To see the other types of publications on this topic, follow the link: Ultracold physics.

Journal articles on the topic 'Ultracold physics'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Ultracold physics.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Kirch, K., B. Lauss, P. Schmidt-Wellenburg, and G. Zsigmond. "Ultracold Neutrons—Physics and Production." Nuclear Physics News 20, no. 1 (February 26, 2010): 17–23. http://dx.doi.org/10.1080/10619121003626724.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pendlebury, J. M. "Fundamental Physics with Ultracold Neutrons." Annual Review of Nuclear and Particle Science 43, no. 1 (December 1993): 687–727. http://dx.doi.org/10.1146/annurev.ns.43.120193.003351.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Howard, Eric. "Physics on Ultracold quantum gases." Contemporary Physics 61, no. 1 (January 2, 2020): 63–64. http://dx.doi.org/10.1080/00107514.2020.1744731.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bloch, Immanuel, Jean Dalibard, and Wilhelm Zwerger. "Many-body physics with ultracold gases." Reviews of Modern Physics 80, no. 3 (July 18, 2008): 885–964. http://dx.doi.org/10.1103/revmodphys.80.885.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

He, Qiong-Yi, Margaret D. Reid, Bogdan Opanchuk, Rodney Polkinghorne, Laura E. C. Rosales-Zárate, and Peter D. Drummond. "Quantum dynamics in ultracold atomic physics." Frontiers of Physics 7, no. 1 (January 22, 2012): 16–30. http://dx.doi.org/10.1007/s11467-011-0232-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Masnou-Seeuws, Franfoise, and Pierre Pillet. "Ultracold Molecules." Europhysics News 33, no. 6 (November 2002): 193–95. http://dx.doi.org/10.1051/epn:2002601.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

He, Mingyuan, Chenwei Lv, Hai-Qing Lin, and Qi Zhou. "Universal relations for ultracold reactive molecules." Science Advances 6, no. 51 (December 2020): eabd4699. http://dx.doi.org/10.1126/sciadv.abd4699.

Full text
Abstract:
The realization of ultracold polar molecules in laboratories has pushed physics and chemistry to new realms. In particular, these polar molecules offer scientists unprecedented opportunities to explore chemical reactions in the ultracold regime where quantum effects become profound. However, a key question about how two-body losses depend on quantum correlations in interacting many-body systems remains open so far. Here, we present a number of universal relations that directly connect two-body losses to other physical observables, including the momentum distribution and density correlation functions. These relations, which are valid for arbitrary microscopic parameters, such as the particle number, the temperature, and the interaction strength, unfold the critical role of contacts, a fundamental quantity of dilute quantum systems, in determining the reaction rate of quantum reactive molecules in a many-body environment. Our work opens the door to an unexplored area intertwining quantum chemistry; atomic, molecular, and optical physics; and condensed matter physics.
APA, Harvard, Vancouver, ISO, and other styles
8

Hammer, Hans-Werner, and Lucas Platter. "Efimov physics from a renormalization group perspective." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369, no. 1946 (July 13, 2011): 2679–700. http://dx.doi.org/10.1098/rsta.2011.0001.

Full text
Abstract:
We discuss the physics of the Efimov effect from a renormalization group viewpoint using the concept of limit cycles. Furthermore, we discuss recent experiments providing evidence for the Efimov effect in ultracold gases and its relevance for nuclear systems.
APA, Harvard, Vancouver, ISO, and other styles
9

Esry, B. D., and J. P. D'Incao. "Efimov physics in ultracold three-body collisions." Journal of Physics: Conference Series 88 (November 1, 2007): 012040. http://dx.doi.org/10.1088/1742-6596/88/1/012040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Glanz, J. "PHYSICS: The Subtle Flirtation of Ultracold Atoms." Science 280, no. 5361 (April 10, 1998): 200–201. http://dx.doi.org/10.1126/science.280.5361.200.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Rico, E., M. Dalmonte, P. Zoller, D. Banerjee, M. Bögli, P. Stebler, and U. J. Wiese. "SO(3) “Nuclear Physics” with ultracold Gases." Annals of Physics 393 (June 2018): 466–83. http://dx.doi.org/10.1016/j.aop.2018.03.020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Xie, Rui-Hua, and Paul Brumer. "Quantum Reflection of Ultracold Atoms in Magnetic Traps." Zeitschrift für Naturforschung A 54, no. 3-4 (April 1, 1999): 167–70. http://dx.doi.org/10.1515/zna-1999-3-401.

Full text
Abstract:
Ultracold neutral atoms can be trapped in spatially inhomogeneous magnetic fields. In this paper, we present a theoretical model and demonstrate by using Landau-Zener tool that if the magnetic resonant transition region is very narrow, "potential barriers" appear and quantum reflection of such ultracold atoms can be observed in this region.
APA, Harvard, Vancouver, ISO, and other styles
13

Pérez-Ríos, Jesús, Maxence Lepers, Romain Vexiau, Nadia Bouloufa-Maafa, and Olivier Dulieu. "Progress toward ultracold chemistry: ultracold atomic and photonic collisions." Journal of Physics: Conference Series 488, no. 1 (April 10, 2014): 012031. http://dx.doi.org/10.1088/1742-6596/488/1/012031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Zhang, Weiping. "Vector Quantum Field Theory of Atoms: Nonlinear Atom Optics and Bose - Einstein Condensate." Australian Journal of Physics 49, no. 4 (1996): 819. http://dx.doi.org/10.1071/ph960819.

Full text
Abstract:
The recent experimental progress in laser cooling and trapping of neutral atoms brings the atomic samples into the ultracold regime where the bosonic atoms and fermionic atoms are expected to have different dynamic behaviours in the laser fields. In this paper we systematically introduce the theoretical study of interaction of an ultracold atomic ensemble with a light wave in the frame of a vector quantum field theory. The many-body quantum correlation in the ultracold regime of atom optics is studied in terms of vector quantum field theory. A general formalism of nonlinear atom optics for a coherent atomic beam is developed.
APA, Harvard, Vancouver, ISO, and other styles
15

Lu, Bo, and Da-Jun Wang. "Ultracold dipolar molecules." Acta Physica Sinica 68, no. 4 (2019): 043301. http://dx.doi.org/10.7498/aps.68.20182274.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Li, Yun. "An ultracold junction." Nature Physics 16, no. 8 (August 2020): 819. http://dx.doi.org/10.1038/s41567-020-1015-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Killian, Thomas C., and Steven L. Rolston. "Ultracold neutral plasmas." Physics Today 63, no. 3 (March 2010): 46–51. http://dx.doi.org/10.1063/1.3366240.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Lyon, M., and S. L. Rolston. "Ultracold neutral plasmas." Reports on Progress in Physics 80, no. 1 (November 17, 2016): 017001. http://dx.doi.org/10.1088/0034-4885/80/1/017001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Drexel, Winfried. "Update - ultracold neutrons." Neutron News 1, no. 2 (January 1990): 5. http://dx.doi.org/10.1080/10448639008020282.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Zsigmond, G. "The MCUCN simulation code for ultracold neutron physics." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 881 (February 2018): 16–26. http://dx.doi.org/10.1016/j.nima.2017.10.065.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Cho, A. "ATOMIC PHYSICS: Ultracold Atoms Spark a Hot Race." Science 301, no. 5634 (August 8, 2003): 750a—752. http://dx.doi.org/10.1126/science.301.5634.750a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

BARANOV, M. A. "Quantum physics of ultracold trapped dipolar Fermi gases." Journal of Modern Optics 49, no. 12 (October 2002): 2019–26. http://dx.doi.org/10.1080/09500340210140786.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Ryabtsev, I. I., N. N. Kolachevsky, and A. V. Taichenachev. "Physics of ultracold atoms in Russia: topical research." Quantum Electronics 49, no. 5 (May 20, 2019): 409. http://dx.doi.org/10.1070/qel17056.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Ryabtsev, I. I., N. N. Kolachevsky, and A. V. Taichenachev. "Physics of ultracold atoms in Russia: topical research." Quantum Electronics 50, no. 6 (June 11, 2020): 519. http://dx.doi.org/10.1070/qel17377.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Törmä, Päivi. "Physics of ultracold Fermi gases revealed by spectroscopies." Physica Scripta 91, no. 4 (March 22, 2016): 043006. http://dx.doi.org/10.1088/0031-8949/91/4/043006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Alauze, X., J. Lim, M. A. Trigatzis, S. Swarbrick, F. J. Collings, N. J. Fitch, B. E. Sauer, and M. R. Tarbutt. "An ultracold molecular beam for testing fundamental physics." Quantum Science and Technology 6, no. 4 (July 26, 2021): 044005. http://dx.doi.org/10.1088/2058-9565/ac107e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Ryabtsev, I. I., N. N. Kolachevsky, and A. V. Taichenachev. "Physics of ultracold atoms in Russia: current research." Quantum Electronics 51, no. 6 (June 1, 2021): 463. http://dx.doi.org/10.1070/qel17588.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

CROWELL, LAWRENCE B. "ULTRACOLD QUANTUM GASES AS PROBES OF THE UNRUH EFFECT." International Journal of Modern Physics D 15, no. 12 (December 2006): 2191–96. http://dx.doi.org/10.1142/s0218271806009509.

Full text
Abstract:
A high accelerated ultracold quantum gas should be heated by the thermal vacuum of the Unruh effect. This essay discusses possible experimental designs for detecting the Unruh effect with ultracold quantum bosonic gases.
APA, Harvard, Vancouver, ISO, and other styles
29

Kolganova, E. A., A. K. Motovilov, and W. Sandhas. "Ultracold helium trimers." Few-Body Systems 44, no. 1-4 (December 2008): 233–36. http://dx.doi.org/10.1007/s00601-008-0298-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

LUITEN, O. J., B. J. CLAESSENS, S. B. VAN DER GEER, M. P. REIJNDERS, G. TABAN, and E. J. D. VREDENBREGT. "ULTRACOLD ELECTRON SOURCES." International Journal of Modern Physics A 22, no. 22 (September 10, 2007): 3882–97. http://dx.doi.org/10.1142/s0217751x07037494.

Full text
Abstract:
Ultra-cold plasmas with electron temperatures of ~10 K can be created by photo-ionization just above threshold of a cloud of laser-cooled atoms. Recently it was shown 7 by GPT particle tracking simulations that an ultra-cold plasma has an enormous potential as a pulsed bright electron source. Here we discuss these results in the framework of normalized 6D brightness, which allows us to make a proper comparison both with the performance of pulsed, radio-frequency photo-emission sources and with the performance of continuous, needle-like field-emission sources. In addition we speculate on the possibility of using ultra-cold plasmas to realize quantum degenerate electron beams, constituting the ultimate limit in electron beam brightness.
APA, Harvard, Vancouver, ISO, and other styles
31

Mebrek, Rima, Rachid Fermous, and Mourad Djebli. "Anisotropic ultracold plasma expansion." Physica Scripta 95, no. 3 (January 28, 2020): 035601. http://dx.doi.org/10.1088/1402-4896/ab57fb.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Habs, D., J. Kramp, P. Krause, K. Matl, R. Neumann, and D. Schwalm. "Ultracold Ordered Electron Beam." Physica Scripta T22 (January 1, 1988): 269–76. http://dx.doi.org/10.1088/0031-8949/1988/t22/040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Killian, T. C., Y. C. Chen, P. Gupta, S. Laha, Y. N. Martinez, P. G. Mickelson, S. B. Nagel, A. D. Saenz, and C. E. Simien. "Ultracold neutral plasmas." Plasma Physics and Controlled Fusion 47, no. 5A (April 20, 2005): A297—A306. http://dx.doi.org/10.1088/0741-3335/47/5a/021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Nassif, Cláudio, A. C. Amaro de Faria, and Rodrigo Francisco dos Santos. "Testing Lorentz symmetry violation with an invariant minimum speed." Modern Physics Letters A 33, no. 23 (July 29, 2018): 1850148. http://dx.doi.org/10.1142/s0217732318501481.

Full text
Abstract:
This work presents an experimental test of Lorentz invariance violation in the infrared (IR) regime by means of an invariant minimum speed in spacetime and its effects on the time when an atomic clock given by a certain radioactive single-atom (e.g. isotope Na[Formula: see text]) is a thermometer for an ultracold gas like the dipolar gas Na[Formula: see text]K[Formula: see text]. So, according to a Deformed Special Relativity (DSR) so-called Symmetrical Special Relativity (SSR), where there emerges an invariant minimum speed V in the subatomic world, one expects that the proper time of such a clock moving close to V in thermal equilibrium with the ultracold gas is dilated with respect to the improper time given in lab, i.e. the proper time at ultracold systems elapses faster than the improper one for an observer in the lab, thus leading to the so-called proper time dilation so that the atomic decay rate of an ultracold radioactive sample (e.g. Na[Formula: see text]) becomes larger than the decay rate of the same sample at room temperature. This means a suppression of the half-life time of a radioactive sample thermalized with an ultracold cloud of dipolar gas to be investigated by NASA in the Cold Atom Lab (CAL).
APA, Harvard, Vancouver, ISO, and other styles
35

Nesvizhevsky, V. V. "Experiments with ultracold neutrons." Low Temperature Physics 37, no. 5 (May 2011): 367–71. http://dx.doi.org/10.1063/1.3597610.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Khan, Ayan, and B. Tanatar. "Effect of weak disorder on the BCS–BEC crossover in a two-dimensional Fermi gas." International Journal of Modern Physics B 31, no. 09 (April 10, 2017): 1750066. http://dx.doi.org/10.1142/s0217979217500667.

Full text
Abstract:
In this paper, we study the two-dimensional (2D) ultracold Fermi gas with weak impurity in the framework of mean-field theory where the impurity is introduced through Gaussian fluctuations. We have investigated the role of the impurity by studying the experimentally accessible quantities such as condensate fraction and equation of state of the ultracold systems. Our analysis reveals that at the crossover, the disorder enhances superfluidity, which we attribute to the unique nature of the unitary region and to the dimensional effect.
APA, Harvard, Vancouver, ISO, and other styles
37

Rvachov, Timur M., Hyungmok Son, Juliana J. Park, Pascal M. Notz, Tout T. Wang, Martin W. Zwierlein, Wolfgang Ketterle, and Alan O. Jamison. "Photoassociation of ultracold NaLi." Physical Chemistry Chemical Physics 20, no. 7 (2018): 4746–51. http://dx.doi.org/10.1039/c7cp08480c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

HERRERA, IVAN, GIUSEPPE D'ARRIGO, MARIO SICILIANI DE CUMIS, and FRANCESCO SAVERIO CATALIOTTI. "MAGNETIC MICROTRAPS FOR QUANTUM CONTROL." International Journal of Quantum Information 05, no. 01n02 (February 2007): 23–31. http://dx.doi.org/10.1142/s0219749907002487.

Full text
Abstract:
We will review the realization of magnetic microtraps for ultracold atoms. Such devices combine experimental simplicity with unsurpassed versatility in designing confining potentials. We will show how combining magnetic microtraps with optical lattices one can realize many possible quantum systems of interest in many fields ranging from solid state physics to condensed matter. We will also illustrate new possibilities in the quantum simulation of different physical systems.
APA, Harvard, Vancouver, ISO, and other styles
39

Willitsch, Stefan. "Ultracold ménage à trois." Nature Physics 9, no. 8 (June 23, 2013): 461–62. http://dx.doi.org/10.1038/nphys2683.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

HOU, JING-MIN. "QUANTUM PHASES OF ULTRACOLD BOSONIC ATOMS IN A TWO-DIMENSIONAL OPTICAL SUPERLATTICE." Modern Physics Letters B 23, no. 01 (January 10, 2009): 25–33. http://dx.doi.org/10.1142/s0217984909017820.

Full text
Abstract:
We study quantum phases of ultracold bosonic atoms in a two-dimensional optical superlattice. The extended Bose–Hubbard model derived from the system of ultracold bosonic atoms in an optical superlattice is solved numerically with the Gutzwiller approach. We find that the modulated superfluid (MS), Mott-insulator (MI) and density-wave (DW) phases appear in some regimes of parameters. The experimental detection of the first-order correlations and the second-order correlations of different quantum phases with time-of-flight and noise-correlation techniques is proposed.
APA, Harvard, Vancouver, ISO, and other styles
41

Barbiero, Luca, Christian Schweizer, Monika Aidelsburger, Eugene Demler, Nathan Goldman, and Fabian Grusdt. "Coupling ultracold matter to dynamical gauge fields in optical lattices: From flux attachment to ℤ2 lattice gauge theories." Science Advances 5, no. 10 (October 2019): eaav7444. http://dx.doi.org/10.1126/sciadv.aav7444.

Full text
Abstract:
From the standard model of particle physics to strongly correlated electrons, various physical settings are formulated in terms of matter coupled to gauge fields. Quantum simulations based on ultracold atoms in optical lattices provide a promising avenue to study these complex systems and unravel the underlying many-body physics. Here, we demonstrate how quantized dynamical gauge fields can be created in mixtures of ultracold atoms in optical lattices, using a combination of coherent lattice modulation with strong interactions. Specifically, we propose implementation of ℤ2 lattice gauge theories coupled to matter, reminiscent of theories previously introduced in high-temperature superconductivity. We discuss a range of settings from zero-dimensional toy models to ladders featuring transitions in the gauge sector to extended two-dimensional systems. Mastering lattice gauge theories in optical lattices constitutes a new route toward the realization of strongly correlated systems, with properties dictated by an interplay of dynamical matter and gauge fields.
APA, Harvard, Vancouver, ISO, and other styles
42

Kolachevsky, N. N., and A. V. Taichenachev. "Work on the physics of ultracold atoms in Russia." Quantum Electronics 48, no. 5 (May 29, 2018): 401A. http://dx.doi.org/10.1070/qel16733.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

McGuyer, B. H., M. McDonald, G. Z. Iwata, M. G. Tarallo, W. Skomorowski, R. Moszynski, and T. Zelevinsky. "Precise study of asymptotic physics with subradiant ultracold molecules." Nature Physics 11, no. 1 (December 15, 2014): 32–36. http://dx.doi.org/10.1038/nphys3182.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Zinner, N. T., and A. S. Jensen. "Common concepts in nuclear physics and ultracold atomic gasses." Journal of Physics: Conference Series 111 (May 1, 2008): 012016. http://dx.doi.org/10.1088/1742-6596/111/1/012016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Eiles, Matthew T., Jesús Pérez-Ríos, F. Robicheaux, and Chris H. Greene. "Ultracold molecular Rydberg physics in a high density environment." Journal of Physics B: Atomic, Molecular and Optical Physics 49, no. 11 (May 16, 2016): 114005. http://dx.doi.org/10.1088/0953-4075/49/11/114005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

D’Incao, José P. "Few-body physics in resonantly interacting ultracold quantum gases." Journal of Physics B: Atomic, Molecular and Optical Physics 51, no. 4 (January 25, 2018): 043001. http://dx.doi.org/10.1088/1361-6455/aaa116.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Kanamoto, Rina, and Pierre Meystre. "Optomechanics of ultracold atomic gases." Physica Scripta 82, no. 3 (August 18, 2010): 038111. http://dx.doi.org/10.1088/0031-8949/82/03/038111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Amelink, A., and P. van der Straten. "Photoassociation of Ultracold Sodium Atoms." Physica Scripta 68, no. 3 (January 1, 2003): C82—C89. http://dx.doi.org/10.1238/physica.regular.068ac0082.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Kraft, S. D., P. Staanum, J. Lange, L. Vogel, R. Wester, and M. Weidemüller. "Formation of ultracold LiCs molecules." Journal of Physics B: Atomic, Molecular and Optical Physics 39, no. 19 (September 25, 2006): S993—S1000. http://dx.doi.org/10.1088/0953-4075/39/19/s13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Gadway, Bryce, and Bo Yan. "Strongly interacting ultracold polar molecules." Journal of Physics B: Atomic, Molecular and Optical Physics 49, no. 15 (June 30, 2016): 152002. http://dx.doi.org/10.1088/0953-4075/49/15/152002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography