To see the other types of publications on this topic, follow the link: Ultrafast charge dynamics.

Journal articles on the topic 'Ultrafast charge dynamics'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Ultrafast charge dynamics.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

KIM, Kyungwan. "Investigation of Ultrafast Charge Carrier and Lattice Dynamics." Physics and High Technology 29, no. 9 (September 30, 2020): 7–10. http://dx.doi.org/10.3938/phit.29.030.

Full text
Abstract:
When a material is driven out of an equilibrium state, fundamental interactions governing the material properties play roles in returning to the equilibrium state. The microscopic process of this recovery takes place on an ultrafast time scale far beyond the usual time resolution of usual detection methods. Thanks to the recent development of the ultrashort pulsed lasers, various ultrafast techniques are now available to investigate the ultrafast dynamics of materials. In this article, I briefly review the experiment techniques used to investigate ultrafast electronic and lattice dynamics.
APA, Harvard, Vancouver, ISO, and other styles
2

Ayuso, David, Alicia Palacios, Piero Decleva, and Fernando Martín. "Ultrafast charge dynamics in glycine induced by attosecond pulses." Physical Chemistry Chemical Physics 19, no. 30 (2017): 19767–76. http://dx.doi.org/10.1039/c7cp01856h.

Full text
Abstract:
Photoionization of biomolecules upon interaction with an attosecond pulse leads to ultrafast charge fluctuations in the sub-femtosecond time scale. The ultrafast charge migration process in glycine, resulting from the coherent superposition of cationic states, is described using the time-dependent static-exchange DFT method.
APA, Harvard, Vancouver, ISO, and other styles
3

Chábera, Pavel, Lisa A. Fredin, Kasper S. Kjær, Nils W. Rosemann, Linnea Lindh, Om Prakash, Yizhu Liu, et al. "Band-selective dynamics in charge-transfer excited iron carbene complexes." Faraday Discussions 216 (2019): 191–210. http://dx.doi.org/10.1039/c8fd00232k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Grigioni, Ivan, Annalisa Polo, Maria Vittoria Dozzi, Lucia Ganzer, Benedetto Bozzini, Giulio Cerullo, and Elena Selli. "Ultrafast Charge Carrier Dynamics in CuWO4 Photoanodes." Journal of Physical Chemistry C 125, no. 10 (March 4, 2021): 5692–99. http://dx.doi.org/10.1021/acs.jpcc.0c11607.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Pattengale, Brian, and Jier Huang. "Photoinduced interfacial charge separation dynamics in zeolitic imidazolate framework." Physical Chemistry Chemical Physics 20, no. 21 (2018): 14884–88. http://dx.doi.org/10.1039/c8cp02078g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Xiang, Tian, Liang Cheng, and Jing-Bo Qi. "Ultrafast charge and spin dynamics on topological insulators." Acta Physica Sinica 68, no. 22 (2019): 227202. http://dx.doi.org/10.7498/aps.68.20191433.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Born, Brandon, Jeffrey D. A. Krupa, Simon Geoffroy-Gagnon, Ilija R. Hristovski, Christopher M. Collier, and Jonathan F. Holzman. "Ultrafast Charge-Carrier Dynamics of Copper Oxide Nanocrystals." ACS Photonics 3, no. 12 (December 8, 2016): 2475–81. http://dx.doi.org/10.1021/acsphotonics.6b00717.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lanzafame, Joseph M., R. J. Dwayne Miller, Annabel A. Muenter, and Bruce A. Parkinson. "Ultrafast charge-transfer dynamics at tin disulfide surfaces." Journal of Physical Chemistry 96, no. 7 (April 1992): 2820–26. http://dx.doi.org/10.1021/j100186a008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kime, Georgia, Marina A. Leontiadou, Jack R. Brent, Nicky Savjani, Paul O’Brien, and David Binks. "Ultrafast Charge Dynamics in Dispersions of Monolayer MoS2Nanosheets." Journal of Physical Chemistry C 121, no. 40 (September 28, 2017): 22415–21. http://dx.doi.org/10.1021/acs.jpcc.7b05631.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Köhler, Juliane, Tatjana Quast, Johannes Buback, Ingo Fischer, Tobias Brixner, Patrick Nuernberger, Barbara Geiß, Julian Mager, and Christoph Lambert. "Ultrafast charge-transfer dynamics of donor-substituted truxenones." Physical Chemistry Chemical Physics 14, no. 31 (2012): 11081. http://dx.doi.org/10.1039/c2cp41061c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Li, Junjie, Xuan Wang, Zhaoyang Chen, Jun Zhou, Samuel S. Mao, and Jianming Cao. "Real-time probing of ultrafast residual charge dynamics." Applied Physics Letters 98, no. 1 (January 3, 2011): 011501. http://dx.doi.org/10.1063/1.3533811.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Collier, C. M., B. Born, X. Jin, and J. F. Holzman. "Ultrafast charge-carrier and phonon dynamics in GaP." Applied Physics Letters 103, no. 7 (August 12, 2013): 072106. http://dx.doi.org/10.1063/1.4818664.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Petersen, J. C., S. Kaiser, N. Dean, A. Simoncig, H. Y. Liu, A. L. Cavalieri, C. Cacho, et al. "Charge density wave dynamics from ultrafast XUV ARPES." EPJ Web of Conferences 41 (2013): 03023. http://dx.doi.org/10.1051/epjconf/20134103023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Ai, Xin, Neil Anderson, Jianchang Guo, Janusz Kowalik, Laren M. Tolbert, and Tianquan Lian. "Ultrafast Photoinduced Charge Separation Dynamics in Polythiophene/SnO2Nanocomposites†." Journal of Physical Chemistry B 110, no. 50 (December 2006): 25496–503. http://dx.doi.org/10.1021/jp0652291.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Cadirci, Musa, Ombretta Masala, Nigel Pickett, and David Binks. "Ultrafast charge dynamics in CuInS2 nanocrystal quantum dots." Chemical Physics 438 (June 2014): 60–65. http://dx.doi.org/10.1016/j.chemphys.2014.05.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Bennett, Kochise, Markus Kowalewski, Jérémy R. Rouxel, and Shaul Mukamel. "Monitoring molecular nonadiabatic dynamics with femtosecond X-ray diffraction." Proceedings of the National Academy of Sciences 115, no. 26 (June 11, 2018): 6538–47. http://dx.doi.org/10.1073/pnas.1805335115.

Full text
Abstract:
Ultrafast time-resolved X-ray scattering, made possible by free-electron laser sources, provides a wealth of information about electronic and nuclear dynamical processes in molecules. The technique provides stroboscopic snapshots of the time-dependent electronic charge density traditionally used in structure determination and reflects the interplay of elastic and inelastic processes, nonadiabatic dynamics, and electronic populations and coherences. The various contributions to ultrafast off-resonant diffraction from populations and coherences of molecules in crystals, in the gas phase, or from single molecules are surveyed for core-resonant and off-resonant diffraction. Single-molecule∝Nscaling and two-molecule∝N2scaling contributions, where N is the number of active molecules, are compared. Simulations are presented for the excited-state nonadiabatic dynamics of the electron harpooning at the avoided crossing in NaF. We show how a class of multiple diffraction signals from a single molecule can reveal charge-density fluctuations through multidimensional correlation functions of the charge density.
APA, Harvard, Vancouver, ISO, and other styles
17

CHANG, KISEOK, RYAN A. MURDICK, ZHEN-SHENG TAO, TZONG-RU T. HAN, and CHONG-YU RUAN. "ULTRAFAST ELECTRON DIFFRACTIVE VOLTAMMETRY: GENERAL FORMALISM AND APPLICATIONS." Modern Physics Letters B 25, no. 27 (October 30, 2011): 2099–129. http://dx.doi.org/10.1142/s0217984911027492.

Full text
Abstract:
We present a general formalism of ultrafast diffractive voltammetry approach as a contact-free tool to investigate the ultrafast surface charge dynamics in nanostructured interfaces. As case studies, the photoinduced surface charging processes in oxidized silicon surface and the hot electron dynamics in nanoparticle-decorated interface are examined based on the diffractive voltammetry framework. We identify that the charge redistribution processes appear on the surface, sub-surface, and vacuum levels when driven by intense femtosecond laser pulses. To elucidate the voltammetry contribution from different sources, we perform controlled experiments using shadow imaging techniques and N-particle simulations to aid the investigation of the photovoltage dynamics in the presence of photoemission. We show that voltammetry contribution associated with photoemission has a long decay tail and plays a more significant role in the nanosecond timescale, whereas the ultrafast voltammetry are dominated by local charge transfer, such as surface charging and molecular charge transport at nanostructured interfaces. We also discuss the general applicability of the diffractive voltammetry as an integral part of quantitative ultrafast electron diffraction methodology in researching different types of interfaces having distinctive surface diffraction and boundary conditions.
APA, Harvard, Vancouver, ISO, and other styles
18

Emmerich, Sebastian, Sebastian Hedwig, Benito Arnoldi, Johannes Stöckl, Florian Haag, Ralf Hemm, Mirko Cinchetti, Stefan Mathias, Benjamin Stadtmüller, and Martin Aeschlimann. "Ultrafast Charge-Transfer Exciton Dynamics in C60 Thin Films." Journal of Physical Chemistry C 124, no. 43 (October 15, 2020): 23579–87. http://dx.doi.org/10.1021/acs.jpcc.0c08011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Uemura, H., H. Matsuzaki, Y. Takahashi, T. Hasegawa, and H. Okamoto. "Ultrafast charge dynamics in organic one-dimensional Mott insulators." Physica B: Condensed Matter 405, no. 11 (June 2010): S357—S359. http://dx.doi.org/10.1016/j.physb.2009.11.080.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Uemura, Hirotaka, Hiroyuki Matsuzaki, Yukihiro Takahashi, Tatsuo Hasegawa, and Hiroshi Okamoto. "Ultrafast Charge Dynamics in One-Dimensional Organic Mott Insulators." Journal of the Physical Society of Japan 77, no. 11 (November 15, 2008): 113714. http://dx.doi.org/10.1143/jpsj.77.113714.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Barreto, J., T. Roger, and A. Kaplan. "Resolving the ultrafast dynamics of charge carriers in nanocomposites." Applied Physics Letters 100, no. 24 (June 11, 2012): 241906. http://dx.doi.org/10.1063/1.4728120.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Nakashima, Satoru, Yutaka Nagasawa, Kazushige Seike, Tadashi Okada, Maki Sato, and Takamitsu Kohzuma. "Coherent dynamics in ultrafast charge-transfer reaction of plastocyanin." Chemical Physics Letters 331, no. 5-6 (December 2000): 396–402. http://dx.doi.org/10.1016/s0009-2614(00)01205-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Folpini, Giulia, Lorenzo Gatto, Daniele Cortecchia, Michele Devetta, Gabriele Crippa, Caterina Vozzi, Salvatore Stagira, Annamaria Petrozza, and Eugenio Cinquanta. "Ultrafast charge carrier dynamics in quantum confined 2D perovskite." Journal of Chemical Physics 152, no. 21 (June 7, 2020): 214705. http://dx.doi.org/10.1063/5.0008608.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Němec, P., J. Preclíková, A. Kromka, B. Rezek, F. Trojánek, and P. Malý. "Ultrafast dynamics of photoexcited charge carriers in nanocrystalline diamond." Applied Physics Letters 93, no. 8 (August 25, 2008): 083102. http://dx.doi.org/10.1063/1.2970962.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Nakashima, Satoru, Kazushige Seike, Yutaka Nagasawa, Tadashi Okada, Maki Sato, and Takamitsu Kohzuma. "Ultrafast Anisotropy Measurements on Charge Transfer Dynamics in Plastocyanin." Journal of the Chinese Chemical Society 47, no. 4A (August 2000): 693–97. http://dx.doi.org/10.1002/jccs.200000094.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Nazarov, Alexey E., and Anatoly I. Ivanov. "Excitation Frequency Dependence of Ultrafast Photoinduced Charge Transfer Dynamics." International Journal of Chemical Kinetics 49, no. 11 (September 24, 2017): 810–20. http://dx.doi.org/10.1002/kin.21129.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Yeh, A. T. "Ultrafast Electron Localization Dynamics Following Photo-Induced Charge Transfer." Science 289, no. 5481 (August 11, 2000): 935–38. http://dx.doi.org/10.1126/science.289.5481.935.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Bevernaegie, Robin, Lionel Marcélis, Angélica Moreno-Betancourt, Baptiste Laramée-Milette, Garry S. Hanan, Frédérique Loiseau, Michel Sliwa, and Benjamin Elias. "Ultrafast charge transfer excited state dynamics in trifluoromethyl-substituted iridium(iii) complexes." Physical Chemistry Chemical Physics 20, no. 43 (2018): 27256–60. http://dx.doi.org/10.1039/c8cp04265a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Wang, Chenglai, Yingmin Li, and Wei Xiong. "Correction: Extracting molecular responses from ultrafast charge dynamics at material interfaces." Journal of Materials Chemistry C 9, no. 34 (2021): 11378. http://dx.doi.org/10.1039/d1tc90167b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Sim, Sangwan, Alyssa Beierle, Philip Mantos, Steven McCrory, Rohit P. Prasankumar, and Sanchari Chowdhury. "Ultrafast relaxation dynamics in bimetallic plasmonic catalysts." Nanoscale 12, no. 18 (2020): 10284–91. http://dx.doi.org/10.1039/d0nr00831a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Sharma, Alka, Chhavi Sharma, Biplab Bhattacharyya, Kaweri Gambhir, Mahesh Kumar, Suresh Chand, Ranjana Mehrotra, and Sudhir Husale. "Plasmon induced ultrafast injection of hot electrons in Au nanoislands grown on a CdS film." Journal of Materials Chemistry C 5, no. 3 (2017): 618–26. http://dx.doi.org/10.1039/c6tc04243k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Cassette, E., S. Pedetti, B. Mahler, S. Ithurria, B. Dubertret, and G. D. Scholes. "Ultrafast exciton dynamics in 2D in-plane hetero-nanostructures: delocalization and charge transfer." Physical Chemistry Chemical Physics 19, no. 12 (2017): 8373–79. http://dx.doi.org/10.1039/c6cp08689f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Yadav, Amar Nath, Ashwani Kumar Singh, Shubhda Srivastava, Mahesh Kumar, Bipin Kumar Gupta, and Kedar Singh. "Ultrafast charge carrier dynamics in CdSe/V2O5 core/shell quantum dots." Physical Chemistry Chemical Physics 21, no. 11 (2019): 6265–73. http://dx.doi.org/10.1039/c9cp00031c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Yuan, Kai-Jun, and André D. Bandrauk. "Probing Attosecond Electron Coherence in Molecular Charge Migration by Ultrafast X-Ray Photoelectron Imaging." Applied Sciences 9, no. 9 (May 11, 2019): 1941. http://dx.doi.org/10.3390/app9091941.

Full text
Abstract:
Electron coherence is a fundamental quantum phenomenon in today’s ultrafast physics and chemistry research. Based on attosecond pump–probe schemes, ultrafast X-ray photoelectron imaging of molecules was used to monitor the coherent electron dynamics which is created by an XUV pulse. We performed simulations on the molecular ion H 2 + by numerically solving time-dependent Schrödinger equations. It was found that the X-ray photoelectron angular and momentum distributions depend on the time delay between the XUV pump and soft X-ray probe pulses. Varying the polarization and helicity of the soft X-ray probe pulse gave rise to a modulation of the time-resolved photoelectron distributions. The present results provide a new approach for exploring ultrafast coherent electron dynamics and charge migration in reactions of molecules on the attosecond time scale.
APA, Harvard, Vancouver, ISO, and other styles
35

Li, Wei, Xu Zhang, and Gang Lu. "Unraveling photoexcitation dynamics at “dots-in-a-perovskite” heterojunctions from first-principles." Journal of Materials Chemistry A 7, no. 30 (2019): 18012–19. http://dx.doi.org/10.1039/c9ta04871e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Huang, Jiaqing, Yijie Mo, and Yao Yao. "Charge-transfer state dynamics in all-polymer solar cells: formation, dissociation and decoherence." Physical Chemistry Chemical Physics 21, no. 5 (2019): 2755–63. http://dx.doi.org/10.1039/c8cp06467a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Ravikumar, Abhilash, Gregor Kladnik, Moritz Müller, Albano Cossaro, Gregor Bavdek, Laerte L. Patera, Daniel Sánchez-Portal, et al. "Tuning ultrafast electron injection dynamics at organic-graphene/metal interfaces." Nanoscale 10, no. 17 (2018): 8014–22. http://dx.doi.org/10.1039/c7nr08737c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

BANG, Junhyeok. "Excited Carrier Dynamics in Two-dimensional Materials." Physics and High Technology 29, no. 9 (September 30, 2020): 15–21. http://dx.doi.org/10.3938/phit.29.032.

Full text
Abstract:
When electrons in materials are excited, they undergo several dynamic processes such as carrier thermalization, transfer, and recombination. These fundamental excited state processes are crucial to understanding the microscopic principles at work in electronic and optoelectronic devices. This article introduces the excited carrier dynamics in a two-dimensional van der Waals material and reveals several interesting phenomena that do not occur in bulk materials. Particularly, the focus will be two dynamic processes: carrier multiplication and ultrafast charge transfer.
APA, Harvard, Vancouver, ISO, and other styles
39

Meng, Shengjie, Hongyan Shi, Xiudong Sun, and Bo Gao. "Tuning Ultrafast Charge Carrier Dynamics of Monolayer Graphene using Substrates." Journal of Physical Chemistry C 124, no. 38 (August 26, 2020): 21147–54. http://dx.doi.org/10.1021/acs.jpcc.0c06174.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Galar, Pavel, Piotr Piatkowski, Thi Tuyen Ngo, Mario Gutiérrez, Iván Mora-Seró, and Abderrazzak Douhal. "Perovskite-quantum dots interface: Deciphering its ultrafast charge carrier dynamics." Nano Energy 49 (July 2018): 471–80. http://dx.doi.org/10.1016/j.nanoen.2018.04.069.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Kime, Georgia, Kai-Ge Zhou, Samantha J. O. Hardman, Rahul R. Nair, Konstantin Sergeevich Novoselov, Daria V. Andreeva, and David J. Binks. "pH Dependence of Ultrafast Charge Dynamics in Graphene Oxide Dispersions." Journal of Physical Chemistry C 123, no. 16 (April 4, 2019): 10677–81. http://dx.doi.org/10.1021/acs.jpcc.9b01060.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Nicolet, Olivier, and Eric Vauthey. "Ultrafast Nonequilibrium Charge Recombination Dynamics of Excited Donor−Acceptor Complexes." Journal of Physical Chemistry A 106, no. 23 (June 2002): 5553–62. http://dx.doi.org/10.1021/jp025542c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Jarzȩba, Włodzimierz, Stanislas Pommeret, and Jean-Claude Mialocq. "Ultrafast dynamics of the excited methylviologen–iodide charge transfer complexes." Chemical Physics Letters 333, no. 6 (January 2001): 419–26. http://dx.doi.org/10.1016/s0009-2614(00)01417-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Ren, Yuhang, Zhu’an Xu, and Gunter Lüpke. "Ultrafast collective dynamics in the charge-density-wave conductor K0.3MoO3." Journal of Chemical Physics 120, no. 10 (March 8, 2004): 4755–58. http://dx.doi.org/10.1063/1.1645785.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Wang, Chenglai, Yingmin Li, and Wei Xiong. "Extracting molecular responses from ultrafast charge dynamics at material interfaces." Journal of Materials Chemistry C 8, no. 35 (2020): 12062–67. http://dx.doi.org/10.1039/d0tc01819h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Wong, Chris Tsz On, Shun Shang Lo, and Libai Huang. "Ultrafast Spatial Imaging of Charge Dynamics in Heterogeneous Polymer Blends." Journal of Physical Chemistry Letters 3, no. 7 (March 15, 2012): 879–84. http://dx.doi.org/10.1021/jz300178g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Schmitt, F., P. S. Kirchmann, U. Bovensiepen, R. G. Moore, J.-H. Chu, D. H. Lu, L. Rettig, M. Wolf, I. R. Fisher, and Z.-X. Shen. "Ultrafast electron dynamics in the charge density wave material TbTe3." New Journal of Physics 13, no. 6 (June 10, 2011): 063022. http://dx.doi.org/10.1088/1367-2630/13/6/063022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Pollock, Timothy P., and Cody W. Schlenker. "Charge Trapping Dynamics Revealed in CH3NH3PbI3 by Ultrafast Multipulse Spectroscopy." Journal of Physical Chemistry C 125, no. 34 (August 20, 2021): 18834–40. http://dx.doi.org/10.1021/acs.jpcc.1c05513.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Lin, Zhe, Jiahao Chen, Yusong Zhang, Jianguo Shen, Sheng Li, and Thomas F. George. "Charge Accumulation of Amplified Spontaneous Emission in a Conjugated Polymer Chain and Its Dynamical Phonon Spectra." Molecules 25, no. 13 (June 30, 2020): 3003. http://dx.doi.org/10.3390/molecules25133003.

Full text
Abstract:
In this article, the detailed photoexcitation dynamics which combines nonadiabatic molecular dynamics with electronic transitions shows the occurrence of amplified spontaneous emission (ASE) in conjugated polymers, accompanied by spontaneous electric polarization. The elaborate molecular dynamic process of ultrafast photoexcitation can be described as follows: Continuous external optical pumping (laser of 70 µJ/cm2) not only triggers the appearance of an instantaneous four-level electronic structure but causes population inversion for ASE as well. At the same time, the phonon spectrum of the conjugated polymer changes, and five local infrared lattice vibrational modes form at the two ends, which break the original symmetry in the system and leads to charge accumulation at the ends of the polymer chain without an external electric field. This novel phenomenon gives a brand-new avenue to explain how the lattice vibrations play a role in the evolution of the stimulated emission, which leads to an ultrafast effect in solid conjugated polymers.
APA, Harvard, Vancouver, ISO, and other styles
50

Kosumi, Daisuke, Toshiyuki Kusumoto, Ritsuko Fujii, Mitsuru Sugisaki, Yoshiro Iinuma, Naohiro Oka, Yuki Takaesu, et al. "Ultrafast excited state dynamics of fucoxanthin: excitation energy dependent intramolecular charge transfer dynamics." Physical Chemistry Chemical Physics 13, no. 22 (2011): 10762. http://dx.doi.org/10.1039/c0cp02568b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography