Journal articles on the topic 'Ultra-High Birefringence'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Ultra-High Birefringence.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Rumpa, Ramin Chapa. "Ultra-High Birefringence Property and Low Confinement Loss of Circular Photonic Crystal Fiber for Telecommunication Application." International Journal for Research in Applied Science and Engineering Technology 12, no. 3 (2024): 3366–81. http://dx.doi.org/10.22214/ijraset.2024.58219.
Full textHuo, Zhuang, Exian Liu, and Jianjun Liu. "Hollow-core photonic quasicrystal fiber with high birefringence and ultra-low nonlinearity." Chinese Optics Letters 18, no. 3 (2020): 030603. http://dx.doi.org/10.3788/col202018.030603.
Full textLi, Haoyu, Xuyou Li, Jie Wang, and Dan Xu. "Ultra-high birefringence elliptical cladding polarization-maintaining fiber with superimposed geometric birefringence." Optik 247 (December 2021): 167854. http://dx.doi.org/10.1016/j.ijleo.2021.167854.
Full textBiswas, Shovasis Kumar. "DESIGN OF HEXAGONAL PHOTONIC CRYSTAL FIBER WITH ULTRA-HIGH BIREFRINGENT AND LARGE NEGATIVE DISPERSION COEFFICIENT FOR THE APPLICATION OF BROADBAND FIBER." International Journal of Engineering Science Technologies 2, no. 1 (2019): 9–16. http://dx.doi.org/10.29121/ijoest.v2.i1.2017.02.
Full textS., M. Rakibul Islam, Monirul Islam Md., Nafiz Ahbabur Rahman Md., Mahmudul Alam Mia Mohammad, Shahrier Hakim Md, and Kumar Biswas Shovasis. "DESIGN OF HEXAGONAL PHOTONIC CRYSTAL FIBER WITH ULTRA-HIGH BIREFRINGENT AND LARGE NEGATIVE DISPERSION COEFFICIENT FOR THE APPLICATION OF BROADBAND FIBER." International Journal of Engineering Science Technologies 2, no. 1 (2017): 9–16. https://doi.org/10.5281/zenodo.1036615.
Full textMohammadd, N., L. F. Abdulrazak, S. R. Tahhan, et al. "GaP-filled PCF with ultra-high birefringence and nonlinearity for distinctive optical applications." Journal of Ovonic Research 18, no. 2 (2022): 129–40. http://dx.doi.org/10.15251/jor.2022.182.129.
Full textStępniewski, Grzegorz, Ireneusz Kujawa, Mariusz Klimczak, et al. "Artificially anisotropic core fiber with ultra-flat high birefringence profile." Optical Materials Express 6, no. 5 (2016): 1464. http://dx.doi.org/10.1364/ome.6.001464.
Full textTokuda, Tomoki, Ryo Tsuruda, Takuya Hara, et al. "Structure and Properties of Poly(ethylene terephthalate) Fiber Webs Prepared via Laser-Electrospinning and Subsequent Annealing Processes." Materials 13, no. 24 (2020): 5783. http://dx.doi.org/10.3390/ma13245783.
Full textLiu, Li-Ying, Hong-Chang Huang, Chu-Wen Chen, Fu-Li Hsiao, Yu-Chieh Cheng, and Chii-Chang Chen. "Design of Reflective Polarization Rotator in Silicon Waveguide." Nanomaterials 12, no. 20 (2022): 3694. http://dx.doi.org/10.3390/nano12203694.
Full textSolmeyer, Neal, Kunyan Zhu, and David S. Weiss. "Note: Mounting ultra-high vacuum windows with low stress-induced birefringence." Review of Scientific Instruments 82, no. 6 (2011): 066105. http://dx.doi.org/10.1063/1.3606437.
Full textBuican, Tudor N. "Birefringence interferometers for ultra-high-speed FT spectrometry and hyperspectral imaging." Vibrational Spectroscopy 42, no. 1 (2006): 51–58. http://dx.doi.org/10.1016/j.vibspec.2006.04.011.
Full textLIAO Wen-ying, 廖文英, 范万德 FAN Wan-de, 陈君 CHEN Jun, 唐文海 TANG Wen-hai, 隋佳男 SUI Jia-nan, and 曹学伟 CAO Xue-wei. "Ultra-high Birefringence Photonic Crystal Fiber with Elliptical 80PbO·20Ga2O3Doped Defected Core." ACTA PHOTONICA SINICA 44, no. 8 (2015): 806001. http://dx.doi.org/10.3788/gzxb20154408.0806001.
Full textHashimoto, Yoshinori, Shotaro Nishitsuji, Takashi Kurose, and Hiroshi Ito. "Structural Formation of UHMWPE Film Tracked by Real-Time Retardation Measurements during Uniaxial/Biaxial Stretching." Materials 11, no. 11 (2018): 2292. http://dx.doi.org/10.3390/ma11112292.
Full textAmin, Ruhul, Lway Faisal Abdulrazak, Shaymaa R. Tahhan, et al. "Tellurite glass based optical fiber for the investigation of supercontinuum generation and nonlinear properties." Physica Scripta 97, no. 3 (2022): 030007. http://dx.doi.org/10.1088/1402-4896/ac5359.
Full textIslam, Md Ibadul, Kawsar Ahmed, Shuvo Sen, et al. "Proposed Square Lattice Photonic Crystal Fiber for Extremely High Nonlinearity, Birefringence and Ultra-High Negative Dispersion Compensation." Journal of Optical Communications 40, no. 4 (2019): 401–10. http://dx.doi.org/10.1515/joc-2017-0095.
Full textSidhik, Siraj, Jijo V. Ittiarah, Mrinmay Pal, and Tarun Kumar Gangopadhyay. "All-circular hole microstructured fiber with ultra-high birefringence and reduced confinement loss." Measurement 147 (December 2019): 106895. http://dx.doi.org/10.1016/j.measurement.2019.106895.
Full textWang, Doudou, and Lili Wang. "Design of Topas microstructured fiber with ultra-flattened chromatic dispersion and high birefringence." Optics Communications 284, no. 24 (2011): 5568–71. http://dx.doi.org/10.1016/j.optcom.2011.08.040.
Full textXu, Qiang, Wanli Luo, Kang Li, Nigel Copner, and Shebao Lin. "Design of Polarization Splitter via Liquid and Ti Infiltrated Photonic Crystal Fiber." Crystals 9, no. 2 (2019): 103. http://dx.doi.org/10.3390/cryst9020103.
Full textHou, Qichao, Jiaping Sun, Yang Li, et al. "P‐2.30: Design and Fabrication of an Optical Path Folding Pancake Virtual Reality Head‐mounted Display." SID Symposium Digest of Technical Papers 54, S1 (2023): 598–605. http://dx.doi.org/10.1002/sdtp.16364.
Full textTurolla, Roberto, Roberto Taverna, Silvia Zane, and Jeremy Heyl. "IXPE Observations of Magnetar Sources." Galaxies 12, no. 5 (2024): 53. http://dx.doi.org/10.3390/galaxies12050053.
Full textDuan, Wei, Peng Chen, Shi-Jun Ge, Xiao Liang, and Wei Hu. "A Fast-Response and Helicity-Dependent Lens Enabled by Micro-Patterned Dual-Frequency Liquid Crystals." Crystals 9, no. 2 (2019): 111. http://dx.doi.org/10.3390/cryst9020111.
Full textYan, Lili, Qichao Wang, Bin Yin, et al. "Research on Simultaneous Measurement of Magnetic Field and Temperature Based on Petaloid Photonic Crystal Fiber Sensor." Sensors 23, no. 18 (2023): 7940. http://dx.doi.org/10.3390/s23187940.
Full textMAVROMATOS, NICK E. "STRING QUANTUM GRAVITY, LORENTZ-INVARIANCE VIOLATION AND GAMMA RAY ASTRONOMY." International Journal of Modern Physics A 25, no. 30 (2010): 5409–85. http://dx.doi.org/10.1142/s0217751x10050792.
Full textHasan Sohag, Md S., and K. H. Kabir. "Tellurite-filled hexa-circular-shaped PCF with highly nonlinearity, birefringent and near-zero dispersion profile for optical communications." Journal of Ovonic Research 18, no. 4 (2022): 527. http://dx.doi.org/10.15251/jor.2022.184.527.
Full textAmin, Ruhul, Md Enam Khan, Lway Faisal Abdulrazak, Fahad Ahmed Al-Zahrani, and Kawsar Ahmed. "Design of novel models for optical communication with ultra-high non-linearity, birefringence and low loss profile." Physica Scripta 96, no. 12 (2021): 125107. http://dx.doi.org/10.1088/1402-4896/ac227c.
Full textVakarin, Vladyslav, Joan Ramírez, Jacopo Frigerio, et al. "Wideband Ge-Rich SiGe Polarization-Insensitive Waveguides for Mid-Infrared Free-Space Communications." Applied Sciences 8, no. 7 (2018): 1154. http://dx.doi.org/10.3390/app8071154.
Full textZhang, Yani, Lu Xue, Dun Qiao, and Zhe Guang. "Porous photonic-crystal fiber with near-zero ultra-flattened dispersion and high birefringence for polarization-maintaining terahertz transmission." Optik 207 (April 2020): 163817. http://dx.doi.org/10.1016/j.ijleo.2019.163817.
Full textAhmed, Kawsar, Bikash Kumar Paul, Md Shadidul Islam, et al. "Ultra high birefringence and lower beat length for square shape PCF: Analysis effect on rotation angle and eccentricity." Alexandria Engineering Journal 57, no. 4 (2018): 3683–91. http://dx.doi.org/10.1016/j.aej.2018.01.018.
Full textXie, Shuyang, Jingmin Zhou, Chen Nie, et al. "A nonlinear ZBLAN-based photonic crystal fiber with ultra-high birefringence and flattened dispersion in short-wavelength infrared region." Photonics and Nanostructures - Fundamentals and Applications 52 (December 2022): 101068. http://dx.doi.org/10.1016/j.photonics.2022.101068.
Full textLi, Feng, Menghui He, Xuedian Zhang, Min Chang, and Zhizheng Wu. "Ultra-high birefringence and nonlinearity photonic crystal fiber with a nanoscale core shaped by an air slot and silicon strips." Optical Fiber Technology 54 (January 2020): 102082. http://dx.doi.org/10.1016/j.yofte.2019.102082.
Full textBulbul, Abdullah Al-Mamun, Farjana Imam, Md Abdul Awal, and M. A. Parvez Mahmud. "A Novel Ultra-Low Loss Rectangle-Based Porous-Core PCF for Efficient THz Waveguidance: Design and Numerical Analysis." Sensors 20, no. 22 (2020): 6500. http://dx.doi.org/10.3390/s20226500.
Full textHu, Jinsheng, Jixi Lu, Zihua Liang, et al. "Integrated Polarization-Splitting Grating Coupler for Chip-Scale Atomic Magnetometer." Biosensors 12, no. 7 (2022): 529. http://dx.doi.org/10.3390/bios12070529.
Full textWang, Xue-Zhou, and Qi Wang. "Theoretical Analysis of a Novel Microstructure Fiber Sensor Based on Lossy Mode Resonance." Electronics 8, no. 5 (2019): 484. http://dx.doi.org/10.3390/electronics8050484.
Full textIslam, Mohammad Saiful, Anwar Sadath, Md Rakibul Islam, and Mohammad Faisal. "Comparative Analysis of Highly Sensitive PCF for Chemical Sensing in THz Regime." Photonics Letters of Poland 12, no. 4 (2020): 94. http://dx.doi.org/10.4302/plp.v12i4.999.
Full textAl Abed, Amr, Yuan Wei, Reem M. Almasri, et al. "Liquid crystal electro-optical transducers for electrophysiology sensing applications." Journal of Neural Engineering 19, no. 5 (2022): 056031. http://dx.doi.org/10.1088/1741-2552/ac8ed6.
Full textHussein, Rasha A., Mohamed Farhat O. Hameed, Jala El-Azab, Wessameldin S. Abdelaziz, and S. S. A. Obayya. "Analysis of ultra-high birefringent fully-anisotropic photonic crystal fiber." Optical and Quantum Electronics 47, no. 8 (2015): 2993–3007. http://dx.doi.org/10.1007/s11082-015-0186-2.
Full textAlishacelestin, X., A. Sivanantha Raja, K. Esakki Muthu, and S. Selvendran. "A Novel Ultra-high Birefringent Photonic Crystal Fiber for Nonlinear Applications." Brazilian Journal of Physics 51, no. 3 (2021): 605–17. http://dx.doi.org/10.1007/s13538-020-00853-9.
Full textRana, Sohel, Syed Alwee Aljunid, Raonaqul Islam, Nasim Ahmed, and Sharafat Ali. "Ultra-high birefringent and dispersion-flattened low loss single-mode terahertz wave guiding." IET Communications 10, no. 13 (2016): 1579–83. http://dx.doi.org/10.1049/iet-com.2015.0629.
Full textMondal, Kajal, and Partha Roy Chaudhuri. "Designing Ultra-High-Birefringent Photonic Crystal Fibers with Circular Air Holes in the Cladding." Fiber and Integrated Optics 32, no. 1 (2013): 54–69. http://dx.doi.org/10.1080/01468030.2012.748107.
Full textFedotov, Andrey, Teppo Noronen, Regina Gumenyuk, et al. "Ultra-large core birefringent Yb-doped tapered double clad fiber for high power amplifiers." Optics Express 26, no. 6 (2018): 6581. http://dx.doi.org/10.1364/oe.26.006581.
Full textSadath, Md Anwar, Mohammad Saiful Islam, Md Sanwar Hossain, and Mohammad Faisal. "Ultra-high birefringent low loss suspended elliptical core photonic crystal fiber for terahertz applications." Applied Optics 59, no. 30 (2020): 9385. http://dx.doi.org/10.1364/ao.402530.
Full textLi, Cheng, Zhuo Li, Jin-gang Liu, Xiao-juan Zhao, Hai-xia Yang, and Shi-yong Yang. "Synthesis and characterization of organo-soluble thioether-bridged polyphenylquinoxalines with ultra-high refractive indices and low birefringences." Polymer 51, no. 17 (2010): 3851–58. http://dx.doi.org/10.1016/j.polymer.2010.06.035.
Full textIslam, Mohammad Rakibul, Md Abu Jamil, Md Siraz-Uz Zaman, et al. "Design and analysis of birefringent SPR based PCF biosensor with ultra-high sensitivity and low loss." Optik 221 (November 2020): 165311. http://dx.doi.org/10.1016/j.ijleo.2020.165311.
Full textZhang, S., H. Jiang, H. Gu, X. Chen, and S. Liu. "REMOTE ATTITUDE SENSING BASED ON HIGH-SPEED MUELLER MATRIX ELLIPSOMETRY." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLIII-B1-2020 (August 6, 2020): 607–14. http://dx.doi.org/10.5194/isprs-archives-xliii-b1-2020-607-2020.
Full textYang, Xiu Feng, Lei Peng, Zheng Rong Tong, Ye Cao, and Feng Juan Dong. "A Stable Narrow Line-Width Dual-Wavelength Fiber Laser Based on Nonlinear Polarization Rotation with a High Finesse Ring Filter." Applied Mechanics and Materials 130-134 (October 2011): 1876–79. http://dx.doi.org/10.4028/www.scientific.net/amm.130-134.1876.
Full textUpadhyay, Anurag, Shivam Singh, Divya Sharma, and Sofyan A. Taya. "An ultra-high birefringent and nonlinear decahedron photonic crystal fiber employing molybdenum disulphide (MoS2): A numerical analysis." Materials Science and Engineering: B 270 (August 2021): 115236. http://dx.doi.org/10.1016/j.mseb.2021.115236.
Full textHossain, Shakhawath, Salimullah Shah, and Mohammad Faisal. "Ultra-high birefringent, highly nonlinear Ge20Sb15Se65 chalcogenide glass photonic crystal fiber with zero dispersion wavelength for mid-infrared applications." Optik 225 (January 2021): 165753. http://dx.doi.org/10.1016/j.ijleo.2020.165753.
Full textWan, Hengyi, Kai Ou, Hui Yang, and Zeyong Wei. "Multifunctional Meta-Devices for Full-Polarization Rotation and Focusing in the Near-Infrared." Micromachines 15, no. 6 (2024): 710. http://dx.doi.org/10.3390/mi15060710.
Full textJayasuriya, D., C. R. Petersen, D. Furniss, et al. "Mid-IR supercontinuum generation in birefringent, low loss, ultra-high numerical aperture Ge-As-Se-Te chalcogenide step-index fiber." Optical Materials Express 9, no. 6 (2019): 2617. http://dx.doi.org/10.1364/ome.9.002617.
Full textHalder, Amit, Wahiduzzaman Emon, Md Shamim Anower, Md Riyad Tanshen, Md Forkan, and Md Sharif Uddin Shajib. "Design and Numerical Analysis of Ultra-High Negative Dispersion, Highly Birefringent Nonlinear Single Mode Core-Tune Photonic Crystal Fiber (CT-PCF) over Communication Bands." Optics and Photonics Journal 13, no. 10 (2023): 227–42. http://dx.doi.org/10.4236/opj.2023.1310021.
Full text