Academic literature on the topic 'Uda-yagi'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Uda-yagi.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Uda-yagi"

1

Rahmatia, Suci, Putri Wulandari, Nurul Khadiko, and Fitria Gani Sulistya. "Perbandingan Desain Antena Dipole dan Yagi-Uda Menggunakan Material Aluminium pada Frekuensi 470 – 890 MHz." JURNAL Al-AZHAR INDONESIA SERI SAINS DAN TEKNOLOGI 3, no. 3 (December 20, 2017): 140. http://dx.doi.org/10.36722/sst.v3i3.219.

Full text
Abstract:
<p><em>Abstrak </em><strong> - Antena merupakan alat pemancar yang akrab dengan aktifitas sehari-hari dan mudah sekali dijumpai, di rumah, di gedung, bahkan pada alat komunikasi yang digunakan. Salah satu antena yang sering digunakan adalah antena televisi. Antena televisi yang sering digunakan adalah Yagi-Uda yang biasanya dipakai sebagai outdoor antena dan antena dipole yang biasanya digunakan untuk indoor antena. Masing – masing jenis antena memiliki kriteria dan keuntungan berdasarkan dari kebutuhan penggunaannya. Baik antena dipole maupun antena Yagi-Uda memiliki perbedaan diantaranya adalah besar bandwidth, nilai gain, dan pola radiasi. Pada paper ini dapat diketahui bahwa bandwidth yang dimiliki antena yagi-uda lebih besar daripada antena dipole yakni 0.39943 MHz untuk antena yagi-uda dan 0.16569 MHz untuk antena dipole. Begitupula dengan besar Gain yang dimiliki antena Yagi-Uda (6.64 dBi) lebih besar dibandingkan dengan gain dari antena dipole (2.29 dBi). Perbedaan ini dikarenakan faktor elemen director dan ketebalannya.</strong></p><p><strong><br /></strong></p><p><strong><em>Kata Kunci</em></strong> – <em>Atena Televisi, Atena Yagi-Uda, Atena Dipole, Gain, Bandwidth</em></p><p><em> </em></p><p><em>Abstract</em> <strong>- Antenna is a transmitter tool that is familiar with daily activity and easy to find at home, in the building, even on the communication tool used. One of antenna that is often used is a television antenna. Television antennas are often used is Yagi-Uda which is usually used as an outdoor antenna and dipole antenna that is usually used for indoor antennas. Each type of antenna has the criteria and advantages based on the needs of its use. Both dipole antennas and Yagi-Uda antennas have differences among them are bandwidth, gain, and radiation pattern. In this paper it can be seen that the bandwidth of yagi-uda antenna is bigger than dipole antenna that is 0.39943 MHz for Yagi-Uda antenna and 0.16569 MHz for dipole antenna. Neither the large Gain of the Yagi-Uda antenna (6.64 dBi) is greater than the gain of the dipole antenna (2.29 dBi). This difference is due to element factor of director and its thickness.</strong></p><p><strong><br /></strong></p><p><strong><em>Keywords</em></strong><strong> – </strong><em>Television Antenna, Yagi-Uda Antenna, Dipole Antenna, Gain, Bandwidth</em><strong> </strong></p>
APA, Harvard, Vancouver, ISO, and other styles
2

P., Ramesh, and V. Mathivanan. "Yagi-Uda Antenna for Navigational Aids Using HFSS." Indonesian Journal of Electrical Engineering and Computer Science 8, no. 3 (December 1, 2017): 627. http://dx.doi.org/10.11591/ijeecs.v8.i3.pp627-630.

Full text
Abstract:
<p>In this paper, the ultra high frequency of yagi-uda antenna for navigational has been designed to improve the usable bandwidth by improving the stability of the radiation patterns. The frequency band of ultra high frequency is 300-3000 MHZ. The main aim of this paper is to reduce the loss, improve the gain and also to enhance the efficiency of ultra high frequency yagi-uda antenna for utilizing the navigational aids. The proposed UHF band of Yagi-Uda antenna has been designed by using ANSYS HFSS tool for the application of navigational aids. The characteristics specifications of yagi-uda antenna such as Radiation pattern, S11 (return loss), impedance matching and gain are analyzed in this work.</p>
APA, Harvard, Vancouver, ISO, and other styles
3

Maksymov, Ivan S., Isabelle Staude, Andrey E. Miroshnichenko, and Yuri S. Kivshar. "Optical Yagi-Uda nanoantennas." Nanophotonics 1, no. 1 (July 1, 2012): 65–81. http://dx.doi.org/10.1515/nanoph-2012-0005.

Full text
Abstract:
AbstractConventional antennas, which are widely employed to transmit radio and TV signals, can be used at optical frequencies as long as they are shrunk to nanometer-size dimensions. Optical nanoantennas made of metallic or high-permittivity dielectric nanoparticles allow for enhancing and manipulating light on the scale much smaller than wavelength of light. Based on this ability, optical nanoantennas offer unique opportunities regarding key applications such as optical communications, photovoltaics, nonclassical light emission, and sensing. From a multitude of suggested nanoantenna concepts the Yagi-Uda nanoantenna, an optical analogue of the well-established radio-frequency Yagi-Uda antenna, stands out by its efficient unidirectional light emission and enhancement. Following a brief introduction to the emerging field of optical nanoantennas, here we review recent theoretical and experimental activities on optical Yagi-Uda nanoantennas, including their design, fabrication, and applications. We also discuss several extensions of the conventional Yagi-Uda antenna design for broadband and tunable operation, for applications in nanophotonic circuits and photovoltaic devices.
APA, Harvard, Vancouver, ISO, and other styles
4

Teisbaek, H. B., and K. B. Jakobsen. "Koch-Fractal Yagi-Uda Antenna." Journal of Electromagnetic Waves and Applications 23, no. 2-3 (January 1, 2009): 149–60. http://dx.doi.org/10.1163/156939309787604337.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zang, Jiawei, Xuetian Wang, Alejandro Alvarez-Melcon, and Juan Sebastian Gomez-Diaz. "Nonreciprocal Yagi–Uda Filtering Antennas." IEEE Antennas and Wireless Propagation Letters 18, no. 12 (December 2019): 2661–65. http://dx.doi.org/10.1109/lawp.2019.2947847.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lerosey, Geoffroy. "Yagi–Uda antenna shines bright." Nature Photonics 4, no. 5 (May 2010): 267–68. http://dx.doi.org/10.1038/nphoton.2010.78.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Taguchi, Yujiro, Qiang Chen, and Kunio Sawaya. "Broadband monopole Yagi-Uda antenna." Electronics and Communications in Japan (Part I: Communications) 85, no. 1 (January 2002): 49–57. http://dx.doi.org/10.1002/ecja.1067.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Han, Kyung-Ho, Yong-Bae Park, Ho-Sung Choo, and Ik-Mo Park. "A Broadband CPS-Fed Yagi-Uda Antenna." Journal of Korean Institute of Electromagnetic Engineering and Science 20, no. 7 (July 31, 2009): 608–16. http://dx.doi.org/10.5515/kjkiees.2009.20.7.608.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Durachman, Yusuf. "Fabrication of Horn Antenna for Microwave Application." International Innovative Research Journal of Engineering and Technology 6, no. 2 (December 30, 2020): EC—17—EC—27. http://dx.doi.org/10.32595/iirjet.org/v6i2.2020.138.

Full text
Abstract:
This paper contains a novel design of a horn antenna control system for microwave applications. Using “Fermat’s principle” the horn antenna is designed and fabricated. For microwave applications, high gain and low voltage standing wave ratio(VSWR) is needed, so for that purpose horn antenna is fabricated. In a previous paper, they designed the Yagi Uda antenna which is used for multiple driven elements by the method called maximum power transmission efficiency. For multiple driven elements, the horn antenna cannot be fabricated. If suppose yagi uda is fabricated using the principle called Fermat's, the system can't achieve more gain and low voltage standing wave ratio. Yagi uda antenna can achieve only a high voltage standing wave ratio. To reduce the problems in the existing paper, our paper designs a horn antenna to achieve high gain and low voltage standing wave ratio( VSWR) which is used for microwave applications to transmit microwaves from a waveguide out into space or collect microwaves into a waveguide for the reception.
APA, Harvard, Vancouver, ISO, and other styles
10

Formato, Richard A. "Improving Bandwidth of Yagi-Uda Arrays." Wireless Engineering and Technology 03, no. 01 (2012): 18–24. http://dx.doi.org/10.4236/wet.2012.31003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Uda-yagi"

1

Křepela, Pavel. "Yagi-Uda antény v planárním a drátěném provedení." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2017. http://www.nusl.cz/ntk/nusl-316421.

Full text
Abstract:
This work deals with the study of Yagi-Uda antennas, followed by analysis and design of planar antenna with wired reflector. The first part focused on the analysis of the antenna and parameters. Another part of the continuing investigation of the optimum parameters for a given antenna followed by a design in Wi-Fi 5 GHz band. The antenna is simulated in CST Microwave Studio. The final part devoted the results achieved
APA, Harvard, Vancouver, ISO, and other styles
2

Velásquez, Silva Jhoel. "Optimización del diseño de antenas Yagi-Uda usando algoritmos genéticos." Bachelor's thesis, Pontificia Universidad Católica del Perú, 2013. http://tesis.pucp.edu.pe/repositorio/handle/123456789/4846.

Full text
Abstract:
El ser humano desde siempre ha tenido la necesidad innata de comunicarse en cualquier lugar y en cualquier momento. Esto ha impulsado un desarrollo asombroso en el área de las telecomunicaciones y especialmente en los últimos 30 años, en los cuales se han logrado tales avances en esta área de la ingeniería que a esta etapa de la historia de la humanidad se le ha denominado como la “era de las comunicaciones”. Hace más de un siglo que Hertz demostró la posibilidad de enviar ondas electromagnéticas de un punto al otro vía inalámbrica. Menos de una década después, Marconi puso en marcha la primera comunicación transatlántica dando origen al negocio de las telecomunicaciones [1]. En los últimos treinta años, gracias al avance de los computadores y al perfeccionamiento de las técnicas numéricas se han producido mejoras significativas en los parámetros de desempeño de las antenas, debido a que se han podido implementar dichos métodos para estructuras muy complejas. En la actualidad existen diversos programas de análisis de antenas basados en estos métodos, los cuales han contribuido al avance de las telecomunicaciones [1]. En el presente trabajo de investigación se expone los fundamentos electromagnéticos aplicados a antenas y su implementación computacional; posteriormente se explicara los fundamentos teóricos de optimización teniendo como técnica principal a los algoritmos genéticos. A partir de esto se propone un diseño para la solución óptima de desempeño para antenas Yagi. El desarrollo del diseño del sistema de optimización se expone en 4 capítulos. En el primero, se aborda la teoría de antenas; en el segundo, se expone a los algoritmos genéticos; en el tercero, se explica el diseño de optimización y sus restricciones; finalmente, en el cuarto, se realizan las pruebas de simulación para demostrar el funcionamiento adecuado y esperado.
Tesis
APA, Harvard, Vancouver, ISO, and other styles
3

Mohamed, Younes. "Design and Application of a New Planar Balun." Thesis, University of North Texas, 2014. https://digital.library.unt.edu/ark:/67531/metadc500144/.

Full text
Abstract:
The baluns are the key components in balanced circuits such balanced mixers, frequency multipliers, push–pull amplifiers, and antennas. Most of these applications have become more integrated which demands the baluns to be in compact size and low cost. In this thesis, a new approach about the design of planar balun is presented where the 4-port symmetrical network with one port terminated by open circuit is first analyzed by using even- and odd-mode excitations. With full design equations, the proposed balun presents perfect balanced output and good input matching and the measurement results make a good agreement with the simulations. Second, Yagi-Uda antenna is also introduced as an entry to fully understand the quasi-Yagi antenna. Both of the antennas have the same design requirements and present the radiation properties. The arrangement of the antenna’s elements and the end-fire radiation property of the antenna have been presented. Finally, the quasi-Yagi antenna is used as an application of the balun where the proposed balun is employed to feed a quasi-Yagi antenna. The antenna is working in the S-band radio frequency and achieves a measured 36% fractional bandwidth for return loss less than -10 dB. The antenna demonstrates a good agreement between its measurement and simulation results. The impact of the parasitic director on the antenna’s performance is also investigated. The gain and the frequency range of the antenna have been reduced due to the absence of this element. This reduction presents in simulation and measurement results with very close agreement.
APA, Harvard, Vancouver, ISO, and other styles
4

Goncharova, Iuliia. "Investigation of a small-sized omnidirectional antenna." Thesis, Linnéuniversitetet, Institutionen för datavetenskap, fysik och matematik, DFM, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-17835.

Full text
Abstract:
The purpose of this research is to find ways to create an omnidirectional antenna with high directivity in the vertical plane. The investigation is based on computer simulation using the program CST 2011. The objective is a narrow-band antenna that is omnidirectional in the horizontal plane and has maximum achievable directivity for a fixed size. Three of the most promising antenna designs are selected based on the current state of antenna technology. Their maximum directivities are estimated by means of well known relations in antenna theory. It is shown that the most suitable design is an omnidirectional antenna in the form of a cylindrical dipole antenna array with an active central dipole. For this antenna, excitation by means of a radial traveling wave, with a phase velocity smaller than speed of the light, is possible. It is found that for a certain value of a moderating factor it is possible to obtain a directivity that is 2.5 – 3 dB larger than that of a dipole or a linear antenna with uniform excitation. The antenna structures are modeled to determine the number of dipoles, their dimensions and the spacing between them that maximizes the directivity.
APA, Harvard, Vancouver, ISO, and other styles
5

Davids, Vernon Pete. "Design and Implementation of an Integrated Solar Panel Antenna for Small Satellites." Thesis, Cape Peninsula University of Technology, 2019. http://hdl.handle.net/20.500.11838/3044.

Full text
Abstract:
Thesis (PhD (Electrical Engineering))--Cape Peninsula University of Technology, 2019
This dissertation presents a concept for a compact, low-profile, integrated solar panel antenna for use on small satellites in low Earth orbit. To date, the integrated solar panel antenna design approach has primarily been, patch (transparent or non-transparent) and slot radiators. The design approach presented here is proposed as an alternative to existing designs. A prototype, comprising of an optically transparent rectangular dielectric resonator was constructed and can be mounted on top of a solar panel of a Cube Satellite. The ceramic glass, LASF35 is characterised by its excellent transmittance and was used to realise an antenna which does not compete with solar panels for surface area. Currently, no closed-form solution for the resonant frequency and Q-factor of a rectangular dielectric resonator antenna exists and as a first-order solution the dielectric waveguide model was used to derive the geometrical dimensions of the dielectric resonator antenna. The result obtained with the dielectric waveguide model is compared with several numerical methods such as the method of moments, finite integration technique, radar cross-section technique, characteristic mode analysis and finally with measurements. This verification approach was taken to give insight into the resonant modes and modal behaviour of the antenna. The interaction between antenna and a triple-junction gallium arsenide solar cell is presented demonstrating a loss in solar efficiency of 15.3%. A single rectangular dielectric resonator antenna mounted on a ground plane demonstrated a gain of 4.2 dBi and 5.7 dBi with and without the solar cell respectively. A dielectric resonator antenna array with a back-to-back Yagi-Uda topology is proposed, designed and evaluated. The main beam of this array can be steered can steer its beam ensuring a constant flux density at a satellite ground station. This isoflux gain profile is formed by the envelope of the steered beams which are controlled using a single digital phase shifter. The array achieved a beam-steering limit of ±66° with a measured maximum gain of 11.4 dBi. The outcome of this research is to realise a single component with dual functionality satisfying the cost, size and weight requirements of small satellites by optimally utilising the surface area of the solar panels.
APA, Harvard, Vancouver, ISO, and other styles
6

Volpe, Giorgio. "Nanoscale spatial control of light in optical antennas." Doctoral thesis, Universitat Politècnica de Catalunya, 2012. http://hdl.handle.net/10803/96168.

Full text
Abstract:
El control dinámico y determinístico de la luz en una escala espacial por debajo de la longitud de onda es un requisito clave para ampliar los conceptos y las funcionalidades de la macro-óptica hasta la escala nanométrica. Un mayor nivel de control también tendrá implicaciones importantes en nuestra comprensión de los fenómenos ópticos en la nanoescala. Uno de los principales problemas en nano-óptica tiene como objetivo describir cómo y con qué precisión es posible controlar la distribución espacial de la luz de forma dinámica en la nanoescala. Desafortunadamente, un límite fundamental de la física – el límite de difracción de la luz – afecta nuestra capacidad de seleccionar ópticamente puntos separados por menos de media longitud de onda de la luz. El campo de la plasmónica ofrece una oportunidad única para cerrar la brecha entre el límite de difracción y la escala nanométrica. Nanoantenas metálicas pueden acoplarse eficientemente a luz propagante y focalizarla en volúmenes nanométricos, y viceversa. Además, estas nanoantenas prometen mejorar significativamente la eficiencia de procesos como le fotodetección, la emisión de luz, sensores, transferencia de calor, y espectroscopía a la escala nanométrica. Aprender a controlar de forma precisa la respuesta óptica de estas nanoantenas representa un enfoque muy prometedor para controlar la distribución espacial y temporal de la luz a la escala nanométrica. Tradicionalmente, se han desarrollado dos principales estrategias para el control de la respuesta óptica de nanoantenas plasmónicas: la primer estrategia (estrategia estática) tiene como objetivo la optimización del diseño geométrico de las nanoantenas acorde a su aplicación, mientras que la segunda estrategia (estrategia dinámica) tiene como objetivo la modulación reversible del campo cercano de una nanoestructura dada a través de la manipulación de la luz de excitación en el tiempo y el espacio. El trabajo presentado en esta Tesis extiende el estado del arte de estas dos estrategias, y desarrolla nuevas herramientas, tanto experimentales como teóricas, para ampliar el nivel de control que tenemos sobre la distribución espacial de la luz debajo del límite de difracción. Después de presentar una visión general de los principios básicos de nano-óptica y de la óptica de lo plasmones de superficie, el Capítulo 1 repasa los avances en el control de la respuesta óptica de nanoestructuras metálicas – sea por una estrategia estática o dinámica – en el momento en que se inició este trabajo de investigación. La modificación de la geometría y las dimensiones de las nanpartículas metálicas sigue siendo un ingrediente fundamental para controlar las resonancias plasmónicas y los campos de luz a la escala nanométrica. Como ejemplos novedosos de control estático, por lo tanto, los Capítulos 2 y 3 estudian nuevos diseños de estructuras plasmónicas con capacidades sin precedentes de modelar campos de luz a la escala nanométrica, en particular un diseño fractal y una nanoantena unidireccional tipo Yagi-Uda. Los Capítuols 4 y 5 describen una nueva herramienta teórica y experimental para el control dinámico y determinístico de la respuesta óptica de nanoantenas basada en la modulación espacial de la fase de la luz de excitación: el campo óptico cercano, que resulta de la interacción entre la luz y las nanoestructuras plasmónicas, es normalmente determinado por la geometría del sistema metálico y las propiedades de la luz incidente, como su longitud de onda y su polarización; sin embargo, el control exacto y dinámico del campo óptico cercano debajo de límite de difracción de la luz – independientemente de la geometría de la nanoestructura – es también un ingrediente importante para el desarrollo de futuros dispositivos nano-ópticos y para ampliar los conceptos y las funcionalidades de la óptica macroscópica a la escala nanométrica. Finalmente, la Conclusión resume los resultados de este trabajo y ofrece una visión general de algunos estudios paralelos a esta tesis. Algunas de las observaciones finales permiten echar un vistazo a las perspectivas y estrategias futuras para complementar el control estático y el control dinámico en una única herramienta, que podría avanzar enormemente nuestra capacidad de controlar la respuesta óptica de nanoantennas debajo del límite de difracción.
El control dinámico y determinístico de la luz en una escala espacial por debajo de la longitud de onda es un requisito clave para ampliar los conceptos y las funcionalidades de la macro-óptica hasta la escala nanométrica. Un mayor nivel de control también tendrá implicaciones importantes en nuestra comprensión de los fenómenos ópticos en la nanoescala. Uno de los principales problemas en nano-óptica tiene como objetivo describir cómo y con qué precisión es posible controlar la distribución espacial de la luz de forma dinámica en la nanoescala. Desafortunadamente, un límite fundamental de la física – el límite de difracción de la luz – afecta nuestra capacidad de seleccionar ópticamente puntos separados por menos de media longitud de onda de la luz. El campo de la plasmónica ofrece una oportunidad única para cerrar la brecha entre el límite de difracción y la escala nanométrica. Nanoantenas metálicas pueden acoplarse eficientemente a luz propagante y focalizarla en volúmenes nanométricos, y viceversa. Además, estas nanoantenas prometen mejorar significativamente la eficiencia de procesos como le fotodetección, la emisión de luz, sensores, transferencia de calor, y espectroscopía a la escala nanométrica. Aprender a controlar de forma precisa la respuesta óptica de estas nanoantenas representa un enfoque muy prometedor para controlar la distribución espacial y temporal de la luz a la escala nanométrica. Tradicionalmente, se han desarrollado dos principales estrategias para el control de la respuesta óptica de nanoantenas plasmónicas: la primer estrategia (estrategia estática) tiene como objetivo la optimización del diseño geométrico de las nanoantenas acorde a su aplicación, mientras que la segunda estrategia (estrategia dinámica) tiene como objetivo la modulación reversible del campo cercano de una nanoestructura dada a través de la manipulación de la luz de excitación en el tiempo y el espacio. El trabajo presentado en esta Tesis extiende el estado del arte de estas dos estrategias, y desarrolla nuevas herramientas, tanto experimentales como teóricas, para ampliar el nivel de control que tenemos sobre la distribución espacial de la luz debajo del límite de difracción. Después de presentar una visión general de los principios básicos de nano-óptica y de la óptica de lo plasmones de superficie, el Capítulo 1 repasa los avances en el control de la respuesta óptica de nanoestructuras metálicas – sea por una estrategia estática o dinámica – en el momento en que se inició este trabajo de investigación. La modificación de la geometría y las dimensiones de las nanpartículas metálicas sigue siendo un ingrediente fundamental para controlar las resonancias plasmónicas y los campos de luz a la escala nanométrica. Como ejemplos novedosos de control estático, por lo tanto, los Capítulos 2 y 3 estudian nuevos diseños de estructuras plasmónicas con capacidades sin precedentes de modelar campos de luz a la escala nanométrica, en particular un diseño fractal y una nanoantena unidireccional tipo Yagi-Uda. Los Capítuols 4 y 5 describen una nueva herramienta teórica y experimental para el control dinámico y determinístico de la respuesta óptica de nanoantenas basada en la modulación espacial de la fase de la luz de excitación: el campo óptico cercano, que resulta de la interacción entre la luz y las nanoestructuras plasmónicas, es normalmente determinado por la geometría del sistema metálico y las propiedades de la luz incidente, como su longitud de onda y su polarización; sin embargo, el control exacto y dinámico del campo óptico cercano debajo de límite de difracción de la luz – independientemente de la geometría de la nanoestructura – es también un ingrediente importante para el desarrollo de futuros dispositivos nano-ópticos y para ampliar los conceptos y las funcionalidades de la óptica macroscópica a la escala nanométrica. Finalmente, la Conclusión resume los resultados de este trabajo y ofrece una visión general de algunos estudios paralelos a esta tesis. Algunas de las observaciones finales permiten echar un vistazo a las perspectivas y estrategias futuras para complementar el control estático y el control dinámico en una única herramienta, que podría avanzar enormemente nuestra capacidad de controlar la respuesta óptica de nanoantennas debajo del límite de difracción.
APA, Harvard, Vancouver, ISO, and other styles
7

Trubák, Jan. "Anténa pro RFID čtečku." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2017. http://www.nusl.cz/ntk/nusl-316414.

Full text
Abstract:
This thesis is focused on the design of the antenna to a specific application XY. Emphasis is placed on a narrow antenna beam width, which will ensure full-fledged profit for the tag directly below the antenna. This thesis presents a total of five proposals that could be used by XY application. This thesis also presents the results of field measurements, which confirm the improved characteristics of the antenna with parasitic patch.
APA, Harvard, Vancouver, ISO, and other styles
8

Modaresi, Mahyar. "System and Method for Passive Radiative RFID Tag Positioning in Realtime for both Elevation and Azimuth Directions." Thesis, KTH, Communication Systems, CoS, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-24562.

Full text
Abstract:

In this thesis, design and realization of a system which enables precise positioning of RFID tags in both azimuth and elevation angles is explained. The positioning is based on measuring the phase difference between four Yagi antennas placed in two arrays. One array is placed in the azimuth plane and the other array is perpendicular to the first array in the elevation plane. The phase difference of the signals received from the antennas in the azimuth array is used to find the position of RFID tag in the horizontal direction. For the position in the vertical direction, the phase difference of the signals received from the antennas in the elevation plane is used. After that the position of tag in horizontal and vertical directions is used to control the mouse cursor in the horizontal and vertical directions on the computer screen. In this way by attaching one RFID tag to a plastic rod, a wireless pen is implemented which enables drawing in the air by using a program like Paint in Windows. Simulated results show that the resolution of the tag positioning in the system is in the order of 3mm in a distance equal to 0.5 meter in front of the array with few number of averaging over the received phase data. Using the system in practice reveals that it is easily possible to write and draw with this RFID pen. In addition it is argued how the system is totally immune to any counterfeit attempt for faked drawings by randomly changing the transmitting antenna in the array. This will make the system a novel option for human identity verification.


QC 20100920
APA, Harvard, Vancouver, ISO, and other styles
9

Minář, Petr. "Nelineární řízení komplexních soustav s využitím evolučních přístupů." Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2018. http://www.nusl.cz/ntk/nusl-364594.

Full text
Abstract:
Control theory of complex systems by utilization of artificial intelligent algorithms is relatively new science field and it can be used in many areas of technical practise. Best known algorithms to solved similar tasks are genetic algorithm, differential evolution, HC12 Nelder-Mead method, fuzzy logic and grammatical evolution. Complex solution is presented at selected examples from mathematical nonlinear systems to examples of anthems design and stabilization of deterministic chaos. The goal of this thesis is present examples of implementation and utilization of artificial algorithms by multi-objective optimization. To achieve optimal results is used designed software solution by multi-platform application, which used Matlab and Java interfaces. The software solution integrate every algorithms of this thesis to complex solution and it extends possible application of those approaches to real systems and practical world.
APA, Harvard, Vancouver, ISO, and other styles
10

Tsai, Jui-Te, and 蔡瑞得. "Design of Planar Microstrip Yagi-Uda Antenna." Thesis, 2010. http://ndltd.ncl.edu.tw/handle/47841867996894364644.

Full text
Abstract:
碩士
國立中正大學
通訊工程學系
98
In this thesis, two types of planar microstrip Yagi-Uda antenna fabricated on a FR4 substrate are investigated. The design is based on the planar half wavelngth dipole antenna with directing elements to form the high gain antenna. The first planar microstrip Yagi-Uda antenna was designed at 2.4 GHz for IEEE 802.11 b/g/n WLAN which has the return loss of 13.3 dB and antenna gain of 9.36 dBi and the bandwidth of 500 MHz. The second Yagi-Uda antenna has the bandwidth extention for IEEE 802.11 b/g/n WLAN, IEEE802.16 WiMAX , and 3GPP LTE applications, there measured return loss is 16 dB in 2.3-2.7 GHz and antenna gain is 8.99 dBi at 2.5GHz. The experimental results show good agreement with the simulated data.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Uda-yagi"

1

Hill, D. A. A near-field array of Yagi-Uda antennas for electromagnetic susceptibility testing. Gaithersburg, MD: U.S. Dept. of Commerce, National Bureau of Standards, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hill, D. A. A near-field array of Yagi-Uda antennas for electromagnetic susceptibility testing. Gaithersburg, MD: U.S. Dept. of Commerce, National Bureau of Standards, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hill, D. A. A near-field array of Yagi-Uda antennas for electromagnetic susceptibility testing. Gaithersburg, MD: U.S. Dept. of Commerce, National Bureau of Standards, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hill, D. A. A near-field array of Yagi-Uda antennas for electromagnetic susceptibility testing. Gaithersburg, MD: U.S. Dept. of Commerce, National Bureau of Standards, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hill, D. A. A near-field array of Yagi-Uda antennas for electromagnetic susceptibility testing. Gaithersburg, MD: U.S. Dept. of Commerce, National Bureau of Standards, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Uda-yagi"

1

Lohn, Jason D., William F. Kraus, Derek S. Linden, and Silvano P. Colombano. "Evolutionary Optimization of Yagi-Uda Antennas." In Evolvable Systems: From Biology to Hardware, 236–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-45443-8_21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zhang, Hai, Hui Wang, and Cong Wang. "Yagi-Uda Antenna Design Using Differential Evolution." In Communications in Computer and Information Science, 427–38. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1651-7_38.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Janapala, Doondi Kumar, M. Nesasudha, and Sam Prince Tensing. "Compact Yagi–Uda-Shaped Patch Antenna for 5 GHz WLAN Applications." In Lecture Notes in Electrical Engineering, 194–200. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-4775-1_21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Yadav, Rajesh, Shailza Gotra, V. S. Pandey, and Brahmjit Singh. "Hybrid Material-Based Dual-Band Yagi-Uda Antenna with Enhanced Gain for the Ku-Band Applications." In Algorithms for Intelligent Systems, 77–85. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1295-4_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kaneda, Noriaki, and W. R. Deal. "Yagi-Uda Antenna." In Encyclopedia of RF and Microwave Engineering. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2005. http://dx.doi.org/10.1002/0471654507.eme502.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Queiroz da Costa, Karlo, Gleida Tayanna Conde de Sousa, Paulo Rodrigues Amaral, Janilson Leão Souza, Tiago Dos Santos Garcia, and Pitther Negrão dos Santos. "Wireless Optical Nanolinks with Yagi-Uda and Dipoles Plasmonic Nanoantennas." In Nanoplasmonics. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.88482.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Goudos, Sotirios K. "Application of Multi-Objective Evolutionary Algorithms to Antenna and Microwave Design Problems." In Multidisciplinary Computational Intelligence Techniques, 75–101. IGI Global, 2012. http://dx.doi.org/10.4018/978-1-4666-1830-5.ch006.

Full text
Abstract:
Antenna and microwave design problems are, in general, multi-objective. Multi-objective Evolutionary Algorithms (MOEAs) are suitable optimization techniques for solving such problems. Particle Swarm Optimization (PSO) and Differential Evolution (DE) have received increased interest from the electromagnetics community. The fact that both algorithms can efficiently handle arbitrary optimization problems has made them popular for solving antenna and microwave design problems. This chapter presents three different state-of-the-art MOEAs based on PSO and DE, namely: the Multi-objective Particle Swarm Optimization (MOPSO), the Multi-objective Particle Swarm Optimization with fitness sharing (MOPSO-fs), and the Generalized Differential Evolution (GDE3). Their applications to different design cases from antenna and microwave problems are reported. These include microwave absorber, microwave filters and Yagi-uda antenna design. The algorithms are compared and evaluated against other evolutionary multi-objective algorithms like Nondominated Sorting Genetic Algorithm-II (NSGA-II). The results show the advantages of using each algorithm.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Uda-yagi"

1

Maksymov, Ivan S., Andrey E. Miroshnichenko, and Yuri S. Kivshar. "Tunable plasmonic Yagi-Uda nanoantenna." In 2011 IEEE International Workshop "Nonlinear Photonics" (NLP). IEEE, 2011. http://dx.doi.org/10.1109/nlp.2011.6102668.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lonsky, Tomas, Pavel Hazdra, and Jan Kracek. "Fast Yagi-Uda Antenna Optimization." In 2019 8th Asia-Pacific Conference on Antennas and Propagation (APCAP). IEEE, 2019. http://dx.doi.org/10.1109/apcap47827.2019.9472161.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bonev, Boncho, Peter Petkov, and Luboslava Dimcheva. "Modified Minkowski Fractal Yagi-Uda Antenna." In 2020 30th International Conference Radioelektronika (RADIOELEKTRONIKA). IEEE, 2020. http://dx.doi.org/10.1109/radioelektronika49387.2020.9092356.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Savelev, Roman S., Olga N. Sergaeva, Denis G. Baranov, Alexander E. Krasnok, and Andrea Alu. "Ultrafast tunable hybrid Yagi-Uda nanoantenna." In 2017 Progress In Electromagnetics Research Symposium - Spring (PIERS). IEEE, 2017. http://dx.doi.org/10.1109/piers.2017.8262431.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Berdnik, S. L., V. A. Katrich, M. V. Nesterenko, Yu M. Penkin, and S. V. Pshenichnaya. "Yagi-Uda antennas with impedance wires." In 2016 IEEE International Conference on Mathematical Methods in Electromagnetic Theory (MMET). IEEE, 2016. http://dx.doi.org/10.1109/mmet.2016.7544035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chew, H. B., E. H. Lim, F. L. Lo, Y. N. Phua, K. Y. Lee, and B. K. Chung. "Linearly polarized Yagi-Uda-like transmitarray." In 2017 IEEE Asia Pacific Microwave Conference (APMC). IEEE, 2017. http://dx.doi.org/10.1109/apmc.2017.8251580.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kyungho Han, Truong Khang Nguyen, Haewook Han, and Ikmo Park. "Yagi-Uda antennas for Terahertz photomixer." In 2010 International Workshop on Antenna Technology: "Small Antennas, Innovative Structures and Materials" (iWAT). IEEE, 2010. http://dx.doi.org/10.1109/iwat.2010.5464657.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Nascimento, D. C., R. Schildberg, and J. C. da S. Lacava. "Low-cost Yagi-Uda monopole array." In 2008 IEEE Antennas and Propagation Society International Symposium and USNC/URSI National Radio Science Meeting. IEEE, 2008. http://dx.doi.org/10.1109/aps.2008.4618984.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kittiyanpunya, Chainarong, and Monai Krairiksh. "Pattern reconfigurable printed Yagi-Uda antenna." In 2014 International Symposium on Antennas & Propagation (ISAP). IEEE, 2014. http://dx.doi.org/10.1109/isanp.2014.7026662.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Dregely, Daniel, Richard Taubert, and Harald Giessen. "3D optical Yagi-Uda nanoantenna array." In Photonic Metamaterials and Plasmonics. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/pmeta_plas.2010.mwd3.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Uda-yagi"

1

Hill, D. A. A near-field array of Yagi-Uda antennas for electromagnetic susceptibility testing. Gaithersburg, MD: National Bureau of Standards, 1985. http://dx.doi.org/10.6028/nbs.tn.1082.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography