The outcome of this research is to realise a single component with dual functionality satisfying the cost, size and weight requirements of small satellites by optimally utilising the surface area of the solar panels.
Volpe, Giorgio. "Nanoscale spatial control of light in optical antennas." Doctoral thesis, Universitat Politècnica de Catalunya, 2012. http://hdl.handle.net/10803/96168.
Full textEl control dinámico y determinístico de la luz en una escala espacial por debajo de la longitud de onda es un requisito clave para ampliar los conceptos y las funcionalidades de la macro-óptica hasta la escala nanométrica. Un mayor nivel de control también tendrá implicaciones importantes en nuestra comprensión de los fenómenos ópticos en la nanoescala. Uno de los principales problemas en nano-óptica tiene como objetivo describir cómo y con qué precisión es posible controlar la distribución espacial de la luz de forma dinámica en la nanoescala. Desafortunadamente, un límite fundamental de la física – el límite de difracción de la luz – afecta nuestra capacidad de seleccionar ópticamente puntos separados por menos de media longitud de onda de la luz. El campo de la plasmónica ofrece una oportunidad única para cerrar la brecha entre el límite de difracción y la escala nanométrica. Nanoantenas metálicas pueden acoplarse eficientemente a luz propagante y focalizarla en volúmenes nanométricos, y viceversa. Además, estas nanoantenas prometen mejorar significativamente la eficiencia de procesos como le fotodetección, la emisión de luz, sensores, transferencia de calor, y espectroscopía a la escala nanométrica. Aprender a controlar de forma precisa la respuesta óptica de estas nanoantenas representa un enfoque muy prometedor para controlar la distribución espacial y temporal de la luz a la escala nanométrica. Tradicionalmente, se han desarrollado dos principales estrategias para el control de la respuesta óptica de nanoantenas plasmónicas: la primer estrategia (estrategia estática) tiene como objetivo la optimización del diseño geométrico de las nanoantenas acorde a su aplicación, mientras que la segunda estrategia (estrategia dinámica) tiene como objetivo la modulación reversible del campo cercano de una nanoestructura dada a través de la manipulación de la luz de excitación en el tiempo y el espacio. El trabajo presentado en esta Tesis extiende el estado del arte de estas dos estrategias, y desarrolla nuevas herramientas, tanto experimentales como teóricas, para ampliar el nivel de control que tenemos sobre la distribución espacial de la luz debajo del límite de difracción. Después de presentar una visión general de los principios básicos de nano-óptica y de la óptica de lo plasmones de superficie, el Capítulo 1 repasa los avances en el control de la respuesta óptica de nanoestructuras metálicas – sea por una estrategia estática o dinámica – en el momento en que se inició este trabajo de investigación. La modificación de la geometría y las dimensiones de las nanpartículas metálicas sigue siendo un ingrediente fundamental para controlar las resonancias plasmónicas y los campos de luz a la escala nanométrica. Como ejemplos novedosos de control estático, por lo tanto, los Capítulos 2 y 3 estudian nuevos diseños de estructuras plasmónicas con capacidades sin precedentes de modelar campos de luz a la escala nanométrica, en particular un diseño fractal y una nanoantena unidireccional tipo Yagi-Uda. Los Capítuols 4 y 5 describen una nueva herramienta teórica y experimental para el control dinámico y determinístico de la respuesta óptica de nanoantenas basada en la modulación espacial de la fase de la luz de excitación: el campo óptico cercano, que resulta de la interacción entre la luz y las nanoestructuras plasmónicas, es normalmente determinado por la geometría del sistema metálico y las propiedades de la luz incidente, como su longitud de onda y su polarización; sin embargo, el control exacto y dinámico del campo óptico cercano debajo de límite de difracción de la luz – independientemente de la geometría de la nanoestructura – es también un ingrediente importante para el desarrollo de futuros dispositivos nano-ópticos y para ampliar los conceptos y las funcionalidades de la óptica macroscópica a la escala nanométrica. Finalmente, la Conclusión resume los resultados de este trabajo y ofrece una visión general de algunos estudios paralelos a esta tesis. Algunas de las observaciones finales permiten echar un vistazo a las perspectivas y estrategias futuras para complementar el control estático y el control dinámico en una única herramienta, que podría avanzar enormemente nuestra capacidad de controlar la respuesta óptica de nanoantennas debajo del límite de difracción.
Trubák, Jan. "Anténa pro RFID čtečku." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2017. http://www.nusl.cz/ntk/nusl-316414.
Full textModaresi, Mahyar. "System and Method for Passive Radiative RFID Tag Positioning in Realtime for both Elevation and Azimuth Directions." Thesis, KTH, Communication Systems, CoS, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-24562.
Full textIn this thesis, design and realization of a system which enables precise positioning of RFID tags in both azimuth and elevation angles is explained. The positioning is based on measuring the phase difference between four Yagi antennas placed in two arrays. One array is placed in the azimuth plane and the other array is perpendicular to the first array in the elevation plane. The phase difference of the signals received from the antennas in the azimuth array is used to find the position of RFID tag in the horizontal direction. For the position in the vertical direction, the phase difference of the signals received from the antennas in the elevation plane is used. After that the position of tag in horizontal and vertical directions is used to control the mouse cursor in the horizontal and vertical directions on the computer screen. In this way by attaching one RFID tag to a plastic rod, a wireless pen is implemented which enables drawing in the air by using a program like Paint in Windows. Simulated results show that the resolution of the tag positioning in the system is in the order of 3mm in a distance equal to 0.5 meter in front of the array with few number of averaging over the received phase data. Using the system in practice reveals that it is easily possible to write and draw with this RFID pen. In addition it is argued how the system is totally immune to any counterfeit attempt for faked drawings by randomly changing the transmitting antenna in the array. This will make the system a novel option for human identity verification.
QC 20100920
Minář, Petr. "Nelineární řízení komplexních soustav s využitím evolučních přístupů." Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2018. http://www.nusl.cz/ntk/nusl-364594.
Full textTsai, Jui-Te, and 蔡瑞得. "Design of Planar Microstrip Yagi-Uda Antenna." Thesis, 2010. http://ndltd.ncl.edu.tw/handle/47841867996894364644.
Full text國立中正大學
通訊工程學系
98
In this thesis, two types of planar microstrip Yagi-Uda antenna fabricated on a FR4 substrate are investigated. The design is based on the planar half wavelngth dipole antenna with directing elements to form the high gain antenna. The first planar microstrip Yagi-Uda antenna was designed at 2.4 GHz for IEEE 802.11 b/g/n WLAN which has the return loss of 13.3 dB and antenna gain of 9.36 dBi and the bandwidth of 500 MHz. The second Yagi-Uda antenna has the bandwidth extention for IEEE 802.11 b/g/n WLAN, IEEE802.16 WiMAX , and 3GPP LTE applications, there measured return loss is 16 dB in 2.3-2.7 GHz and antenna gain is 8.99 dBi at 2.5GHz. The experimental results show good agreement with the simulated data.
Books on the topic "Uda-yagi"
Hill, D. A. A near-field array of Yagi-Uda antennas for electromagnetic susceptibility testing. Gaithersburg, MD: U.S. Dept. of Commerce, National Bureau of Standards, 1985.
Find full textHill, D. A. A near-field array of Yagi-Uda antennas for electromagnetic susceptibility testing. Gaithersburg, MD: U.S. Dept. of Commerce, National Bureau of Standards, 1985.
Find full textHill, D. A. A near-field array of Yagi-Uda antennas for electromagnetic susceptibility testing. Gaithersburg, MD: U.S. Dept. of Commerce, National Bureau of Standards, 1985.
Find full textHill, D. A. A near-field array of Yagi-Uda antennas for electromagnetic susceptibility testing. Gaithersburg, MD: U.S. Dept. of Commerce, National Bureau of Standards, 1985.
Find full textHill, D. A. A near-field array of Yagi-Uda antennas for electromagnetic susceptibility testing. Gaithersburg, MD: U.S. Dept. of Commerce, National Bureau of Standards, 1985.
Find full textBook chapters on the topic "Uda-yagi"
Lohn, Jason D., William F. Kraus, Derek S. Linden, and Silvano P. Colombano. "Evolutionary Optimization of Yagi-Uda Antennas." In Evolvable Systems: From Biology to Hardware, 236–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-45443-8_21.
Full textZhang, Hai, Hui Wang, and Cong Wang. "Yagi-Uda Antenna Design Using Differential Evolution." In Communications in Computer and Information Science, 427–38. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1651-7_38.
Full textJanapala, Doondi Kumar, M. Nesasudha, and Sam Prince Tensing. "Compact Yagi–Uda-Shaped Patch Antenna for 5 GHz WLAN Applications." In Lecture Notes in Electrical Engineering, 194–200. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-4775-1_21.
Full textYadav, Rajesh, Shailza Gotra, V. S. Pandey, and Brahmjit Singh. "Hybrid Material-Based Dual-Band Yagi-Uda Antenna with Enhanced Gain for the Ku-Band Applications." In Algorithms for Intelligent Systems, 77–85. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1295-4_8.
Full textKaneda, Noriaki, and W. R. Deal. "Yagi-Uda Antenna." In Encyclopedia of RF and Microwave Engineering. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2005. http://dx.doi.org/10.1002/0471654507.eme502.
Full textQueiroz da Costa, Karlo, Gleida Tayanna Conde de Sousa, Paulo Rodrigues Amaral, Janilson Leão Souza, Tiago Dos Santos Garcia, and Pitther Negrão dos Santos. "Wireless Optical Nanolinks with Yagi-Uda and Dipoles Plasmonic Nanoantennas." In Nanoplasmonics. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.88482.
Full textGoudos, Sotirios K. "Application of Multi-Objective Evolutionary Algorithms to Antenna and Microwave Design Problems." In Multidisciplinary Computational Intelligence Techniques, 75–101. IGI Global, 2012. http://dx.doi.org/10.4018/978-1-4666-1830-5.ch006.
Full textConference papers on the topic "Uda-yagi"
Maksymov, Ivan S., Andrey E. Miroshnichenko, and Yuri S. Kivshar. "Tunable plasmonic Yagi-Uda nanoantenna." In 2011 IEEE International Workshop "Nonlinear Photonics" (NLP). IEEE, 2011. http://dx.doi.org/10.1109/nlp.2011.6102668.
Full textLonsky, Tomas, Pavel Hazdra, and Jan Kracek. "Fast Yagi-Uda Antenna Optimization." In 2019 8th Asia-Pacific Conference on Antennas and Propagation (APCAP). IEEE, 2019. http://dx.doi.org/10.1109/apcap47827.2019.9472161.
Full textBonev, Boncho, Peter Petkov, and Luboslava Dimcheva. "Modified Minkowski Fractal Yagi-Uda Antenna." In 2020 30th International Conference Radioelektronika (RADIOELEKTRONIKA). IEEE, 2020. http://dx.doi.org/10.1109/radioelektronika49387.2020.9092356.
Full textSavelev, Roman S., Olga N. Sergaeva, Denis G. Baranov, Alexander E. Krasnok, and Andrea Alu. "Ultrafast tunable hybrid Yagi-Uda nanoantenna." In 2017 Progress In Electromagnetics Research Symposium - Spring (PIERS). IEEE, 2017. http://dx.doi.org/10.1109/piers.2017.8262431.
Full textBerdnik, S. L., V. A. Katrich, M. V. Nesterenko, Yu M. Penkin, and S. V. Pshenichnaya. "Yagi-Uda antennas with impedance wires." In 2016 IEEE International Conference on Mathematical Methods in Electromagnetic Theory (MMET). IEEE, 2016. http://dx.doi.org/10.1109/mmet.2016.7544035.
Full textChew, H. B., E. H. Lim, F. L. Lo, Y. N. Phua, K. Y. Lee, and B. K. Chung. "Linearly polarized Yagi-Uda-like transmitarray." In 2017 IEEE Asia Pacific Microwave Conference (APMC). IEEE, 2017. http://dx.doi.org/10.1109/apmc.2017.8251580.
Full textKyungho Han, Truong Khang Nguyen, Haewook Han, and Ikmo Park. "Yagi-Uda antennas for Terahertz photomixer." In 2010 International Workshop on Antenna Technology: "Small Antennas, Innovative Structures and Materials" (iWAT). IEEE, 2010. http://dx.doi.org/10.1109/iwat.2010.5464657.
Full textNascimento, D. C., R. Schildberg, and J. C. da S. Lacava. "Low-cost Yagi-Uda monopole array." In 2008 IEEE Antennas and Propagation Society International Symposium and USNC/URSI National Radio Science Meeting. IEEE, 2008. http://dx.doi.org/10.1109/aps.2008.4618984.
Full textKittiyanpunya, Chainarong, and Monai Krairiksh. "Pattern reconfigurable printed Yagi-Uda antenna." In 2014 International Symposium on Antennas & Propagation (ISAP). IEEE, 2014. http://dx.doi.org/10.1109/isanp.2014.7026662.
Full textDregely, Daniel, Richard Taubert, and Harald Giessen. "3D optical Yagi-Uda nanoantenna array." In Photonic Metamaterials and Plasmonics. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/pmeta_plas.2010.mwd3.
Full textReports on the topic "Uda-yagi"
Hill, D. A. A near-field array of Yagi-Uda antennas for electromagnetic susceptibility testing. Gaithersburg, MD: National Bureau of Standards, 1985. http://dx.doi.org/10.6028/nbs.tn.1082.
Full text