To see the other types of publications on this topic, follow the link: Ultra fast vortex dynamics.

Journal articles on the topic 'Ultra fast vortex dynamics'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Ultra fast vortex dynamics.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Acremann, Yves. "Magnetization dynamics: ultra-fast and ultra-small." Comptes Rendus Physique 9, no. 5-6 (2008): 585–94. http://dx.doi.org/10.1016/j.crhy.2007.05.017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Rückriem, R., T. Schrefl, and M. Albrecht. "Ultra-fast magnetic vortex core reversal by a local field pulse." Applied Physics Letters 104, no. 5 (2014): 052414. http://dx.doi.org/10.1063/1.4864275.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Höllinger, R., A. Killinger, and U. Krey. "Statics and fast dynamics of nanomagnets with vortex structure." Journal of Magnetism and Magnetic Materials 261, no. 1-2 (2003): 178–89. http://dx.doi.org/10.1016/s0304-8853(02)01471-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wilamowski, Z., R. Buczko, G. Karczewski, and W. Jantsch. "Ultra-Fast Spin Dynamics in Diluted Magnetic Semiconductors." Acta Physica Polonica A 90, no. 5 (1996): 969–72. http://dx.doi.org/10.12693/aphyspola.90.969.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Virgili, T., D. Coles, A. M. Adawi, et al. "Ultra-fast polariton dynamics in an organic microcavity." EPJ Web of Conferences 41 (2013): 04015. http://dx.doi.org/10.1051/epjconf/20134104015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Aalberts, D. P., F. L. J. Vos, and W. van Saarloos. "Towards understanding the ultra-fast dynamics of rhodopsin." Pure and Applied Chemistry 69, no. 10 (1997): 2099–104. http://dx.doi.org/10.1351/pac199769102099.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Salas, Letty, Derek Mendez, José Domingo Meza-Aguilar, et al. "Study of Ultra-Fast Rhodopsin Activation Dynamics with Molecular Dynamics Simulations." Biophysical Journal 116, no. 3 (2019): 205a. http://dx.doi.org/10.1016/j.bpj.2018.11.1131.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

REZNIK, G. M., та R. GRIMSHAW. "Ageostrophic dynamics of an intense localized vortex on a β-plane". Journal of Fluid Mechanics 443 (25 вересня 2001): 351–76. http://dx.doi.org/10.1017/s0022112001005468.

Full text
Abstract:
We consider the non-stationary dynamics of an intense localized vortex on a β-plane using a shallow-water model. An asymptotic theory for a vortex with piecewise-continuous potential vorticity is developed assuming the Rossby number to be small and the free surface elevation to be small but finite. Analogously to the well-known quasi-geostrophic model, the vortex translation is produced by a secondary dipole circulation (β-gyres) developed in the vortex vicinity and consisting of two parts. The first part (geostrophic β-gyres) coincides with the β-gyres in the geostrophic model, and the second
APA, Harvard, Vancouver, ISO, and other styles
9

Johansson, Fredrik O. L., Ute B. Cappel, Mattis Fondell, et al. "Tailoring ultra-fast charge transfer in MoS2." Physical Chemistry Chemical Physics 22, no. 18 (2020): 10335–42. http://dx.doi.org/10.1039/d0cp00857e.

Full text
Abstract:
Charge transfer dynamics are of importance in functional materials used in devices. This property is morphology dependent in MoS<sub>2</sub>. Compared to a single crystal it is faster in a nanoparticle sample and even faster for a MoS<sub>2</sub> graphene oxide composite.
APA, Harvard, Vancouver, ISO, and other styles
10

Ivanov, B. A., G. G. Avanesyan, A. V. Khvalkovskiy, N. E. Kulagin, C. E. Zaspel, and K. A. Zvezdin. "Non-Newtonian dynamics of the fast motion of a magnetic vortex." JETP Letters 91, no. 4 (2010): 178–82. http://dx.doi.org/10.1134/s0021364010040041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Stavrou, V. N., D. Preisser, E. Gehrig, and O. Hess. "Tunable ultra-fast carrier–light field dynamics of quantum dots." Applied Physics B 78, no. 6 (2004): 765–68. http://dx.doi.org/10.1007/s00340-004-1473-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Torga, J., M. C. Marconi, C. Garcı́a-Segundo, and M. Villagrán-Munı́z. "Ultra-fast dynamics in Coumarin 153 obtained by differential fluorescence." Optics Communications 195, no. 1-4 (2001): 215–19. http://dx.doi.org/10.1016/s0030-4018(01)01242-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Légaré, F., Kevin F. Lee, A. D. Bandrauk, D. M. Villeneuve, and P. B. Corkum. "Laser Coulomb explosion imaging for probing ultra-fast molecular dynamics." Journal of Physics B: Atomic, Molecular and Optical Physics 39, no. 13 (2006): S503—S513. http://dx.doi.org/10.1088/0953-4075/39/13/s23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Wang, Ying-hui, Lu Zou, Zhi-hui Kang, Cheng Qian, Yu-guang Ma, and Han-zhuang Zhang. "Ultra-fast excitation dynamics in low bandgap polymer solar cell." Applied Physics Letters 103, no. 7 (2013): 073902. http://dx.doi.org/10.1063/1.4818661.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Salas-Estrada, Leslie A., Thomas D. Grant, Suchithranga M. Perera, et al. "Rhodopsin's Ultra-Fast Activation Dynamics in Bilayer and Micelle Environments." Biophysical Journal 118, no. 3 (2020): 92a. http://dx.doi.org/10.1016/j.bpj.2019.11.669.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Yau, Sung Hei, Neranga Abeyasinghe, Meghan Orr, et al. "Bright two-photon emission and ultra-fast relaxation dynamics in a DNA-templated nanocluster investigated by ultra-fast spectroscopy." Nanoscale 4, no. 14 (2012): 4247. http://dx.doi.org/10.1039/c2nr30628j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Farge, Marie, and Robert Sadourny. "Wave-vortex dynamics in rotating shallow water." Journal of Fluid Mechanics 206 (September 1989): 433–62. http://dx.doi.org/10.1017/s0022112089002351.

Full text
Abstract:
We investigate how two-dimensional turbulence is modified when the incompressibility constraint is removed, by numerically integrating the full Saint-Venant (shallow-water) equations. In the case of small geopotential fluctuations considered here, we find no energy exchange between the inertio-gravitational and the potentio-vortical components of the flow. At small scales, the potentio-vortical component behaves as if the flow were incompressible, while we observe an intense direct energy cascade within the inertio-gravitational component. At large scales, the reverse potentio-vortical energy
APA, Harvard, Vancouver, ISO, and other styles
18

Nojiri, Hiroyuki, Tomohiro Taniguchi, Yoshitami Ajiro, Achim Müller, and Bernard Barbara. "Quantum dynamics of molecular magnets in ultra-fast sweeping magnetic fields." Physica B: Condensed Matter 346-347 (April 2004): 216–20. http://dx.doi.org/10.1016/j.physb.2004.01.053.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Cheung, Ngaam J., and Wookyung Yu. "De novo protein structure prediction using ultra-fast molecular dynamics simulation." PLOS ONE 13, no. 11 (2018): e0205819. http://dx.doi.org/10.1371/journal.pone.0205819.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

YATSUYANAGI, YUICHI, TADATSUGU HATORI, and TOMOKAZU KATO. "Fast mixing mechanism of two vortex–current filaments." Journal of Plasma Physics 62, no. 5 (1999): 493–511. http://dx.doi.org/10.1017/s0022377899008132.

Full text
Abstract:
We demonstrate fast mixing of vortex–current filaments by means of numerical simulations of collision (strong interaction) between two straight filaments. The two filaments mutually approach, collide, and are rapidly tangled with each other. In fact, the instantaneous Lyapunov exponent shows that the dynamics becomes chaotic. Then there appear many small regions where the two filaments overlap. We consider each overlapping region to be equivalent to the traditional resistive diffusion region. We assume that the overall ‘reconnection rate’ of the two filaments is proportional to the product of
APA, Harvard, Vancouver, ISO, and other styles
21

Lindemann, Christian, Andre Visser, and Patrizio Mariani. "Dynamics of phytoplankton blooms in turbulent vortex cells." Journal of The Royal Society Interface 14, no. 136 (2017): 20170453. http://dx.doi.org/10.1098/rsif.2017.0453.

Full text
Abstract:
Turbulence and coherent circulation structures, such as submesoscale and mesoscale eddies, convective plumes and Langmuir cells, play a critical role in shaping phytoplankton spatial distribution and population dynamics. We use a framework of advection–reaction–diffusion equations to investigate the effects of turbulent transport on the phytoplankton population growth and its spatial structure in a vertical two-dimensional vortex flow field. In particular, we focus on how turbulent flow velocities and sinking influence phytoplankton growth and biomass aggregation. Our results indicate that con
APA, Harvard, Vancouver, ISO, and other styles
22

Shaabani-Ardali, Léopold, Denis Sipp, and Lutz Lesshafft. "Vortex pairing in jets as a global Floquet instability: modal and transient dynamics." Journal of Fluid Mechanics 862 (January 16, 2019): 951–89. http://dx.doi.org/10.1017/jfm.2018.977.

Full text
Abstract:
The spontaneous pairing of rolled-up vortices in a laminar jet is investigated as a global secondary instability of a time-periodic spatially developing vortex street. The growth of subharmonic perturbations, associated with vortex pairing, is analysed both in terms of modal Floquet instability and in terms of transient growth dynamics. The article has the double objective to outline a toolset for the global analysis of time-periodic flows, and to leverage such an analysis for a fresh view on the vortex pairing phenomenon. Axisymmetric direct numerical simulations (DNS) of jets with single-fre
APA, Harvard, Vancouver, ISO, and other styles
23

Dritschel, David G. "A fast contour dynamics method for many‐vortex calculations in two‐dimensional flows." Physics of Fluids A: Fluid Dynamics 5, no. 1 (1993): 173–86. http://dx.doi.org/10.1063/1.858802.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

van Dalen, A. J. J., R. Griessen, and M. R. Koblischka. "Quantum creep and fast thermally activated vortex dynamics in a Bi2Sr2CaCu2O8 single crystal." Physica C: Superconductivity and its Applications 257, no. 3-4 (1996): 271–83. http://dx.doi.org/10.1016/0921-4534(95)00831-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Sheu, Sheh-Yi, Edward W. Schlag, and Dah-Yen Yang. "A model for ultra-fast charge transport in membrane proteins." Physical Chemistry Chemical Physics 17, no. 35 (2015): 23088–94. http://dx.doi.org/10.1039/c5cp01442e.

Full text
Abstract:
We performed molecular dynamics simulations to show that the peptide charge transport is highly efficient in lipids, particularly in certain orientations and phases, in contrast to the poor efficiency in water medium.
APA, Harvard, Vancouver, ISO, and other styles
26

Minakov, Alexander A., and Christoph Schick. "Dynamics of the temperature distribution in ultra-fast thin-film calorimeter sensors." Thermochimica Acta 603 (March 2015): 205–17. http://dx.doi.org/10.1016/j.tca.2014.05.030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Mulazzi, E. "Theoretical model for ultra fast dynamics of vibronic couplings in conjugated polymers." Synthetic Metals 119, no. 1-3 (2001): 249–50. http://dx.doi.org/10.1016/s0379-6779(00)01386-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Ispasoiu, R. G., J. Lee, F. Papadimitrakopoulos, and T. Goodson III. "Surface effects in the fluorescence ultra-fast dynamics from CdSe nano-crystals." Chemical Physics Letters 340, no. 1-2 (2001): 7–12. http://dx.doi.org/10.1016/s0009-2614(01)00360-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Quevedo, W., and I. S. Rajkovic. "Ultra-fast dynamics of silver behenate investigated by FEL femtosecond radiation (FLASH)." Acta Crystallographica Section A Foundations of Crystallography 67, a1 (2011): C258. http://dx.doi.org/10.1107/s010876731109355x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Kramer, Thorsten, Stefan Remund, Beat Jäggi, Marc Schmid, and Beat Neuenschwander. "Ablation dynamics – from absorption to heat accumulation/ultra-fast laser matter interaction." Advanced Optical Technologies 7, no. 3 (2018): 129–44. http://dx.doi.org/10.1515/aot-2018-0010.

Full text
Abstract:
Abstract Ultra-short laser radiation is used in manifold industrial applications today. Although state-of-the-art laser sources are providing an average power of 10–100 W with repetition rates of up to several megahertz, most applications do not benefit from it. On the one hand, the processing speed is limited to some hundred millimeters per second by the dynamics of mechanical axes or galvanometric scanners. On the other hand, high repetition rates require consideration of new physical effects such as heat accumulation and shielding that might reduce the process efficiency. For ablation proce
APA, Harvard, Vancouver, ISO, and other styles
31

Jiang, Y., R. Pasternak, Z. Marka, et al. "Spin/carrier dynamics at semiconductor interfaces using intense, tunable, ultra-fast lasers." physica status solidi (b) 240, no. 3 (2003): 490–99. http://dx.doi.org/10.1002/pssb.200303861.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Deák, A., D. Hinzke, L. Szunyogh, and U. Nowak. "Role of temperature-dependent spin model parameters in ultra-fast magnetization dynamics." Journal of Physics: Condensed Matter 29, no. 31 (2017): 314003. http://dx.doi.org/10.1088/1361-648x/aa76fc.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Jardine, A. P., H. Hedgeland, D. Ward, et al. "Probing molecule–surface interactions through ultra-fast adsorbate dynamics: propane/Pt(111)." New Journal of Physics 10, no. 12 (2008): 125026. http://dx.doi.org/10.1088/1367-2630/10/12/125026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Chowdhury, I. H., A. Q. Wu, X. Xu, and A. M. Weiner. "Ultra-fast laser absorption and ablation dynamics in wide-band-gap dielectrics." Applied Physics A 81, no. 8 (2005): 1627–32. http://dx.doi.org/10.1007/s00339-005-3326-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Bruni, Fabio, Daniele Colognesi, Alessandra Filabozzi, Giovanni Romanelli, and Antonino Pietropaolo. "Exploring ultra-fast proton dynamics in water under a static electric field." EPL (Europhysics Letters) 133, no. 5 (2021): 57002. http://dx.doi.org/10.1209/0295-5075/133/57002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Zhu, Wenguo, Marco Morandini, and Shu Li. "Viscous Vortex Particle Method Coupling with Computational Structural Dynamics for Rotor Comprehensive Analysis." Applied Sciences 11, no. 7 (2021): 3149. http://dx.doi.org/10.3390/app11073149.

Full text
Abstract:
A panel/vortex particle hybrid method is coupled with a computational structure dynamics code to predict helicopter rotor loads. The rotor blade surfaces and near wakes are modeled by the panel method, while the far wake is modeled by resorting to the vortex particles method. A fast summation method is introduced to accelerate the evolution of particle–particle-induced velocity and its derivative as well as panel–particle interactions. The developed vortex particle method code is coupled with the multibody code MBDyn to predict the rotor airloads. Numerical validations are carried, out and the
APA, Harvard, Vancouver, ISO, and other styles
37

Kim, W. J., and N. C. Perkins. "Coupled Slow and Fast Dynamics of Flow Excited Elastic Cable Systems." Journal of Vibration and Acoustics 125, no. 2 (2003): 155–61. http://dx.doi.org/10.1115/1.1547462.

Full text
Abstract:
Analytical studies of vortex-induced vibration (VIV) of cables during lock-in have considered small amplitude and relatively fast dynamic responses about an equilibrium configuration. However, this equilibrium may change as a result of the significantly increased mean drag created during lock-in. In response to increased drag, the cable may slowly drift downstream causing appreciable changes in cable geometry and tension. The resonance conditions for lock-in may be preserved during this slow drift or they may be disrupted. A nonlinear cable/fluid model is discussed that captures both fast (sma
APA, Harvard, Vancouver, ISO, and other styles
38

Uemoto, Mitsuharu, Kazuhiro Yabana, Shunsuke A. Sato, Yuta Hirokawa, and Taisuke Boku. "A first-principles simulation method for ultra-fast nano-optics." EPJ Web of Conferences 205 (2019): 04023. http://dx.doi.org/10.1051/epjconf/201920504023.

Full text
Abstract:
We develop a computational approach for ultrafast nano-optics based on first-principles time-dependent density functional theory. Solving Maxwell equations for light propagation and time-dependent Kohn-Sham equation for electron dynamics simultaneously, intense and ultrashort laser pulse interaction with a dielectric nano-structure is described taking full account of nonlinear effects. As an illustrative example, irradiation of a pulsed light on silicon nano-sphere system is presented.
APA, Harvard, Vancouver, ISO, and other styles
39

Sánchez-Esquivel, Héctor, Karen Y. Raygoza-Sanchez, Raúl Rangel-Rojo, et al. "Ultra-fast dynamics in the nonlinear optical response of silver nanoprism ordered arrays." Nanoscale 10, no. 11 (2018): 5182–90. http://dx.doi.org/10.1039/c7nr08948a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Lorenc, Maciej, Nicolas Moisan, Marina Servol, et al. "Multi-phonon dynamics of the ultra-fast photoinduced transition of (EDO-TTF)2SbF6." Journal of Physics: Conference Series 148 (February 1, 2009): 012001. http://dx.doi.org/10.1088/1742-6596/148/1/012001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Yousefi Sarraf, Saeed, Sobhit Singh, Andrés Camilo Garcia-Castro, et al. "Surface Recombination in Ultra-Fast Carrier Dynamics of Perovskite Oxide La0.7Sr0.3MnO3 Thin Films." ACS Nano 13, no. 3 (2019): 3457–65. http://dx.doi.org/10.1021/acsnano.8b09595.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Bennemann, K. H. "Ultra-fast dynamics in solids: non-equilibrium behaviour of magnetism and atomic structure." Annalen der Physik 18, no. 7-8 (2009): 480–560. http://dx.doi.org/10.1002/andp.200810354.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Kemp, A. J., Y. Sentoku, T. E. Cowan, V. Sotnikov, and S. C. Wilks. "Modeling of ultra-fast ionization dynamics in intense short pulse laser-solid interaction." Journal de Physique IV (Proceedings) 133 (June 2006): 967–71. http://dx.doi.org/10.1051/jp4:2006133194.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Comotti, Angiolina, Fabio Castiglioni, Silvia Bracco, Alessandro Pedrini, and Jacopo Perego. "Porous crystalline architectures: ultra-fast molecular rotors and dynamics control by gas stimuli." Acta Crystallographica Section A Foundations and Advances 74, a2 (2018): e9-e9. http://dx.doi.org/10.1107/s2053273318095104.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Lisowski, M., P. A. Loukakos, U. Bovensiepen, J. St�hler, C. Gahl, and M. Wolf. "Ultra-fast dynamics of electron thermalization, cooling and transport effects in Ru(001)." Applied Physics A: Materials Science & Processing 78, no. 2 (2004): 165–76. http://dx.doi.org/10.1007/s00339-003-2301-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Damian, Iulia Rodica, Nicoleta Octavia Tănase, Ștefan Mugur Simionescu, and Mona Mihăilescu. "Vortex Rings - Experiments and Numerical Simulations." Mathematical Modelling in Civil Engineering 10, no. 4 (2014): 1–8. http://dx.doi.org/10.2478/mmce-2014-0017.

Full text
Abstract:
Abstract The present paper was concerned with the experimental study of the time evolution of a single laminar vortex ring generated at the interface between water and isopropyl alcohol. The experiment was performed by the submerged injection of isopropyl alcohol in a water tank of 100×100×150 mm. A constant rate of Q0 = 2 ml/min was maintained using a PHD Ultra 4400 Syringe Pump with a needle having the inner diameter D0 = 0.4 mm. The dynamics of the vortex formation was recorded with a Photron Fastcam SA1 camera at 1000 fps equipped with an Edmund Optics objective VZM1000i. The numerical sim
APA, Harvard, Vancouver, ISO, and other styles
47

COSTA, B. V., J. C. S. ROCHA, P. Z. COURA, S. A. LEONEL, D. TOSCANO, and R. A. DIAS. "MAGNETIC VORTEX BEHAVIOR IN NANO-STRUCTURES." International Journal of Modern Physics C 23, no. 08 (2012): 1240003. http://dx.doi.org/10.1142/s0129183112400037.

Full text
Abstract:
The existence of a vortex in the ground state of magnetic nano-disks has open a wide range of possibilities for constructing new ultra-compact devices. In this work we study the dynamical behavior of a vortex in a magnetic nano-particle. First, we introduce magnetic impurities in the system. It is observed that depending on the strength of the interaction the impurities can behave both as a pinning (attractive) or scattering (repulsive). By using the known values of the parameters for Permalloy-79 we have calculated the interaction energy of the vortex core with a single defect. We estimated t
APA, Harvard, Vancouver, ISO, and other styles
48

Chattoraj, M., B. A. King, G. U. Bublitz, and S. G. Boxer. "Ultra-fast excited state dynamics in green fluorescent protein: multiple states and proton transfer." Proceedings of the National Academy of Sciences 93, no. 16 (1996): 8362–67. http://dx.doi.org/10.1073/pnas.93.16.8362.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Bouchard, Matthew B., Brenda R. Chen, Sean A. Burgess, and Elizabeth M. C. Hillman. "Ultra-fast multispectral optical imaging of cortical oxygenation, blood flow, and intracellular calcium dynamics." Optics Express 17, no. 18 (2009): 15670. http://dx.doi.org/10.1364/oe.17.015670.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Chen, Xucai, Jianjun Wang, Michel Versluis, Nico de Jong, and Flordeliza S. Villanueva. "Ultra-fast bright field and fluorescence imaging of the dynamics of micrometer-sized objects." Review of Scientific Instruments 84, no. 6 (2013): 063701. http://dx.doi.org/10.1063/1.4809168.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!