To see the other types of publications on this topic, follow the link: Ultrafast Electron Diffraction.

Journal articles on the topic 'Ultrafast Electron Diffraction'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Ultrafast Electron Diffraction.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Wang, Xuan, and Yutong Li. "Ultrafast electron diffraction." Chinese Physics B 27, no. 7 (2018): 076102. http://dx.doi.org/10.1088/1674-1056/27/7/076102.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Srinivasan, Ramesh, Vladimir A Lobastov, Chong-Yu Ruan, and Ahmed H Zewail. "Ultrafast Electron Diffraction (UED)." Helvetica Chimica Acta 86, no. 6 (2003): 1761–99. http://dx.doi.org/10.1002/hlca.200390147.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Helliwell, John R. "Ultrafast electron diffraction shapes up." Physics World 14, no. 4 (2001): 25. http://dx.doi.org/10.1088/2058-7058/14/4/23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Yang, Jinfeng, Kazuki Gen, Nobuyasu Naruse, Shouichi Sakakihara, and Yoichi Yoshida. "A Compact Ultrafast Electron Diffractometer with Relativistic Femtosecond Electron Pulses." Quantum Beam Science 4, no. 1 (2020): 4. http://dx.doi.org/10.3390/qubs4010004.

Full text
Abstract:
We have developed a compact relativistic femtosecond electron diffractometer with a radio-frequency photocathode electron gun and an electron lens system. The electron gun generated 2.5-MeV-energy electron pulses with a duration of 55 ± 5 fs containing 6.3 × 104 electrons per pulse. Using these pulses, we successfully detected high-contrast electron diffraction images of single crystalline, polycrystalline, and amorphous materials. An excellent spatial resolution of diffraction images was obtained as 0.027 ± 0.001 Å−1. In the time-resolved electron diffraction measurement, a laser-excited ultr
APA, Harvard, Vancouver, ISO, and other styles
5

CHANG, KISEOK, RYAN A. MURDICK, ZHEN-SHENG TAO, TZONG-RU T. HAN, and CHONG-YU RUAN. "ULTRAFAST ELECTRON DIFFRACTIVE VOLTAMMETRY: GENERAL FORMALISM AND APPLICATIONS." Modern Physics Letters B 25, no. 27 (2011): 2099–129. http://dx.doi.org/10.1142/s0217984911027492.

Full text
Abstract:
We present a general formalism of ultrafast diffractive voltammetry approach as a contact-free tool to investigate the ultrafast surface charge dynamics in nanostructured interfaces. As case studies, the photoinduced surface charging processes in oxidized silicon surface and the hot electron dynamics in nanoparticle-decorated interface are examined based on the diffractive voltammetry framework. We identify that the charge redistribution processes appear on the surface, sub-surface, and vacuum levels when driven by intense femtosecond laser pulses. To elucidate the voltammetry contribution fro
APA, Harvard, Vancouver, ISO, and other styles
6

Taheri, Mitra L., Nigel D. Browning, and John Lewellen. "Symposium on Ultrafast Electron Microscopy and Ultrafast Science." Microscopy and Microanalysis 15, no. 4 (2009): 271. http://dx.doi.org/10.1017/s1431927609090771.

Full text
Abstract:
Dynamic characterization techniques have been utilized in the fields of biology, chemistry, physics, and materials science for many years. Techniques range from neutron scattering to X-ray diffraction. Two of the fields experiencing much development recently have been electron-based techniques. Namely, ultrafast electron diffraction (UED) and ultrafast electron microscopy (UEM) have been advancing rapidly, but unfortunately, in parallel. We are approaching an era where the convergence of these two techniques could open up a wide range of scientific and technological opportunities and advanceme
APA, Harvard, Vancouver, ISO, and other styles
7

Aidelsburger, M., F. O. Kirchner, F. Krausz, and P. Baum. "Single-electron pulses for ultrafast diffraction." Proceedings of the National Academy of Sciences 107, no. 46 (2010): 19714–19. http://dx.doi.org/10.1073/pnas.1010165107.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Durham, Daniel, Khalid Siddiqui, Fuhao Ji, et al. "Relativistic Ultrafast Electron Diffraction of Nanomaterials." Microscopy and Microanalysis 26, S2 (2020): 676–77. http://dx.doi.org/10.1017/s1431927620015494.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Baskin, J. Spencer, and Ahmed H. Zewail. "Oriented Ensembles in Ultrafast Electron Diffraction." ChemPhysChem 7, no. 7 (2006): 1562–74. http://dx.doi.org/10.1002/cphc.200600133.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Zhang, Dongfang, Tobias Kroh, Felix Ritzkowsky, et al. "THz-Enhanced DC Ultrafast Electron Diffractometer." Ultrafast Science 2021 (August 11, 2021): 1–7. http://dx.doi.org/10.34133/2021/9848526.

Full text
Abstract:
Terahertz- (THz-) based electron manipulation has recently been shown to hold tremendous promise as a technology for manipulating and driving the next generation of compact ultrafast electron sources. Here, we demonstrate an ultrafast electron diffractometer with THz-driven pulse compression. The electron bunches from a conventional DC gun are compressed by a factor of 10 and reach a duration of ~180 fs (FWHM) with 10,000 electrons/pulse at a 1 kHz repetition rate. The resulting ultrafast electron source is used in a proof-of-principle experiment to probe the photoinduced dynamics of single-cr
APA, Harvard, Vancouver, ISO, and other styles
11

Fill, Ernst, Laszlo Veisz, Alexander Apolonski, and Ferenc Krausz. "Sub-fs electron pulses for ultrafast electron diffraction." New Journal of Physics 8, no. 11 (2006): 272. http://dx.doi.org/10.1088/1367-2630/8/11/272.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Reed, Bryan W. "Femtosecond electron pulse propagation for ultrafast electron diffraction." Journal of Applied Physics 100, no. 3 (2006): 034916. http://dx.doi.org/10.1063/1.2227710.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Nunes, J. P. F., K. Ledbetter, M. Lin, et al. "Liquid-phase mega-electron-volt ultrafast electron diffraction." Structural Dynamics 7, no. 2 (2020): 024301. http://dx.doi.org/10.1063/1.5144518.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Mohler, Kathrin J., and Peter Baum. "Ultrafast electron diffraction of THz-excited nanostructures." EPJ Web of Conferences 205 (2019): 08004. http://dx.doi.org/10.1051/epjconf/201920508004.

Full text
Abstract:
We study the electromagnetic response of nanostructures to single-cycle THz excitation by using ultrafast electron diffraction. Although the nanostructures themselves are static, there exist complex sub-THz-cycle Bragg spot dynamics that relate via time-dependent Aharonov-Bohm-like phase shifts to the nanoscale electromagnetic potentials.
APA, Harvard, Vancouver, ISO, and other styles
15

Ischenko, A. A., Yu I. Tarasov, E. A. Ryabov, S. A. Aseyev, and L. Schäfer. "ULTRAFAST TRANSMISSION ELECTRON MICROSCOPY." Fine Chemical Technologies 12, no. 1 (2017): 5–25. http://dx.doi.org/10.32362/2410-6593-2017-12-1-5-25.

Full text
Abstract:
Ultrafast laser spectral and electron diffraction methods complement each other and open up new possibilities in chemistry and physics to light up atomic and molecular motions involved in the primary processes governing structural transitions. Since the 1980s, scientific laboratories in the world have begun to develop a new field of research aimed at this goal. “Atomic-molecular movies” will allow visualizing coherent dynamics of nuclei in molecules and fast processes in chemical reactions in real time. Modern femtosecond and picosecond laser sources have made it possible to significantly chan
APA, Harvard, Vancouver, ISO, and other styles
16

Yang, Jinfeng, Koichi Kan, Nobuyasu Naruse, Yoichi Yoshida, Katsumi Tanimura, and Junji Urakawa. "100-femtosecond MeV electron source for ultrafast electron diffraction." Radiation Physics and Chemistry 78, no. 12 (2009): 1106–11. http://dx.doi.org/10.1016/j.radphyschem.2009.05.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Shen, X., J. P. F. Nunes, J. Yang, et al. "Femtosecond gas-phase mega-electron-volt ultrafast electron diffraction." Structural Dynamics 6, no. 5 (2019): 054305. http://dx.doi.org/10.1063/1.5120864.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

van der Geer, S. B., M. J. de Loos, E. J. D. Vredenbregt, and O. J. Luiten. "Ultracold Electron Source for Single-Shot, Ultrafast Electron Diffraction." Microscopy and Microanalysis 15, no. 4 (2009): 282–89. http://dx.doi.org/10.1017/s143192760909076x.

Full text
Abstract:
AbstractUltrafast electron diffraction (UED) enables studies of structural dynamics at atomic length and timescales, i.e., 0.1 nm and 0.1 ps, in single-shot mode. At present UED experiments are based on femtosecond laser photoemission from solid state cathodes. These photoemission sources perform excellently, but are not sufficiently bright for single-shot studies of, for example, biomolecular samples. We propose a new type of electron source, based on near-threshold photoionization of a laser-cooled and trapped atomic gas. The electron temperature of these sources can be as low as 10 K, imply
APA, Harvard, Vancouver, ISO, and other styles
19

Hastings, J. B., F. M. Rudakov, D. H. Dowell, et al. "Ultrafast time-resolved electron diffraction with megavolt electron beams." Applied Physics Letters 89, no. 18 (2006): 184109. http://dx.doi.org/10.1063/1.2372697.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Müller, M., A. Paarmann, C. Xu, and R. Ernstorfer. "Coherent Electron Source for Ultrafast Electron Diffraction and Imaging." EPJ Web of Conferences 41 (2013): 10007. http://dx.doi.org/10.1051/epjconf/20134110007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Chatelain, Robert P., Vance R. Morrison, Chris Godbout, and Bradley J. Siwick. "Ultrafast electron diffraction with radio-frequency compressed electron pulses." Applied Physics Letters 101, no. 8 (2012): 081901. http://dx.doi.org/10.1063/1.4747155.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Pei Min-Jie, Qi Da-Long, Qi Ying-Peng, Jia Tian-Qing, Zhang Shi-An, and Sun Zhen-Rong. "Ultrafast electron diffraction technique and its applications." Acta Physica Sinica 64, no. 3 (2015): 034101. http://dx.doi.org/10.7498/aps.64.034101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Kim, Hyun Woo, Nikolay A. Vinokurov, In Hyung Baek, et al. "Towards jitter-free ultrafast electron diffraction technology." Nature Photonics 14, no. 4 (2019): 245–49. http://dx.doi.org/10.1038/s41566-019-0566-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Nibbering, E. T. J. "Low-energy electron diffraction at ultrafast speeds." Science 345, no. 6193 (2014): 137–38. http://dx.doi.org/10.1126/science.1256199.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Wilson, R. Mark. "Ultrafast electron diffraction from an ultracold source." Physics Today 67, no. 7 (2014): 12–14. http://dx.doi.org/10.1063/pt.3.2435.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Zewail, Ahmed H. "4D ULTRAFAST ELECTRON DIFFRACTION, CRYSTALLOGRAPHY, AND MICROSCOPY." Annual Review of Physical Chemistry 57, no. 1 (2006): 65–103. http://dx.doi.org/10.1146/annurev.physchem.57.032905.104748.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

van Mourik, M. W., W. J. Engelen, E. J. D. Vredenbregt, and O. J. Luiten. "Ultrafast electron diffraction using an ultracold source." Structural Dynamics 1, no. 3 (2014): 034302. http://dx.doi.org/10.1063/1.4882074.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Ma, Zhuo-ran, Feng-feng Qi, and Dao Xiang. "Probing molecular dynamics with ultrafast electron diffraction." Chinese Journal of Chemical Physics 34, no. 1 (2021): 15–29. http://dx.doi.org/10.1063/1674-0068/cjcp2012208.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Liang Wen-Xi, Zhu Peng-Fei, Wang Xuan, et al. "Ultrafast dynamics of thin-film aluminum observed by ultrafast electron diffraction." Acta Physica Sinica 58, no. 8 (2009): 5546. http://dx.doi.org/10.7498/aps.58.5546.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Bach, Nora, Armin Feist, Till Domrose, et al. "Highly Coherent Femtosecond Electron Pulses for Ultrafast Transmission Electron Microscopy." EPJ Web of Conferences 205 (2019): 08014. http://dx.doi.org/10.1051/epjconf/201920508014.

Full text
Abstract:
We describe the implementation and detailed characterization of a laser-triggered field-emitter electron source integrated into a modified transmission electron microscope. Highly coherent electron pulses enable high resolution ultrafast electron imaging and diffraction.
APA, Harvard, Vancouver, ISO, and other styles
31

SAKABE, Shuji, Hiroki KURATA, Masaki HASHIDA, et al. "Evolution of Electron-Microscopes and the Ultrafast Electron Diffraction with Laser Accelerated Electrons." Review of Laser Engineering 43, no. 3 (2015): 138. http://dx.doi.org/10.2184/lsj.43.3_138.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Janzen, A., B. Krenzer, O. Heinz, et al. "A pulsed electron gun for ultrafast electron diffraction at surfaces." Review of Scientific Instruments 78, no. 1 (2007): 013906. http://dx.doi.org/10.1063/1.2431088.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Vasileiadis, Thomas, Emmanuel N. Skountzos, Dawn Foster, et al. "Ultrafast rotational motions of supported nanoclusters probed by electron diffraction." Nanoscale Horizons 4, no. 5 (2019): 1164–73. http://dx.doi.org/10.1039/c9nh00031c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Janzen, A., B. Krenzer, P. Zhou, D. von der Linde, and M. Horn-von Hoegen. "Ultrafast electron diffraction at surfaces after laser excitation." Surface Science 600, no. 18 (2006): 4094–98. http://dx.doi.org/10.1016/j.susc.2006.02.070.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Musumeci, P., J. T. Moody, C. M. Scoby, M. S. Gutierrez, and T. Tran. "rf streak camera based ultrafast relativistic electron diffraction." Review of Scientific Instruments 80, no. 1 (2009): 013302. http://dx.doi.org/10.1063/1.3072883.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Centurion, Martin. "Ultrafast imaging of isolated molecules with electron diffraction." Journal of Physics B: Atomic, Molecular and Optical Physics 49, no. 6 (2016): 062002. http://dx.doi.org/10.1088/0953-4075/49/6/062002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Luiten, J., T. Van Oudheusden, B. Siwick, E. De Jong, W. Op 't Root, and B. Van der Geer. "Extreme Beams for Single-shot Ultrafast Electron Diffraction." Microscopy and Microanalysis 14, S2 (2008): 494–95. http://dx.doi.org/10.1017/s1431927608082391.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Centurion, Martin. "Molecular Structural Dynamics Captured with Ultrafast Electron Diffraction." Microscopy and Microanalysis 26, S2 (2020): 918. http://dx.doi.org/10.1017/s1431927620016311.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Ben-Nun, M., Jianshu Cao, and Kent R. Wilson. "Ultrafast X-ray and Electron Diffraction: Theoretical Considerations." Journal of Physical Chemistry A 101, no. 47 (1997): 8743–61. http://dx.doi.org/10.1021/jp971764c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Williamson, J. Charles, Jianming Cao, Hyotcherl Ihee, Hans Frey, and Ahmed H. Zewail. "Clocking transient chemical changes by ultrafast electron diffraction." Nature 386, no. 6621 (1997): 159–62. http://dx.doi.org/10.1038/386159a0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Mo, M. Z., Z. Chen, R. K. Li, et al. "Heterogeneous to homogeneous melting transition visualized with ultrafast electron diffraction." Science 360, no. 6396 (2018): 1451–55. http://dx.doi.org/10.1126/science.aar2058.

Full text
Abstract:
The ultrafast laser excitation of matters leads to nonequilibrium states with complex solid-liquid phase-transition dynamics. We used electron diffraction at mega–electron volt energies to visualize the ultrafast melting of gold on the atomic scale length. For energy densities approaching the irreversible melting regime, we first observed heterogeneous melting on time scales of 100 to 1000 picoseconds, transitioning to homogeneous melting that occurs catastrophically within 10 to 20 picoseconds at higher energy densities. We showed evidence for the heterogeneous coexistence of solid and liquid
APA, Harvard, Vancouver, ISO, and other styles
42

Yang, Jinfeng, and Yoichi Yoshida. "Relativistic Ultrafast Electron Microscopy: Single-Shot Diffraction Imaging with Femtosecond Electron Pulses." Advances in Condensed Matter Physics 2019 (May 2, 2019): 1–6. http://dx.doi.org/10.1155/2019/9739241.

Full text
Abstract:
We report on a single-shot diffraction imaging methodology using relativistic femtosecond electron pulses generated by a radio-frequency acceleration-based photoemission gun. The electron pulses exhibit excellent characteristics, including a root-mean-square (rms) illumination convergence of 31 ± 2 μrad, a spatial coherence length of 5.6 ± 0.4 nm, and a pulse duration of approximately 100 fs with (6.3 ± 0.6) × 106 electrons per pulse at 3.1 MeV energy. These pulses facilitate high-quality diffraction images of gold single crystals with a single shot. The rms spot width of the diffracted beams
APA, Harvard, Vancouver, ISO, and other styles
43

Yuan, Kai-Jun, and André D. Bandrauk. "Exploring coherent electron excitation and migration dynamics by electron diffraction with ultrashort X-ray pulses." Physical Chemistry Chemical Physics 19, no. 38 (2017): 25846–52. http://dx.doi.org/10.1039/c7cp05067d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Hassan, Mohammed T., Haihua Liu, John Spencer Baskin, and Ahmed H. Zewail. "Photon gating in four-dimensional ultrafast electron microscopy." Proceedings of the National Academy of Sciences 112, no. 42 (2015): 12944–49. http://dx.doi.org/10.1073/pnas.1517942112.

Full text
Abstract:
Ultrafast electron microscopy (UEM) is a pivotal tool for imaging of nanoscale structural dynamics with subparticle resolution on the time scale of atomic motion. Photon-induced near-field electron microscopy (PINEM), a key UEM technique, involves the detection of electrons that have gained energy from a femtosecond optical pulse via photon–electron coupling on nanostructures. PINEM has been applied in various fields of study, from materials science to biological imaging, exploiting the unique spatial, energy, and temporal characteristics of the PINEM electrons gained by interaction with a “si
APA, Harvard, Vancouver, ISO, and other styles
45

Wolf, Thomas J. A., Jie Yang, David M. Sanchez, et al. "Imaging the ring opening reaction of 1,3-cyclohexadiene with MeV ultrafast electron diffraction." EPJ Web of Conferences 205 (2019): 07006. http://dx.doi.org/10.1051/epjconf/201920507006.

Full text
Abstract:
We resolve the structural dynamics of the ultrafast photoinduced ring opening reaction of 1,3-cyclohexadiene in space and time employing megaelectronvolt gas phase ultrafast electron diffraction. We, furthermore, observe coherent large amplitude motions of the photoproduct.
APA, Harvard, Vancouver, ISO, and other styles
46

Liu, Haihua, John Spencer Baskin, and Ahmed H. Zewail. "Infrared PINEM developed by diffraction in 4D UEM." Proceedings of the National Academy of Sciences 113, no. 8 (2016): 2041–46. http://dx.doi.org/10.1073/pnas.1600317113.

Full text
Abstract:
The development of four-dimensional ultrafast electron microscopy (4D UEM) has enabled not only observations of the ultrafast dynamics of photon–matter interactions at the atomic scale with ultrafast resolution in image, diffraction, and energy space, but photon–electron interactions in the field of nanoplasmonics and nanophotonics also have been captured by the related technique of photon-induced near-field electron microscopy (PINEM) in image and energy space. Here we report a further extension in the ongoing development of PINEM using a focused, nanometer-scale, electron beam in diffraction
APA, Harvard, Vancouver, ISO, and other styles
47

Cavaletto, Stefano M., Daniel Keefer, Jérémy R. Rouxel, et al. "Unveiling the spatial distribution of molecular coherences at conical intersections by covariance X-ray diffraction signals." Proceedings of the National Academy of Sciences 118, no. 22 (2021): e2105046118. http://dx.doi.org/10.1073/pnas.2105046118.

Full text
Abstract:
The outcomes and timescales of molecular nonadiabatic dynamics are decisively impacted by the quantum coherences generated at localized molecular regions. In time-resolved X-ray diffraction imaging, these coherences create distinct signatures via inelastic photon scattering, but they are buried under much stronger background elastic features. Here, we exploit the rich dynamical information encoded in the inelastic patterns, which we reveal by frequency-dispersed covariance ultrafast powder X-ray diffraction of stochastic X-ray free-electron laser pulses. This is demonstrated for the photoisome
APA, Harvard, Vancouver, ISO, and other styles
48

Field, Ryan L., Lai Chung Liu, Yifeng Jiang, Wojciech Gawelda, Cheng Lu, and R. J. Dwayne Miller. "Ultrafast spin crossover in a single crystal." EPJ Web of Conferences 205 (2019): 07009. http://dx.doi.org/10.1051/epjconf/201920507009.

Full text
Abstract:
Femtosecond spectroscopy and electron diffraction are used to characterize spin crossover in single crystal iron(II)-tris(bipyridine)-bis(hexafluorophosphate). The high-spin lifetime is reduced compared to in solution. Preliminary electron diffraction experiments show evidence of ultrafast Fe-N bond elongation associated with spin crossover and the subsequent molecular reorganization resulting from vibrational cooling.
APA, Harvard, Vancouver, ISO, and other styles
49

Ischenko, Anatoly A., Sergei A. Aseev, Victor N. Bagratashvili, Vladislav Ya Panchenko, and Evgenii A. Ryabov. "Ultrafast electron diffraction and electron microscopy: present status and future prospects." Uspekhi Fizicheskih Nauk 184, no. 7 (2014): 681–722. http://dx.doi.org/10.3367/ufnr.0184.201407a.0681.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Ishchenko, A. A., S. A. Aseyev, V. N. Bagratashvili, V. Ya Panchenko, and E. A. Ryabov. "Ultrafast electron diffraction and electron microscopy: present status and future prospects." Physics-Uspekhi 57, no. 7 (2014): 633–69. http://dx.doi.org/10.3367/ufne.0184.201407a.0681.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!