Journal articles on the topic 'Ultra-Soft Hydrogels'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Ultra-Soft Hydrogels.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Xie, Beixin, Peidong Xu, Liqun Tang, et al. "Dynamic Mechanical Properties of Polyvinyl Alcohol Hydrogels Measured by Double-Striker Electromagnetic Driving SHPB System." International Journal of Applied Mechanics 11, no. 02 (2019): 1950018. http://dx.doi.org/10.1142/s1758825119500182.
Full textXu, Zhenyu, Yongsen Zhou, Baoping Zhang, Chao Zhang, Jianfeng Wang, and Zuankai Wang. "Recent Progress on Plant-Inspired Soft Robotics with Hydrogel Building Blocks: Fabrication, Actuation and Application." Micromachines 12, no. 6 (2021): 608. http://dx.doi.org/10.3390/mi12060608.
Full textStrachota, Beata, Adam Strachota, Leana Vratović, et al. "Exceptionally Fast Temperature-Responsive, Mechanically Strong and Extensible Monolithic Non-Porous Hydrogels: Poly(N-isopropylacrylamide) Intercalated with Hydroxypropyl Methylcellulose." Gels 9, no. 12 (2023): 926. http://dx.doi.org/10.3390/gels9120926.
Full textJuliar, Benjamin A., Jeffrey A. Beamish, Megan E. Busch, David S. Cleveland, Likitha Nimmagadda, and Andrew J. Putnam. "Cell-mediated matrix stiffening accompanies capillary morphogenesis in ultra-soft amorphous hydrogels." Biomaterials 230 (February 2020): 119634. http://dx.doi.org/10.1016/j.biomaterials.2019.119634.
Full textZhang, Aoxiang, Huiying Zhou, Yanhui Guo, and Yu Fu. "Marangoni Flow-Driven Self-Assembly of Biomimetic Jellyfish-like Hydrogels for Spatially Controlled Enzyme Catalysis." Surfaces 8, no. 2 (2025): 28. https://doi.org/10.3390/surfaces8020028.
Full textHuang, Shan, Weibin Wang, Chao Yang, et al. "Highly Stretchable Conductive Hydrogel-Based Flexible Triboelectric Nanogenerators for Ultrasensitive Tactile Sensing." Polymers 17, no. 3 (2025): 342. https://doi.org/10.3390/polym17030342.
Full textSanjuan-Alberte, Paola, Jayasheelan Vaithilingam, Jonathan C. Moore, et al. "Development of Conductive Gelatine-Methacrylate Inks for Two-Photon Polymerisation." Polymers 13, no. 7 (2021): 1038. http://dx.doi.org/10.3390/polym13071038.
Full textGori, M., S. M. Giannitelli, G. Vadalà, et al. "A POLY(SBMA) ZWITTERIONIC HYDROGEL COATING OF POLYIMIDE SURFACES TO REDUCE THE FOREIGN BODY REACTION TO INVASIVE NEURAL INTERFACES." Orthopaedic Proceedings 105-B, SUPP_7 (2023): 20. http://dx.doi.org/10.1302/1358-992x.2023.7.020.
Full textWu, Meng, Jingsi Chen, Yuhao Ma, et al. "Ultra elastic, stretchable, self-healing conductive hydrogels with tunable optical properties for highly sensitive soft electronic sensors." Journal of Materials Chemistry A 8, no. 46 (2020): 24718–33. http://dx.doi.org/10.1039/d0ta09735g.
Full textLiu, Yunsong, and Xiong Zheng. "Bio-Inspired Double-Layered Hydrogel Robot with Fast Response via Thermo-Responsive Effect." Materials 17, no. 15 (2024): 3679. http://dx.doi.org/10.3390/ma17153679.
Full textMusgrave, Christopher, Lorcan O’Toole, Tianyu Mao, Qing Li, Min Lai, and Fengzhou Fang. "Manufacturing of Soft Contact Lenses Using Reusable and Reliable Cyclic Olefin Copolymer Moulds." Polymers 14, no. 21 (2022): 4681. http://dx.doi.org/10.3390/polym14214681.
Full textFrancis, Lydia, Karin V. Greco, Aldo R. Boccaccini, et al. "Development of a novel hybrid bioactive hydrogel for future clinical applications." Journal of Biomaterials Applications 33, no. 3 (2018): 447–65. http://dx.doi.org/10.1177/0885328218794163.
Full textRosa, Elisabetta, Enrico Gallo, Teresa Sibillano, et al. "Incorporation of PEG Diacrylates (PEGDA) Generates Hybrid Fmoc-FF Hydrogel Matrices." Gels 8, no. 12 (2022): 831. http://dx.doi.org/10.3390/gels8120831.
Full textHaraguchi, Kazutoshi. "Extraordinary Properties and New Functions of Nanocomposite Gels and Soft Nanocomposites with Unique Organic/Inorganic Network Structures." Advanced Materials Research 680 (April 2013): 65–69. http://dx.doi.org/10.4028/www.scientific.net/amr.680.65.
Full textLi, Shengnan, Hailong Yang, Nannan Zhu, et al. "Biotissue‐Inspired Anisotropic Carbon Fiber Composite Hydrogels for Logic Gates, Integrated Soft Actuators, and Sensors with Ultra‐High Sensitivity (Adv. Funct. Mater. 11/2023)." Advanced Functional Materials 33, no. 11 (2023): 2370065. http://dx.doi.org/10.1002/adfm.202370065.
Full textNishizawa, Matsuhiko. "(Keynote) Soft Wet Iontronic Devices with Affinity to Biosystems." ECS Meeting Abstracts MA2024-02, no. 54 (2024): 3710. https://doi.org/10.1149/ma2024-02543710mtgabs.
Full textMolchanov, V. S., M. A. Efremova, T. Yu Kiseleva, and O. E. Philippova. "Injectable ultra-soft hydrogel with natural nanoclay." Nanosystems: Physics, Chemistry, Mathematics 10, no. 1 (2019): 76–85. http://dx.doi.org/10.17586/2220-8054-2019-10-1-76-85.
Full textGuo, Meiling, Yuanpeng Wu, Shishan Xue, et al. "A highly stretchable, ultra-tough, remarkably tolerant, and robust self-healing glycerol-hydrogel for a dual-responsive soft actuator." Journal of Materials Chemistry A 7, no. 45 (2019): 25969–77. http://dx.doi.org/10.1039/c9ta10183g.
Full textWang, Yueyang, Qiao Wang, Xiaosai Hu, Dan He, Juan Zhao, and Guoxing Sun. "A multi-functional zwitterionic hydrogel with unique micro-structure, high elasticity and low modulus." RSC Advances 12, no. 43 (2022): 27907–11. http://dx.doi.org/10.1039/d2ra04915e.
Full textHu, Xuxu, Yu Zhao, Shuai Cheng, Jinming Zhen, Zhengfeng Jia, and Ran Zhang. "Biomimetic Layered Hydrogel Coating for Enhanced Lubrication and Load-Bearing Capacity." Coatings 14, no. 9 (2024): 1229. http://dx.doi.org/10.3390/coatings14091229.
Full textLiu, Zhimo, Binfan Zhao, Liucheng Zhang, et al. "Modulated integrin signaling receptors of stem cells via ultra-soft hydrogel for promoting angiogenesis." Composites Part B: Engineering 234 (April 2022): 109747. http://dx.doi.org/10.1016/j.compositesb.2022.109747.
Full textLepo, Kelly, and Marten van Kerkwijk. "Ultra-soft Sources as Type Ia Supernovae Progenitors." Proceedings of the International Astronomical Union 7, S281 (2011): 136–39. http://dx.doi.org/10.1017/s1743921312014871.
Full textGori, Manuele, Sara Maria Giannitelli, Gianluca Vadalà, et al. "A Soft Zwitterionic Hydrogel as Potential Coating on a Polyimide Surface to Reduce Foreign Body Reaction to Intraneural Electrodes." Molecules 27, no. 10 (2022): 3126. http://dx.doi.org/10.3390/molecules27103126.
Full textRosenstock, D., T. Gerber, C. Castro Müller, S. Stille, and J. Banik. "Process Stability and Application of 1900 MPa Grade Press Hardening Steel with reduced Hydrogen Susceptibility." IOP Conference Series: Materials Science and Engineering 1238, no. 1 (2022): 012013. http://dx.doi.org/10.1088/1757-899x/1238/1/012013.
Full textYurakov, Yury A., Yaroslav A. Peshkov, Evelina P. Domashevskaya, et al. "A study of multilayer nanostructures [(Co45Fe45Zr10)35(Al2O3)65/a-Si:H]100 and [(Co45Fe45Zr10)35(Al2O3)65/a-Si]120 by means of XRD, XRR, IR spectroscopy, and USXES." European Physical Journal Applied Physics 87, no. 2 (2019): 21301. http://dx.doi.org/10.1051/epjap/2019190131.
Full textFeng, Jiaquan. "Multi-Layered Crack-Like Flexible Strain Sensor with Gradient Concentration Structure Based on Mxene-Ta-Pva." Theoretical and Natural Science 122, no. 1 (2025): 19–25. https://doi.org/10.54254/2753-8818/2025.gl25315.
Full textZhigerbayeva, Guldana, Nurxat Nuraje, Amanzhol Turlybekuly, and Salimgerey Adilov. "Pure 3D Conducting Polymer Network for an Ultra-Sensitive and Flexible Hydrogen Gas Sensor at Room Temperature." ECS Meeting Abstracts MA2024-01, no. 50 (2024): 2707. http://dx.doi.org/10.1149/ma2024-01502707mtgabs.
Full textYamada, Hajime, Shiho Takahashi, Kana Yamashita, Hisashi Miyafuji, Hiroyuki Ohno, and Tatsuhiko Yamada. "High-throughput analysis of softwood lignin using tetra-n-butylphosphonium hydroxide (TBPH)." BioResources 12, no. 4 (2017): 9396–406. http://dx.doi.org/10.15376/biores.12.4.9396-9406.
Full textRao, C. N. R., Ved Varun Agrawal, Kanishka Biswas, et al. "Soft chemical approaches to inorganic nanostructures." Pure and Applied Chemistry 78, no. 9 (2006): 1619–50. http://dx.doi.org/10.1351/pac200678091619.
Full textLomonaco, Quentin, Karine Abadie, Jean-Michel Hartmann, et al. "Soft Surface Activated Bonding of Hydrophobic Silicon Substrates." ECS Meeting Abstracts MA2023-02, no. 33 (2023): 1601. http://dx.doi.org/10.1149/ma2023-02331601mtgabs.
Full textSavić Gajić, Ivana M. Savić, Ivan M. Savić, Aleksandra M. Ivanovska, Jovana D. Vunduk, Ivana S. Mihalj, and Zorica B. Svirčev. "Improvement of Alginate Extraction from Brown Seaweed (Laminaria digitata L.) and Valorization of Its Remaining Ethanolic Fraction." Marine Drugs 22, no. 6 (2024): 280. http://dx.doi.org/10.3390/md22060280.
Full textWang, Zhuang, Xiaoyun Xu, Renjie Tan, Shuai Zhang, Ke Zhang, and Jinlian Hu. "Hierarchically Structured Hydrogel Composites with Ultra‐High Conductivity for Soft Electronics." Advanced Functional Materials, December 31, 2023. http://dx.doi.org/10.1002/adfm.202312667.
Full textJaspers, Maarten, Matthew Dennison, Mathijs F. J. Mabesoone, Frederick C. MacKintosh, Alan E. Rowan, and Paul H. J. Kouwer. "Ultra-responsive soft matter from strain-stiffening hydrogels." Nature Communications 5, no. 1 (2014). http://dx.doi.org/10.1038/ncomms6808.
Full textZhu, Shipei, Huanqing Cui, Yi Pan, et al. "Responsive‐Hydrogel Aquabots." Advanced Science, July 29, 2024. http://dx.doi.org/10.1002/advs.202401215.
Full textYe, Yuhang, Zhangmin Wan, P. D. S. H. Gunawardane, et al. "Ultra‐Stretchable and Environmentally Resilient Hydrogels Via Sugaring‐Out Strategy for Soft Robotics Sensing." Advanced Functional Materials, February 27, 2024. http://dx.doi.org/10.1002/adfm.202315184.
Full textGonzalez-Rico, Jorge, Sara Garzon-Hernandez, Chad M. Landis, and Daniel Garcia-Gonzalez. "Magneto-mechanically derived diffusion processes in ultra-soft biological hydrogels." Journal of the Mechanics and Physics of Solids, July 2024, 105791. http://dx.doi.org/10.1016/j.jmps.2024.105791.
Full textGuo, Ping, Zhaoxin Zhang, Chengnan Qian, et al. "Programming Hydrogen Bonds for Reversible Elastic‐Plastic Phase Transition in a Conductive Stretchable Hydrogel Actuator with Rapid Ultra‐High‐Density Energy Conversion and Multiple Sensory Properties." Advanced Materials, September 23, 2024. http://dx.doi.org/10.1002/adma.202410324.
Full textZhang, Qingtian, Hongda Lu, Guolin Yun, et al. "A Laminated Gravity‐Driven Liquid Metal‐Doped Hydrogel of Unparalleled Toughness and Conductivity." Advanced Functional Materials, October 6, 2023. http://dx.doi.org/10.1002/adfm.202308113.
Full textZhang, Jianhua, Jiahe Liao, Zemin Liu, Rongjing Zhang, and Metin Sitti. "Liquid Metal Microdroplet‐Initiated Ultra‐Fast Polymerization of a Stimuli‐Responsive Hydrogel Composite." Advanced Functional Materials, November 12, 2023. http://dx.doi.org/10.1002/adfm.202308238.
Full textLi, Zhikang, Bin Wang, Jijian Lu, et al. "Highly Stretchable, Self‐Healable, and Conductive Gelatin Methacryloyl Hydrogel for Long‐Lasting Wearable Tactile Sensors." Advanced Science, May 29, 2025. https://doi.org/10.1002/advs.202502678.
Full textZhang, Jipeng, Yang Hu, Lina Zhang, Jinping Zhou, and Ang Lu. "Transparent, Ultra-Stretching, Tough, Adhesive Carboxyethyl Chitin/Polyacrylamide Hydrogel Toward High-Performance Soft Electronics." Nano-Micro Letters 15, no. 1 (2022). http://dx.doi.org/10.1007/s40820-022-00980-9.
Full textDing, Baofu, Pengyuan Zeng, Ziyang Huang, et al. "A 2D material–based transparent hydrogel with engineerable interference colours." Nature Communications 13, no. 1 (2022). http://dx.doi.org/10.1038/s41467-021-26587-z.
Full textTian, Han, Yanyu Hu, Jiajie Wu, et al. "Crystal Transduction 3D Printing of Bio‐Hydrogels with High Fidelity and Order Micro Pores." Advanced Functional Materials, November 6, 2024. http://dx.doi.org/10.1002/adfm.202415799.
Full textZhang, Ran, Fangdong Ning, Xuxu Hu, Jinming Zhen, Bo Ge, and Zhengfeng Jia. "Bionic layered hydrogel with high strength for excellent lubrication and load capacity." Journal of Applied Polymer Science, June 6, 2024. http://dx.doi.org/10.1002/app.55845.
Full textChong, Jooyeun, Changhoon Sung, Kum Seok Nam, et al. "Highly conductive tissue-like hydrogel interface through template-directed assembly." Nature Communications 14, no. 1 (2023). http://dx.doi.org/10.1038/s41467-023-37948-1.
Full textPitenis, Angela A., Juan Manuel Urueña, Ryan M. Nixon, et al. "Lubricity from Entangled Polymer Networks on Hydrogels." Journal of Tribology 138, no. 4 (2016). http://dx.doi.org/10.1115/1.4032889.
Full textCafiso, Diana, Federico Bernabei, Matteo Lo Preti, et al. "DLP‐Printable Porous Cryogels for 3D Soft Tactile Sensing." Advanced Materials Technologies, February 14, 2024. http://dx.doi.org/10.1002/admt.202302041.
Full textYang, Kai, Bolong Li, Zhihao Ma, et al. "Ion‐Selective Mobility Differential Amplifier: Enhancing Pressure‐Induced Voltage Response in Hydrogels." Angewandte Chemie, November 15, 2024. http://dx.doi.org/10.1002/ange.202415000.
Full textYang, Kai, Bolong Li, Zhihao Ma, et al. "Ion‐Selective Mobility Differential Amplifier: Enhancing Pressure‐Induced Voltage Response in Hydrogels." Angewandte Chemie International Edition, November 15, 2024. http://dx.doi.org/10.1002/anie.202415000.
Full textChu, Zhaoyang, Kaining He, Siqi Huang, Wenhua Zhang, Xueyu Li, and Kunpeng Cui. "Investigating Temperature‐Dependent Microscopic Deformation in Tough and Self‐healing Hydrogel Using Time‐Resolved USAXS." Macromolecular Rapid Communications, June 4, 2024. http://dx.doi.org/10.1002/marc.202400327.
Full text