Dissertations / Theses on the topic 'Ultracold physics'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Ultracold physics.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Christensen, Caleb A. "Ultracold molecules from ultracold atoms : interactions in sodium and lithium gas." Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/68868.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 218-226).
The thesis presents results from experiments in which ultracold Sodium-6 and Lithium-23 atomic gases were studied near a Feshbach resonance at high magnetic fields. The enhanced interactions between atoms in the presence of a molecular state enhance collisions, leading to inelastic decay and loss, many-body dynamics, novel quantum phases, and molecule formation. Experimental data is presented alongside relevant theory and numerical models. Results are presented for both homonuclear Na 2 and Li 2 molecules, as well as heteronuclear NaLi resonances, although we were unable to isolate and measure NaLi molecules. Furthermore, experiments and theories related to strongly-correlated quantum phases such as Stoner model ferromagnetism, Bose mediated Fermi interactions, and Bose-Fermi mixtures are presented as applicable to Na and Li gases. Conclusions are presented regarding the feasibility of producing deeply bound, dipolar NaLi molecules, as well as future prospects for strongly interacting atomic gases of Na and Li.
by Caleb A. Christensen.
Ph.D.
Punk, Matthias. "Many-particle physics with ultracold gases." kostenfrei, 2010. https://mediatum2.ub.tum.de/node?id=956951.
Full textSavikko, M. (Mikko). "Efimov states in ultracold gases." Master's thesis, University of Oulu, 2014. http://urn.fi/URN:NBN:fi:oulu-201403111157.
Full textCampbell, Daniel L. "Engineered potentials in ultracold Bose-Einstein condensates." Thesis, University of Maryland, College Park, 2015. http://pqdtopen.proquest.com/#viewpdf?dispub=3725451.
Full textBose-Einstein condensates (BECs) are a recent addition to the portfolio of quantum materials some of which have profound commercial and military applications e.g., superconductors, superfluids and light emitting diodes. BECs exist in the lowest motional modes of a trap and have the lowest temperatures achieved by mankind. With full control over the shape of the trap the experimentalist may explore an extremely diverse set of Hamiltonians which may be altered mid-experiment. These properties are particularly suited for realizing novel quantum systems.
This thesis explores interaction-driven domain formation and the subsequent domain coarsening for two immiscible BEC components. Because quantum coherences associated with interactions in BECs can be derived from low energy scattering theory we compare our experimental results to both a careful simulation (performed by Brandon Anderson) and an analytical prediction. This result very carefully explores the question of how a metastable system relaxes at the extreme limit of low temperature.
We also explore spin-orbit coupling (SOC) of a BEC which links the linear and discrete momentum transferable by two counterpropagating ''Raman'' lasers that resonantly couple the ground electronic states of our BECs. SOC is used similarly in condensed matter systems to describe coupling between charge carrier spin and crystal momentum and is a necessary component of the quantum spin Hall effect and topological insulators.
SOC links the linear and discrete momentum transferable by two counterpropagating ''Raman'' lasers and a subset of the ground electronic states of our BEC. The phases of an effective 2-spin component spin-orbit coupling (SOC) in a spin-1 BEC are described in Lin et al. (2011). We measure the phase transition between two phases of a spin-1 BEC with SOC which cannot be mimicked by a spin-1/2 system. The order parameter that describes transitions between these two phases is insensitive to magnetic field fluctuations.
I also describe a realistic implementation of Rashba SOC. This type of SOC is expected to exhibit novel many-body phases [Stanescu et al. 2008, Sedrakyan et al. 2012, Hu et al. 2011].
Wang, Tout Taotao. "Small Diatomic Alkali Molecules at Ultracold Temperatures." Thesis, Harvard University, 2015. http://nrs.harvard.edu/urn-3:HUL.InstRepos:14226049.
Full textSchneider, William. "Strong Correlations in Ultracold Fermi Gases." The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1316447449.
Full textFancher, Charles. "Ac Zeeman Force with Ultracold Atoms." W&M ScholarWorks, 2016. https://scholarworks.wm.edu/etd/1499449866.
Full textLee, Ye-Ryoung. "Ultracold Fermi gas with repulsive interactions." Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/79520.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 95-100).
This thesis presents results from experiments of ultracold atomic Fermi gases with repulsive interaction. Itinerant ferromagnetism was studied by simulating the Stoner model with a strongly interacting Fermi gas of ultracold atoms. We observed nonmonotonic behavior of lifetime, kinetic energy, and size for increasing repulsive interactions, which is in good agreement with a mean-field model for the ferromagnetic phase transition. However, later research showed the absence of enhanced spin fluctuation, which is definitive evidence against the ferromagnetic phase transition. Still, our work triggered a lot of research on repulsive interactions in ultracold Fermi gases. A quantitative approach is taken to study ultracold Fermi gases with repulsive interaction. This is done by careful measurements of density profiles in equilibrium. First, Pauli paramagnetism is observed in trapped atomic samples which have an inhomogeneous density due to the harmonic confinement potential. We experimentally measure the susceptibility of ideal Fermi gas. This research shows that ultracold atoms can serve as model systems to demonstrate well-known textbook physics in a more ideal way than other systems. Then, Fermi gases with repulsive interactions are characterized by measuring their compressibility as a function of interaction strength. The compressibility is obtained from in-trap density distributions monitored by phase contrast imaging. For interaction parameters kFa > 0.25 fast decay of the gas prevents the observation of equilibrium profiles. For smaller interaction parameters, the results are adequately described by first-order perturbation theory. A novel phase contrast imaging method compensates for dispersive distortions of the images.
by Ye-Ryoung Lee.
Ph.D.
Himsworth, Matthew. "Coherent manipulation of ultracold Rubidium." Thesis, University of Southampton, 2009. https://eprints.soton.ac.uk/72369/.
Full textNunnenkamp, Andreas. "Strong correlations in ultracold atomic gases." Thesis, University of Oxford, 2008. http://ora.ox.ac.uk/objects/uuid:6e09e9d3-f5cd-4580-a667-6599203162e2.
Full textWu, Cheng-Hsun Ph D. Massachusetts Institute of Technology. "Strongly interacting quantum mixtures of ultracold atoms." Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/83817.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 198-202).
This thesis describes the construction of a new apparatus for ultracold quantum gases as well as the scientific results this machine has produced so far. This new apparatus is capable of simultaneously cooling and trapping lithium, sodium, and potassium. It therefore provides a platform to study a large variety of quantum mixtures. Three main experimental results are presented. Firstly, the direct cooling of "K to Bose-Einstein condensation is presented. Then the 41K atoms provide the coolant for 6Li and 40K, achieving a triply degenerate gas of 6Li -40K -41K. In particular, a broad interspecies Feshbach resonance between 40K -41K is observed, opening a new pathway to study a strongly interacting isotopic Bose-Fermi mixture of 40K -41K. Secondly, a new Bose-Fermi mixture of 23Na -40K is introduced. We show that 23Na is a very efficient coolant for 40K by sympathetically cooling 40K to quantum degeneracy with the help of a 23Na condensate. Moreover, over thirty interspecies Feshbach resonances are identified, paving the way to study strongly interacting Bose- Fermi problems, in particular the Bose polaron problem. Thirdly, we report on the first formation of ultracold fermionic Feshbach molecules of 23Na40K by radio-frequency association. The lifetime of the nearly degenerate molecular gas exceeds 100 ms in the vicinity of the Feshbach resonance. The NaK molecule features chemical stability in its ground state in contrast to the case of the KRb molecule. Therefore, our work opens up the prospect of creating chemically stable, fermionic ground state molecules of 23Na40K where strong, long-range dipolar interactions will set the dominant energy scale. Finally, the thesis concludes with an outlook on future topics in polaron physics and quantum dipolar gases, which can be studied using the new apparatus.
by Cheng-Hsun Wu.
Ph.D.
Vengalattore, Mukund T. 1977. "Atom-light interactions in ultracold anisotropic media." Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/34386.
Full textIncludes bibliographical references (leaves 203-207).
A series of studies on atom-light interactions in ultracold anisotropic media were conducted. Methods to trap ultracold neutral atoms in novel traps with widely tunable trap frequencies and anisotropies were investigated. In comparison to conventional magnetic traps, it was found that magnetic traps generated by soft ferromagnets have various advantages such as a large dynamic range of trap confinement, an ability to create homogeneous reciprocal traps and an ability to shield ultracold atoms from deleterious surface induced effects which would otherwise lead to decoherence and loss. Such microfabricated ferromagnetic "atom chips" are promising systems for the integration of atom optic components such as high finesse cavities and single atom counters. This can, in the near future, lead to precise atom sensors for magnetometry and inertial sensing. the wide tunability of the trap parameters made such integrated atom traps and ideal system for studies of lower dimensional systems and mesoscopic physics in the ultracold regime. Ultracold anisotropic media were shown to possess many novel and attractive properties. Due to the suppression of radiation trapping in these systems, laser cooling was shown to be highly efficient leading to a dramatic increase in the phase space density of an optically cooled atomic ensemble. Subsequent confinement of the resulting ensemble in a magnetic trap and further increase of the phase space density by evaporative cooling should lead to large numbers of atoms in a Bose condensate. It is also an intriguing prospect to combine extreme trap anisotropy with sub-recoil cooling schemes to approach Bose condensation through all-optical cooling. Recoil induced resonances in these anisotropic media were shown to exhibit single pass optical amplifications on the order of 100, more than two orders of magnitude higher than observed previously. The strong dispersion associated with this resonance was used to create an ultracold optical fiber, thus overcoming the diffraction limit for atom-light interactions. With such radial confinement, strong dispersion was combined with arbitrarily large optical depths thereby rendering this system a unique medium for nonlinear optics in the single photon domain. This system was shown to exhibit pronounced nonlinear and collective effects due to the strong coupling between atoms and light.
by Mukund Vengalattore.
Ph.D.
Simpson, David Peter. "One dimensional transport of ultracold bosons." Thesis, University of Birmingham, 2014. http://etheses.bham.ac.uk//id/eprint/5358/.
Full textDenning, Adam W. "Early Dynamics of Ultracold Neutral Plasmas." Diss., CLICK HERE for online access, 2008. http://contentdm.lib.byu.edu/ETD/image/etd2481.pdf.
Full textOkan, Melih. "Controlling ultracold fermions under a quantum gas microscope." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/115688.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 123-130).
This thesis presents the experimental work on building a quantum gas microscope, employing fermionic 40K atoms in an optical lattice, and precision control of the atoms under the microscope. This system works as a natural simulator of the 2D Hubbard model, which describes materials with strongly correlated electrons. After preparing ultracold 40K atoms in an optical lattice and performing Raman sideband cooling, single lattice site resolution was obtained. Metallic, Mott insulating, and band insulating states were observed in situ and local moment was directly accessed as a local observable with the site-resolved imaging. Performing spin-selective imaging also gave access to spin, and spatial correlations of charge and spin was measured with respect to doping. In this measurements, antiferromagnetic correlations were observed in the spin sector. In the charge sector, we observed an anti-bunching behavior at low fillings, as a result of the Pauli exclusion principle and repulsive interactions. We also observed that doublon-hole bunching resulting from the superexchange excitations dominates and causes the charges to bunch. In order to increase the simulation capabilities, we updated the microscope with arbitrary optical potential imprinting ability. Using a digital micromirror device (DMD), a 2D box potential was created with the sharpness of a few lattice sites. A homogenous 2D Hubbard system is created at half-filling in this box potential. Using a magnetic gradient, different spin states were separated within a Mott insulator, being an ideal starting point for performing spin transport measurements. The lowest energy s-wave Feshbach resonance between 19/2, -7/2) and 19/2, -5/2) states of 40K was characterized with an increased precision and established as an interaction varying knob of our quantum simulator. Interaction energy spectrum around this resonance was measured. Confinement induced molecules on the attractive side and deeply bound molecules on the repulsive side are observed in an optical lattice.
by Melih Okan.
Ph. D.
Zwierlein, Martin W. "High-temperature superfluidity in an ultracold Fermi gas." Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/39290.
Full textIncludes bibliographical references (p. 258-280).
This thesis presents experiments in which a strongly interacting gas of fermions was brought into the superfluid regime. The strong interactions are induced by a Feshbach scattering resonance that allows to tune the interfermion scattering length via an external magnetic field. When a Fermi mixture was cooled on the molecular side of such a Feshbach resonance, Bose-Einstein condensation of up to 107 molecules was observed. Subsequently, the crossover region interpolating between such a Bose-Einstein condensate (BEC) of molecules and a Bardeen-Cooper-Schrieffer superfluid of long-range Cooper pairs was studied. Condensates of fermion pairs were detected in a regime where pairing is purely a many-body effect, the pairs being stabilized by the presence of the surrounding particles. Superfluidity and phase coherence in these systems was directly demonstrated throughout the crossover via the observation of long-lived, ordered vortex lattices in a rotating Fermi mixture. Finally, superfluidity in imbalanced Fermi mixtures was established, and its Clogston limit was observed for high imbalance. The gas was found to separate into a region of equal densities, surrounded by a shell at unequal densities.
by Martin W. Zwierlein.
Ph.D.
Schirotzek, Andre. "Radio-frequency spectroscopy of ultracold atomic Fermi gases." Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/77482.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 143-154).
This thesis presents experiments investigating the phase diagram of ultracold atomic Fermi gases using radio-frequency spectroscopy. The tunability of many experimental parameters including the temperature, the interparticle interaction strength and the relative population of different Fermions allows to access very different physical regimes. Radio-frequency spectroscopy has been developed into an ideal tool to probe correlations between particles in these different phases. In particular, radio-frequency spectroscopy of highly population imbalanced atomic Fermi systems gives access to the impurity problem: A single Fermion, or Boson, immersed in a sea of Fermions constitutes a polaron, which can be described by Landau's Fermi liquid theory. A critical interaction strength can be identified separating the regime of a fermionic polaron and a bosonic polaron. Radio-frequency spectroscopy of the polarized superfluid phase allows an accurate measure of the superfluid gap [Delta] and allows to identify the importance of Hartree Mean-field energies. Furthermore, it is shown how these different physical regimes are connected.
by Andre Schirotzek.
Ph.D.
Hu, Jiazhong Ph D. Massachusetts Institute of Technology. "Light-induced many-body correlations in ultracold gases." Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/115012.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 137-149).
In this thesis, we investigate several methods to generate and probe the quantum correlations in ultracold gases using light. A high-finesse optical cavity is used to enhance the atom-light interaction and we can produce a variety of entangled states which can overcome the standard quantum limit. The quantum correlations are generated by sending very weak light into the cavity which contains many neutral atoms. We control the properties of the incoming photon, such as the polarization and/or the frequency spectrum, to obtain the final atomic states as desired. The photon transmitted through the cavity interacts with the atomic ensemble and becomes entangled with the atomic state. The amount of entanglement strength is usually small but non-zero. Placing a detector after the cavity, the tiny amount of entanglement will be dramatically amplified once a photon is heralded in the detector. Using this method, we demonstrated the first observation of the negative Wigner function in the many-body system, and largely extended the record of the maximum number of atoms entangled. Other than engineering entangled many-body system, we have also worked on reaching the quantum degenerate regime for the atomic gas, in order to enhance quantum correlations in future experiments. Laser cooling all the way to Bose-Einstein condensation of an alkali atom is experimentally realized for the first time. We demonstrate a special technique suppressing the binary atomic loss at high atomic density. By transferring the atoms between two different optical traps, the atomic cloud is compressed and the density is increased. Combining these with the Raman sideband cooling method, we achieve the phase space density over 1, and observe the bimodal velocity distribution characteristic of a Bose-Einstein condensate.
by Jiazhong Hu.
Ph. D.
Smith, Dane Hudson. "Resonant Floquet scattering of ultracold atoms." The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1478192866433031.
Full textPattie, Robert. "Precision Tests of the Standard Model with Ultracold Neutrons." Digital Commons @ East Tennessee State University, 2018. https://dc.etsu.edu/etsu-works/5593.
Full textSimonet, Juliette. "Optical traps for Ultracold Metastable Helium atoms." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2011. http://tel.archives-ouvertes.fr/tel-00651592.
Full textGildemeister, Marcus. "Trapping ultracold atoms in time-averaged adiabatic potentials." Thesis, University of Oxford, 2010. http://ora.ox.ac.uk/objects/uuid:0572480a-9114-426e-b853-b6be30c7594e.
Full textDutta, Omjyoti. "Ground State Properties and Applications of Dipolar Ultracold Gases." Diss., The University of Arizona, 2008. http://hdl.handle.net/10150/195700.
Full textPark, Jee Woo. "An ultracold gas of dipolar fermionic ²³Na⁴⁰K molecules." Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/104529.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 190-202).
In this thesis, I present my work on creating ultracold dipolar molecules of ²³Na⁴⁰K in the singlet rovibrational ground state. These fermionic molecules have a large permanent electric dipole moment of 2.72 Debye, and are chemically stable against inelastic dimer-dimer reactions. A quantum gas of these molecules have potential applications in quantum simulation of novel dipolar many-body physics, creation of dipolar quantum matter, precision measurements of fundamental constants, and quantum information processing. The work starts with the creation of a new Bose-Fermi mixture of ²³Na and ⁴⁰K, and a systematic study of Feshbach resonances between the two atomic species. The study reveals more than 20 resonances in the s- and p-wave collision channels, and many of the s-wave resonances are exceptionally broad. Using two distinct s-wave resonances, we create loosely bound Feshbach molecules of ²³Na⁴⁰K, which serve as a stepping stone for the creation of more deeply bound molecules. To transfer Feshbach molecules to the singlet rovibrational ground state, molecular spectroscopy is performed in search of a suitable two-photon pathway. We find two excited molecular states with with strong coupling to the Feshbach molecular state and the singlet rovibrational ground state. One of the two pathways is used to create ²³Na⁴⁰K singlet rovibrational ground state molecules by stimulated Raman adiabatic passage (STIRAP). The created molecular gas has T/TF ~~ 2.0, and exhibits trap lifetimes longer than 2.5 seconds, highlighting NaK's chemical stability. Coherent microwave control of rotational and hyperfine states of ²³Na⁴⁰K ground state molecules is demonstrated. In particular, we observe long coherence times of the molecular sample approaching one second in a superposition of two hyperfine levels in the singlet rovibrational ground state. The long coherence time allows precision spectroscopy of the molecular gas, which we use to detect Hz-level shifts between the hyperfine levels.
by Jee Woo Park.
Ph. D.
Rvachov, Timur Michael. "Ultracold ²³Na⁶Li molecules in the triplet ground state." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/119113.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 161-173).
This thesis describes experiments in spectroscopy and formation of triplet ²³Na⁶Li molecules from an initial mixture of ultracold ²³Na and ⁶Li. The production of quantum degenerate molecules with long-range dipolar interactions is a long-standing goal in low temperature physics. NaLi is a fermionic molecule with an electric dipole moment of 0.2 Debye and a magnetic dipole moment of 2 [mu]B in its triplet ro-vibrational ground state. The formation of an ultracold molecule with both electric and magnetic dipole moments allows for novel opportunities in control of ultracold molecular reactions and studies of quantum many-body systems with dipolar interactions. This experimental work consists of two parts. The first is a thorough spectroscopic study of the excited and ground triplet potentials of NaLi using one- and two-photon photoassociation spectroscopy. We present the spectroscopic positions and strengths of transitions to nearly all vibrational states in the excited c³[sigma]⁺ and ground ³[sigma]⁺ potentials of NaLi. This is the first spectroscopic observation of triplet potentials in NaLi and the first demonstration of photoassociation in the Na-Li system. The second part utilizes our spectroscopic results to coherently form an ultracold gas of NaLi molecules. Starting with an ultracold Na-Li mixture, we use magneto-association to form weakly bound Feshbach molecules. The Feshbach molecules are then transfered to the ro-vibrational triplet ground state using a two-photon stimulated Raman adiabatic passage (STIRAP) technique, forming 3 x 10⁴ molecules at a density of 5 x 10¹⁰ cm⁻³ and temperature of 3 [mu]K. The molecules are long-lived with a measured lifetime of 5 seconds, which highlights their fermionic nature and low universal inelastic loss rate. The utility of the molecule's magnetic moment is demonstrated by performing electron spin resonance spectroscopy to measure the hyperfine structure of the molecule.
by Timur Michael Rvachov.
Ph. D.
Yan, Zoe Z. (Zoe Ziyue). "From strongly-interacting Bose-Fermi mixtures to ultracold molecules." Thesis, Massachusetts Institute of Technology, 2020. https://hdl.handle.net/1721.1/130219.
Full textCataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 193-213).
This thesis describes experiments on ultracold quantum gases. First, I discuss quantum simulation involving mixtures of bosonic and fermionic atoms. Second, I present work on creating and controlling ultracold dipolar molecules of ²³Na⁴⁰K. The rich phase diagram of Bose-Fermi mixtures was studied with our system of bosonic ²³Na and fermionic ⁴⁰K atoms. When the fermions were immersed as a minority species within a Bose-Einstein condensate, the system realized the canonical Bose polaron quasiparticle, which is an important paradigm in condensed matter physics. We investigated the strongly-coupled Bose polaron as it approached the quantum critical regime of the Bose-Fermi mixture. Using radiofrequency spectroscopy, we probed the binding energy and decay rate as a function of temperature.
In particular, the decay rate was found to scale linearly with temperature near the Planckian rate k[subscript B]T/h⁻ in the unitarity-limited regime, a hallmark of quantum critical behavior. Bose-Fermi mixtures host a complex spectrum of collective excitations, which can shed light on their properties such as collisional relaxation rates, equilibrium equations of state, and kinetic coefficients. We probed the low-lying collective modes of a Bose-Fermi mixture across different interaction strengths and temperatures. The spin-polarized fermions were observed to transition from ballistic to hydrodynamic flow induced by interactions with the bosonic excitations. Our measurements establish Bose-Fermi mixtures as a fruitful arena to understand hydrodynamics of fermions, with important connections to electron hydrodynamics in strongly-correlated 2D materials. The second part of this thesis describes the creation and manipulation of ultracold molecules in their ground state.
Molecules have more tunable degrees of freedom compared to atoms, paving the way for studies of quantum state-controlled chemistry, quantum information, and exotic phases of matter. We created loosely-bound Feshbach molecules from ultracold atoms, then transferred those molecules to their absolute electronic, vibrational, rotational, and hyperfine ground state by stimulated Raman adiabatic passage. The rotational level structure, sample lifetimes, and coherence properties were studied, culminating in a demonstration of second-scale nuclear spin coherence times in an ensemble of NaK. Controlling the intermolecular interactions - which can be tunable, anisotropic, and long range - is an outstanding challenge for our field. We induced strong dipolar interactions via the technique of microwave dressing, an alternative to using static electric fields to polarize the molecules.
The origin of these dipolar collisions was the resonant alignment of the approaching molecules' dipoles along their intermolecular axis, resulting in strong attraction. Our observations were explained by a conceptually simple two-state picture based on the Condon approximation.
by Zoe Z. Yan.
Ph. D.
Ph.D. Massachusetts Institute of Technology, Department of Physics
Li, Junru Ph D. Massachusetts Institute of Technology. "Spin-orbit coupling and supersolidity in ultracold quantum gases." Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/123348.
Full textThesis: Ph. D., Massachusetts Institute of Technology, Department of Physics, 2019
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 207-214).
Ultracold quantum gases provide a clean, isolated, and controllable platform for simulating and characterizing complex physical phenomena. In this thesis, I present several experiments on realizing one-dimensional spin-orbit coupling in ultracold 23Na gases and the creation of a new form of matter with supersolid properties using interacting spin-orbit coupled Bose-Einstein condensates. The first part describes the realization of spin-orbit coupling in optical superlattices which consist of stack of pancakes of imbalanced double-wells. The orbital levels, individual pancakes, in an superlattice potential are used as pseudospin states. Spinorbit coupling was induced by two-photon Raman transition between the pseudospin states, and was experimentally characterized by the spin-dependent momentum structure from this dressing. The realization suppresses heating due to spontaneous emission.
The system is highly miscible, allowing the study of novel phases in interacting spin-orbit coupled systems. Next, spin-orbit coupling was demonstrated by synchronizing a fast periodically modulating magnetic force with the Radio-Frequency (RF) pulses. The modulation effectively dressed the RF photons with tunable momentum. The consequent Doppler shifts for RF transitions were observed as velocity-selective spin flips. The scheme is equivalent to Floquet engineered one-dimensional spin-orbit coupling. Finally, I report experiments on creating a new form of matter, a supersolid, in ultracold quantum gases. An interacting spin-orbit coupled Bose-Einstein condensate in the stripe phase spontaneously breaks two continuous symmetries : the U(1) symmetry, observed as sharp interference peaks in momentum space, and the continuous translational symmetry, observed as a spontaneously formed density modulation. The density modulation is measured and characterized with Bragg scattering.
A system spontaneously breaking these two symmetries is a crystal and a superfluid simultaneously, and is considered as a supersolid.
by Junru Li.
Ph. D.
Ph.D. Massachusetts Institute of Technology, Department of Physics
Lyon, Mary Elizabeth. "Towards Stronger Coulomb Coupling in an Ultracold Neutral Plasma." BYU ScholarsArchive, 2014. https://scholarsarchive.byu.edu/etd/4194.
Full textLiu, Ivan Chen-Hsiu. "Ultracold Rydberg Atoms in Structured and Disordered Environments." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2009. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1231945394343-32656.
Full textMedley, Patrick (Patrick M. ). "Thermometry and cooling of ultracold atoms in an optical lattice." Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/68977.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 127-132).
Ultracold atoms of 7Rb were prepared in a mixture of two hyperfine states, F 1, mF = -1 > and 2, -2 >. This two-component system was then studied in the presence of a magnetic field gradient and an optical lattice. The presence of a magnetic field gradient separated the atoms into regions of opposite spin, with a boundary region of mixed spin in the center. In the presence of an optical lattice, the width of this region was found to be proportional to the system's temperature and inversely proportional to the strength of the magnetic field. This allowed the measurement of the size of the boundary region to act as a thermometer for the system, representing the first demonstration of spin gradient thermometry. This thermometer represents the first practical method for thermometry in the Mott insulator, and has features of high dynamic range and tunable sensitivity. Given sufficient optical resolution and control over the magnetic field gradient, the lower limit of this thermometer is set by quantum magnetic ordering effects. The dynamic response of this system to changes in magnetic field gradient was studied, both in the weak and strong lattice regimes. The result of these studies was the development of spin gradient demagnetization cooling. By performing an adiabatic drop in gradient strength while still in the superfluid, significant cooling of the entire system was observed. When the same process was performed in the Mott insulator, the spin temperature was cooled dramatically, while remaining out of equilibrium with the remaining degrees of freedom of the system. By reversing the gradient direction, inverted spin populations with negative temperatures have been produced. Spin gradient demagnetization has produced the closest approach to absolute zero yet recorded: 300 pK for the equilibrated system, and spin temperatures of 75 pK as well as -75 pK. The ability to achieve these temperatures puts studies of quantum magnetism in optical lattices within reach.
by Patrick Medley.
Ph.D.
Campbell, Sara L. S. B. Massachusetts Institute of Technology. "Building an apparatus for ultracold lithium-potassium Fermi-Fermi mixtures." Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/61204.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 93-95).
In this thesis, I designed and built laser systems to cool, trap and image lithium-6 and potassium-40 atoms. I also constructed the vacuum system for the experiment and experimentally tested a new method to coat the chamber with a Titanium-Zirconium- Vanadium alloy that acts as a pump. The final apparatus will use a 2D Magneto- Optical Trap (MOT) as a source of cool potassium and a Zeeman slower as a source of cool lithium. The atoms will then be trapped and cooled together in a double-species 3D MOT. In the 3D MOT, we will perform photoassociation spectroscopy on the atoms to determine the Li-K molecular energies and collisional properties. Using this information, we can transfer weakly-bound Feshbach LiK molecules into their ground state. LiK has an electric dipole moment and will open the door to the study of novel materials with very long-range interactions. This new material might form a crystal, a superfluid with anisotropic order parameter or a supersolid.
by Sara L. Campbell.
S.B.
Kennedy, Colin (Colin Joseph). "Creating novel quantum states of ultracold bosons in optical lattices." Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/112076.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 249-263).
Ultracold atoms in optical lattices are among the most developed platforms of interest for building quantum devices suitable for quantum simulation and quantum computation. Ultracold trapped atoms are advantageous because they are fundamentally indistinguishable qubits that can be prepared with high fidelity in well-defined states and read-out with similarly high fidelities. However, an outstanding challenge for ultracold atoms in optical lattices is to engineer interesting interactions and control the effects of heating that couple the system to states that lie outside the Hilbert space we wish to engineer. In this thesis, I describe a series of experiments and theoretical proposals that address several critical issues facing ultracold atoms in optical lattices. First, I describe experiments where the tunneling behavior of atoms in the lattice is modified to make our fundamentally neutral particles behave as though they are charged particles in a magnetic field. We show how engineering this interaction creates intrinsic degeneracy in the single particle spectrum of the many-body system and how to introduce strong interactions in the system with the goal of producing exotic many-body states such as a bosonic fractional quantum Hall states. Then, I discuss how this technique can be easily generalized to include spin and higher spatial dimensions in order to access a rich variety of new physics phenomena. Next, I report on the realization of a spin-1 Heisenberg Hamiltonian which emerges as the low energy effective theory describing spin ordering in the doubly-occupied Mott insulator of two spin components. This integer spin Heisenberg model is qualitatively different from the half-integer spin model because it contains a gapped, spin-insulating ground state for small inter-spin interaction energies which we call the spin Mott. Using a spin-dependent lattice to control the inter-spin interactions, we demonstrate high-fidelity, reversible loading of the spin-Mott phase and develop a probe of local spin correlations in order to demonstrate a spin entropy below 0.2 kB per spin. Progress on adiabatically driving the quantum phase transition from the spin Mott to the xy-ferromagnetic is discussed along with the progress towards the creation of a quantum gas microscope for single atom detection and manipulation..
by Colin Kennedy.
Ph. D.
Burton, William Cody. "Ultracold bosons in optical lattices for quantum measurement and simulation." Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/123353.
Full textThesis: Ph. D., Massachusetts Institute of Technology, Department of Physics, 2019
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 131-139).
Ultracold atoms provide a platform that allows for pristine control of a physical system, and have found uses in both the fields of quantum measurement and quantum simulation. Optical lattices, created by the AC Stark shift of a coherent laser beam, are a versatile tool to control ultracold atoms and implement novel Hamiltonians. In this thesis, I report on three experiments using the bosonic species Rubidium-87 trapped in optical lattices. I first discuss our work in simulating the Harper-Hofstadter Hamiltonian, which describes charged particles in high magnetic fields, and has connections to topological physics. To simulate the charged particles, we use laser-assisted tunneling to add a complex phase to tunneling in the optical lattice. For the first time, we have condensed bosons into the ground state of the Harper-Hofstadter Hamiltonian.
In addition, we have demonstrated that we can add strong on-site interactions to the effective Hamiltonian, opening the door to studies of interesting states near the Mott insulator transition. Next, I present a novel technique to preserve phase coherence between separated quantum systems, called superfluid shielding. Phase coherence is important for both quantum measurement and simulation, and is fundamentally limited by projection noise. When an interacting quantum system is split, frozen-in number fluctuations lead to fluctuations of the relative phase between separated subsystems. We cancel the effect of these fluctuations by immersing the separated subsystems in a common superfluid bath, and demonstrate that we can increase coherence lifetime beyond the projection noise limit. Finally, I discuss our efforts in simulating magnetic ordering in the spin-1 Heisen- berg Hamiltonian.
It is hard to adiabatically ramp into magnetically ordered ground states, because they often have gapless excitations. Instead, we use a spin-dependent lattice to modify interspin interactions, allowing us to ramp into the spin Mott insulator, which has a gap and can therefore act as a cold starting point for exploration of the rest of the phase diagram. We have achieved a cold spin temperature in the spin Mott insulator, and I discuss plans to also achieve a cold charge temperature and then ramp to the the xy-ferromagnet, which has spin-charge separation.
by William Cody Burton.
Ph. D.
Ph.D. Massachusetts Institute of Technology, Department of Physics
Cole, William S. Jr. "Spin-orbit coupling and strong correlations in ultracold Bose gases." The Ohio State University, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=osu1406217577.
Full textMcCabe, David J. "The formation of ultracold rubidium molecules using ultrafast photoassociation." Thesis, University of Oxford, 2010. http://ora.ox.ac.uk/objects/uuid:65e44f72-1995-45f0-8751-898735e54b6e.
Full textEngland, Duncan. "Towards ultrafast photoassociation of ultracold atoms." Thesis, University of Oxford, 2011. http://ora.ox.ac.uk/objects/uuid:1e2a7450-e568-4f11-9c56-bb62250cd3df.
Full textLiu, Ivan Chen-Hsiu. "Ultracold Rydberg Atoms in Structured and Disordered Environments." Doctoral thesis, Technische Universität Dresden, 2008. https://tud.qucosa.de/id/qucosa%3A23624.
Full textVant, Kendra Margaret Denny. "Spectroscopy of ultracold metastable hydrogen : in pursuit of a precision measurement." Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/34394.
Full textIncludes bibliographical references (p. 141-145).
This thesis describes the first observations in trapped hydrogen of optical transitions starting from the metastable 2S state. It covers in detail the design and construction of two stabilized diode laser systems for performing spectroscopy of the 2S-3P and 2S-8S transitions. Spectroscopy of the one photon 2S-3P transition in hydrogen is demonstrated both by the depletion of the metastable 2S atom state and the absorption of the 2S-3P laser light. A model for absorption spectroscopy as a probe for metastable number is developed and absorption is shown to offer a major improvement over current detection methods. In the course of these experiments, techniques with diode lasers were developed that will be used later in the proposed precision measurements of 2S-nS transitions. The design, construction and characterization of the diode laser system for performing spectroscopy of the two photon 2S-8S transition is explained and recommended parameters for a proposed signal search are outlined.
by Kendra Margaret Denny Vant.
Ph.D.
Bowman, David. "Ultracold atoms in flexible holographic traps." Thesis, University of St Andrews, 2018. http://hdl.handle.net/10023/16293.
Full textLi, Weiran. "Topics in Ultracold Atomic Gases: Strong Interactions and Quantum Hall Physics." The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1375706577.
Full textCallahan, Nathan, Chen-Yu Liu, Fransisco Gonzalez, Evan Adamek, James D. Bowman, Leah J. Broussard, S. M. Clayton, et al. "Monte Carlo of Trapped Ultracold Neutrons in the UCNτ Trap." Digital Commons @ East Tennessee State University, 2018. https://dc.etsu.edu/etsu-works/5531.
Full textBenjamin, David Isaiah. "Impurity Physics in Resonant X-Ray Scattering and Ultracold Atomic Gases." Thesis, Harvard University, 2014. http://nrs.harvard.edu/urn-3:HUL.InstRepos:13067679.
Full textPhysics
Cooper, Nathan. "Novel techniques for the trapping and manipulation of ultracold atoms." Thesis, University of Southampton, 2014. https://eprints.soton.ac.uk/368606/.
Full textAkyar, Ozge. "Density Functional Theory For Trapped Ultracold Fermions." Master's thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/12610948/index.pdf.
Full textrescaled interaction strength, dipole-dipole energy and the trap parameter which determine the trap geometry based on this theory. The thesis starts with a brief outline of the density functional theory and theory of our system, continues with calculations based on this theory, which are free of any variational assumptions for the density profile. Moreover, results of density graphics for harmonic trap will be followed by discussion of comparison and contrast with Thomas-Fermi method based on the paper of Goral et al.. These discussions are mainly about the shape of the density distribution, variation of the cloud parameters and energy behaviours according to the rescaled interaction strength. The thesis concludes with an analysis of contribution of density functional theory to this fermionic system.
Douglas, James Stewart. "Light scattering from ultracold atomic gases." Thesis, University of Oxford, 2010. http://ora.ox.ac.uk/objects/uuid:0aa4ede3-8b6e-45d4-a112-a2d18271307c.
Full textHarte, Tiffany. "Ultracold atoms in dressed potentials." Thesis, University of Oxford, 2017. https://ora.ox.ac.uk/objects/uuid:1a4ea098-ec17-414a-8873-95d83ca8ea97.
Full textJo, Gyu-Boong. "Quantum coherence and magnetism in bosonic and fermionic gases of ultracold atoms." Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/63010.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 168-185).
In this thesis, two sets of experimental studies in bosonic and fermionic gases are described. In the first part of the thesis, itinerant ferromagnetism was studied in a strongly interacting Fermi gas of ultracold atoms. The observation of nonmonotonic behavior of lifetime, kinetic energy, and size for increasing repulsive interactions provides strong evidence for a phase transition to a ferromagnetic state. Our observations imply that itinerant ferromagnetism of delocalized fermions is possible without lattice and band structure, and our data validate the most basic model for ferromagnetism introduced by Stoner. In the second part of the thesis, the coherence properties of a Bose-Einstein condensate (BEC) was studied in a radio frequency induced double-well potential implemented on a microfabricated atom chip. We observed phase coherence between the separated condensates for times up to 200 ms after splitting, a factor of 10 longer than the phase diffusion time expected for a coherent state for our experimental conditions. The enhanced coherence time is attributed to number squeezing of the initial state by a factor of 10. Furthermore, the effect of phase fluctuations on an atom interferometer was studied in an elongated BEC. We demonstrated that the atom interferometer using the condensates is robust against phase fluctuations; i.e., the relative phase of the split condensates is reproducible despite axial phase fluctuations. Finally, phase-sensitive recombination of two BECs was demonstrated on an atom chip. The recombination was shown to result in heating, caused by the dissipation of dark solitons, which depends on the relative phase of the two condensates. This heating reduces the number of condensate atoms and provides a robust way to read out the phase.
by Gyu-Boong Jo.
Ph.D.
Steinberger, Julia K. 1974. "Progress towards high precision measurements on ultracold metastable hydrogen and trapping deuterium." Thesis, Massachusetts Institute of Technology, 2004. http://hdl.handle.net/1721.1/28649.
Full textIncludes bibliographical references (leaves 128-136).
(cont.) not achieve deuterium trapping through helium-surface cooling. It is proposed that buffer gas loading can be used to cryogenically cool and trap deuterium.
Ultracold metastable trapped hydrogen can be used for precision measurements for comparison with QED calculations. In particular, Karshenboim and Ivanov [Eur. Phys. Jour. D 19, 13 (2002)] have proposed comparing the ground and first excited state hyperfine splittings of hydrogen as a high precision test of QED. An experiment to measure the 2S hyperfine splitting using a field-independent transition frequency in the 2S manifold of hydrogen is described. The relation between the transition frequency and the hyperfine splitting requires incorporating relativistic and bound state QED corrections to the electron and proton g-factors in the Breit-Rabi formula. Experimental methods for measuring the magnetic field of an ultracold hydrogen sample are developed for trap fields from 0 to 900 G. The temperature of the trapped sample at the field-independent point is a critical parameter, and is inferred from the IS - 2S lineshape. The detailed dependence of this lineshape on the trap geometry is examined. A search for the transition was undertaken, but no signal was observed. The systematics of the experiment are analyzed, and modifications for carrying out the experiment are proposed. In a separate study, the possibilities for trapping (never previously trapped) deuterium in the same cryogenic cell and magnetic trap used to trap hydrogen were investigated. Deuterium's behavior on a helium surface differs markedly from that of hydrogen due to its larger surface binding energy. We carried out a variety of studies of both hydrogen and deuterium during the trap-loading stage, working with both ⁴He and ³He surfaces. Introducing ³He in the cell decreases the surface binding energy of deuterium, and thus the rate of recombination on the cell walls; however, we could
by Julia K. Steinberger.
Ph.D.
Yu, Ite Albert. "Ultracold surface collisions : sticking probability of atomic hydrogen on a superfluid 4He." Thesis, Massachusetts Institute of Technology, 1993. http://hdl.handle.net/1721.1/44753.
Full textSantiago, González Ibon. "LiNaK : multi-species apparatus for the study of ultracold quantum degenerate mixtures." Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/77478.
Full textCataloged from student-submitted PDF version of thesis.
Includes bibliographical references (p. 109-113).
This thesis describes the construction of a versatile apparatus to study ultracold quantum mixtures capable of simultaneously cooling fermionic ⁶Li and ⁴⁰K, as well as the bosonic ⁴¹K. The main features of the experimental setup are presented, in particular the addition of a new species ²³Na, which has enabled the study of the Bose-Fermi mixture ²³Na-⁴⁰K. Three main experimental benchmarks are outlined: first, the production of a Bose-Einstein Condensate of ⁴¹K is discussed and an evaluation of its properties as a coolant are analysed. Secondly, the creation of a triply degenerate Bose-Fermi-Fermi gas of ⁴¹K-⁴⁰K-⁶Li is presented. Simultaneous observation of Pauli Pressure and Bose Condensation in the triply degenerate gas is reported. In addition, interspecies Feshbach resonances between ⁴¹K-⁴⁰K and ⁶Li-⁴¹K are observed, opening the way to the study of a strongly interacting isotopic Bose-Fermi mixture of ⁴¹K-⁴⁰K, which have similar mass. Thirdly, the creation of a quantum degenerate Bose-Fermi mixture of ²³Na-⁴⁰K is discussed and over thirty Feshbach resonances are identified. Finally, a degenerate ²³Na-⁴⁰K Bose-Fermi mixture opens the way to creating fermionic NaK ground state molecules, which are known to be chemically stable and have a larger permanent electric dipole than KRb. This thesis concludes with a review of the molecular properties of NaK and explores the possibilities of bringing Feshbach molecules of NaK into the singlet rovibrational ground state.
by Ibon Santiago González.
S.M.