To see the other types of publications on this topic, follow the link: Ultrafast Photoisomerization.

Journal articles on the topic 'Ultrafast Photoisomerization'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Ultrafast Photoisomerization.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Mengots, Alvis, Andreas Erbs Hillers-Bendtsen, Sandra Doria, et al. "Dihydroazulene-Azobenzene-Dihydroazulene Triad Photoswitches." Chemistry - A European Journal 27, no. 48 (2021): 12437–46. https://doi.org/10.1002/chem.202101533.

Full text
Abstract:
Photoswitch triads comprised of two dihydroazulene (DHA) units in conjugation to a central trans-azobenzene (AZB) unit were prepared in stepwise protocols starting from meta- and paradisubstituted azobenzenes. The para-connected triad had significantly altered optical properties and lacked the photoactivity of the separate photochromes. Instead, for the meta-connected triad all three photochromes could be photoisomerized to generate an isomer with two vinylheptafulvene (VHF) units and a cis-azobenzene unit. The photoisomerizations were studied by ultrafast spectroscopy, revealing a fast DHA-to
APA, Harvard, Vancouver, ISO, and other styles
2

Ma, Jianzheng, Di Zhao, Chenwei Jiang, Zhenggang Lan, and Fuli Li. "Effect of Temperature on Photoisomerization Dynamics of a Newly Designed Two-Stroke Light-Driven Molecular Rotary Motor." International Journal of Molecular Sciences 23, no. 17 (2022): 9694. http://dx.doi.org/10.3390/ijms23179694.

Full text
Abstract:
The working mechanism of conventional light-driven molecular rotary motors, especially Feringa-type motors, contains two photoisomerization steps and two thermal helix inversion steps. Due to the existence of a thermal helix inversion step, both the ability to work at lower temperatures and the rotation speed are limited. In this work, a two-stroke light-driven molecular rotary motor, 2-(1,5-dimethyl-4,5-dihydrocyclopenta[b]pyrrol-6(1H)-ylidene)-1,2-dihydro-3H-pyrrol-3-one (DDPY), is proposed, which is capable of performing unidirectional and repetitive rotation by only two photoisomerization
APA, Harvard, Vancouver, ISO, and other styles
3

Wachtveitl, J., T. N ägele, B. Puell, et al. "Ultrafast photoisomerization of azobenzene compounds." Journal of Photochemistry and Photobiology A: Chemistry 105, no. 2-3 (1997): 283–88. http://dx.doi.org/10.1016/s1010-6030(96)04572-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Aalberts, Daniel P., and Hans F. Stabenau. "A vision for ultrafast photoisomerization." Physica A: Statistical Mechanics and its Applications 389, no. 15 (2010): 2981–86. http://dx.doi.org/10.1016/j.physa.2010.02.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rivalta, Ivan, Artur Nenov, and Marco Garavelli. "Modelling retinal chromophores photoisomerization: from minimal models in vacuo to ultimate bidimensional spectroscopy in rhodopsins." Phys. Chem. Chem. Phys. 16, no. 32 (2014): 16865–79. http://dx.doi.org/10.1039/c3cp55211j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Marefat Khah, Alireza, Lena Grimmelsmann, Johannes Knorr, Patrick Nuernberger, and Christof Hättig. "How a linear triazene photoisomerizes in a volume-conserving fashion." Physical Chemistry Chemical Physics 20, no. 44 (2018): 28075–87. http://dx.doi.org/10.1039/c8cp05208e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Slavov, Chavdar, Chong Yang, Luca Schweighauser, et al. "Ultrafast dynamics of highly constrained azobenzene macrocycles." EPJ Web of Conferences 205 (2019): 09002. http://dx.doi.org/10.1051/epjconf/201920509002.

Full text
Abstract:
The ultrafast photoisomerization of model azobenzene macrocycles was studied by transient absorption spectroscopy. Our results reveal a strong dependence of the dynamics and the overall molecular properties on the geometric constraints and the intramolecular strain.
APA, Harvard, Vancouver, ISO, and other styles
8

Léonard, J., J. Briand, S. Fusi, V. Zanirato, M. Olivucci, and S. Haacke. "Isomer-dependent vibrational coherence in ultrafast photoisomerization." New Journal of Physics 15, no. 10 (2013): 105022. http://dx.doi.org/10.1088/1367-2630/15/10/105022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ma, Jianzheng, Sujie Yang, Di Zhao, Chenwei Jiang, Zhenggang Lan, and Fuli Li. "Design and Nonadiabatic Photoisomerization Dynamics Study of a Three-Stroke Light-Driven Molecular Rotary Motor." International Journal of Molecular Sciences 23, no. 7 (2022): 3908. http://dx.doi.org/10.3390/ijms23073908.

Full text
Abstract:
Working cycle of conventional light-driven molecular rotary motors (LDMRMs), especially Feringa-type motors, usually have four steps, two photoisomerization steps, and two thermal helix inversion (THI) steps. THI steps hinder the ability of the motor to operate at lower temperatures and limit the rotation speed of LDMRMs. A three-stroke LDMRM, 2-(2,7-dimethyl-2,3-dihydro-1H-inden-1-ylidene)-1,2-dihydro-3H-pyrrol-3-one (DDIY), is proposed, which is capable of completing an unidirectional rotation by two photoisomerization steps and one thermal helix inversion step at room temperature. On the ba
APA, Harvard, Vancouver, ISO, and other styles
10

Gueye, Moussa, Marco Paolino, Etienne Gindensperger, Stefan Haacke, Massimo Olivucci, and Jérémie Léonard. "Vibrational coherence and quantum yield of retinal-chromophore-inspired molecular switches." Faraday Discussions 221 (2020): 299–321. http://dx.doi.org/10.1039/c9fd00062c.

Full text
Abstract:
UV-Vis transient absorption (TA) spectroscopy is used to carry out a systematic investigation of the ultrafast CC double photoisomerization dynamics and quantum yield of each isomer of a set of six chromophores based on the same retinal-inspired, indanylidene pyrrolinium (IP) molecular framework.
APA, Harvard, Vancouver, ISO, and other styles
11

Benderskii, V. A., E. V. Vetoshkin, E. I. Kats, and H. P. Trommsdorff. "A semiclassical 1D model of ultrafast photoisomerization reactions." Chemical Physics Letters 409, no. 4-6 (2005): 240–44. http://dx.doi.org/10.1016/j.cplett.2005.05.025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Hsu, Chun-Chih, Yu-Ting Wang, Atsushi Yabushita, et al. "Environment-Dependent Ultrafast Photoisomerization Dynamics in Azo Dye." Journal of Physical Chemistry A 115, no. 42 (2011): 11508–14. http://dx.doi.org/10.1021/jp2051307.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Otolski, Christopher J., A. Mohan Raj, Vaidhyanathan Ramamurthy, and Christopher G. Elles. "Spatial confinement alters the ultrafast photoisomerization dynamics of azobenzenes." Chemical Science 11, no. 35 (2020): 9513–23. http://dx.doi.org/10.1039/d0sc03955a.

Full text
Abstract:
Ultrafast transient absorption spectroscopy reveals new excited-state dynamics following excitation of trans-azobenzene (t-Az) and several alkyl-substituted t-Az derivatives encapsulated in a water-soluble supramolecular host–guest complex.
APA, Harvard, Vancouver, ISO, and other styles
14

Gaulier, Geoffrey, Quentin Dietschi, Swarnendu Bhattacharyya, et al. "Ultrafast pulse shaping modulates perceived visual brightness in living animals." Science Advances 7, no. 18 (2021): eabe1911. http://dx.doi.org/10.1126/sciadv.abe1911.

Full text
Abstract:
Vision is usually assumed to be sensitive to the light intensity and spectrum but not to its spectral phase. However, experiments performed on retinal proteins in solution showed that the first step of vision consists in an ultrafast photoisomerization that can be coherently controlled by shaping the phase of femtosecond laser pulses, especially in the multiphoton interaction regime. The link between these experiments in solution and the biological process allowing vision was not demonstrated. Here, we measure the electric signals fired from the retina of living mice upon femtosecond multipuls
APA, Harvard, Vancouver, ISO, and other styles
15

Ma, Fei, and Arkady Yartsev. "Ultrafast photoisomerization of pinacyanol: watching an excited state reaction transiting from barrier to barrierless forms." RSC Advances 6, no. 51 (2016): 45210–18. http://dx.doi.org/10.1039/c6ra03299k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Kaneshima, Keisuke, Yuki Ninota, and Taro Sekikawa. "Time-resolved high-harmonic spectroscopy of ultrafast photoisomerization dynamics." Optics Express 26, no. 23 (2018): 31039. http://dx.doi.org/10.1364/oe.26.031039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Wang, Dihao, Xiankun Li, Lijuan Wang, Xiaojing Yang, and Dongping Zhong. "Elucidating Ultrafast Multiphasic Dynamics in the Photoisomerization of Cyanobacteriochrome." Journal of Physical Chemistry Letters 11, no. 20 (2020): 8819–24. http://dx.doi.org/10.1021/acs.jpclett.0c02467.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Takeuchi, S., S. Ruhman, T. Tsuneda, M. Chiba, T. Taketsugu, and T. Tahara. "Spectroscopic Tracking of Structural Evolution in Ultrafast Stilbene Photoisomerization." Science 322, no. 5904 (2008): 1073–77. http://dx.doi.org/10.1126/science.1160902.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Tamura, Hiroyuki, Shinkoh Nanbu, Toshimasa Ishida, and Hiroki Nakamura. "Ab initio nonadiabatic quantum dynamics of cyclohexadiene/hexatriene ultrafast photoisomerization." Journal of Chemical Physics 124, no. 8 (2006): 084313. http://dx.doi.org/10.1063/1.2171688.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Wang, Dihao, Yangzhong Qin, Meng Zhang, et al. "The Origin of Ultrafast Multiphasic Dynamics in Photoisomerization of Bacteriophytochrome." Journal of Physical Chemistry Letters 11, no. 15 (2020): 5913–19. http://dx.doi.org/10.1021/acs.jpclett.0c01394.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Kim, Peter W., Jie Pan, Nathan C. Rockwell, et al. "Ultrafast E to Z photoisomerization dynamics of the Cph1 phytochrome." Chemical Physics Letters 549 (October 2012): 86–92. http://dx.doi.org/10.1016/j.cplett.2012.08.044.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Stensitzki, Till, Suliman Adam, Ramona Schlesinger, Igor Schapiro, and Karsten Heyne. "Ultrafast Backbone Protonation in Channelrhodopsin-1 Captured by Polarization Resolved Fs Vis-pump—IR-Probe Spectroscopy and Computational Methods." Molecules 25, no. 4 (2020): 848. http://dx.doi.org/10.3390/molecules25040848.

Full text
Abstract:
Channelrhodopsins (ChR) are light-gated ion-channels heavily used in optogenetics. Upon light excitation an ultrafast all-trans to 13-cis isomerization of the retinal chromophore takes place. It is still uncertain by what means this reaction leads to further protein changes and channel conductivity. Channelrhodopsin-1 in Chlamydomonas augustae exhibits a 100 fs photoisomerization and a protonated counterion complex. By polarization resolved ultrafast spectroscopy in the mid-IR we show that the initial reaction of the retinal is accompanied by changes in the protein backbone and ultrafast proto
APA, Harvard, Vancouver, ISO, and other styles
23

Filatov, Michael, Marco Paolino, Seung Kyu Min, and Cheol Ho Choi. "Design and photoisomerization dynamics of a new family of synthetic 2-stroke light driven molecular rotary motors." Chemical Communications 55, no. 36 (2019): 5247–50. http://dx.doi.org/10.1039/c9cc01955c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Gao, Aihua, and Meishan Wang. "Ultrafast Photoisomerization of N-(2-Methoxybenzylidene)aniline: Nonadiabatic Surface-Hopping Study." Journal of Physical Chemistry A 125, no. 33 (2021): 7151–60. http://dx.doi.org/10.1021/acs.jpca.1c02718.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Verma, Pramod Kumar, Federico Koch, Andreas Steinbacher, Patrick Nuernberger та Tobias Brixner. "Ultrafast UV-Induced Photoisomerization of Intramolecularly H-Bonded Symmetric β-Diketones". Journal of the American Chemical Society 136, № 42 (2014): 14981–89. http://dx.doi.org/10.1021/ja508059p.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Yabushita, Atsushi, Takayoshi Kobayashi, and Motoyuki Tsuda. "Time-Resolved Spectroscopy of Ultrafast Photoisomerization of Octopus Rhodopsin under Photoexcitation." Journal of Physical Chemistry B 116, no. 6 (2012): 1920–26. http://dx.doi.org/10.1021/jp209356s.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Steinwand, Sabrina, Zhilin Yu, Stefan Hecht, and Josef Wachtveitl. "Ultrafast Dynamics of Photoisomerization and Subsequent Unfolding of an Oligoazobenzene Foldamer." Journal of the American Chemical Society 138, no. 39 (2016): 12997–3005. http://dx.doi.org/10.1021/jacs.6b07720.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Yoshizawa, Masayuki, Masaki Kubo, and Makoto Kurosawa. "Ultrafast photoisomerization in DCM dye observed by new femtosecond Raman spectroscopy." Journal of Luminescence 87-89 (May 2000): 739–41. http://dx.doi.org/10.1016/s0022-2313(99)00381-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Chang, Chun-Fu, Hikaru Kuramochi, Manish Singh, et al. "Acid–base equilibrium of the chromophore counterion results in distinct photoisomerization reactivity in the primary event of proteorhodopsin." Physical Chemistry Chemical Physics 21, no. 46 (2019): 25728–34. http://dx.doi.org/10.1039/c9cp04991f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Cavaletto, Stefano M., Daniel Keefer, Jérémy R. Rouxel, et al. "Unveiling the spatial distribution of molecular coherences at conical intersections by covariance X-ray diffraction signals." Proceedings of the National Academy of Sciences 118, no. 22 (2021): e2105046118. http://dx.doi.org/10.1073/pnas.2105046118.

Full text
Abstract:
The outcomes and timescales of molecular nonadiabatic dynamics are decisively impacted by the quantum coherences generated at localized molecular regions. In time-resolved X-ray diffraction imaging, these coherences create distinct signatures via inelastic photon scattering, but they are buried under much stronger background elastic features. Here, we exploit the rich dynamical information encoded in the inelastic patterns, which we reveal by frequency-dispersed covariance ultrafast powder X-ray diffraction of stochastic X-ray free-electron laser pulses. This is demonstrated for the photoisome
APA, Harvard, Vancouver, ISO, and other styles
31

Hu, Ying, Chao Xu, Linfeng Ye, Feng Long Gu, and Chaoyuan Zhu. "Nonadiabatic molecular dynamics simulation for the ultrafast photoisomerization of dMe-OMe-NAIP based on TDDFT on-the-fly potential energy surfaces." Physical Chemistry Chemical Physics 23, no. 9 (2021): 5236–43. http://dx.doi.org/10.1039/d0cp06104b.

Full text
Abstract:
Global switching on-the-fly trajectory surface hopping molecular dynamics simulation was performed on the accurate TD-B3LYP/6-31G* potential energy surfaces for E-to-Z and Z-to-E photoisomerization of dMe-OMe-NAIP up to S<sub>1</sub>(ππ*) excitation.
APA, Harvard, Vancouver, ISO, and other styles
32

Keefer, Daniel, Flavia Aleotti, Jérémy R. Rouxel, et al. "Imaging conical intersection dynamics during azobenzene photoisomerization by ultrafast X-ray diffraction." Proceedings of the National Academy of Sciences 118, no. 3 (2021): e2022037118. http://dx.doi.org/10.1073/pnas.2022037118.

Full text
Abstract:
X-ray diffraction is routinely used for structure determination of stationary molecular samples. Modern X-ray photon sources, e.g., from free-electron lasers, enable us to add temporal resolution to these scattering events, thereby providing a movie of atomic motions. We simulate and decipher the various contributions to the X-ray diffraction pattern for the femtosecond isomerization of azobenzene, a textbook photochemical process. A wealth of information is encoded besides real-time monitoring of the molecular charge density for the cis to trans isomerization. In particular, vibronic coherenc
APA, Harvard, Vancouver, ISO, and other styles
33

Völzer, Tim, Henrik Beer, Axel Schulz, Stefan Lochbrunner, and Jonas Bresien. "Photoisomerization of a phosphorus-based biradicaloid: ultrafast dynamics through a conical intersection." Physical Chemistry Chemical Physics 23, no. 12 (2021): 7434–41. http://dx.doi.org/10.1039/d1cp00428j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Wang, Zhenwei, Saisai Chu, Shufeng Wang, and Qihuang Gong. "Ultrafast excited-state dynamics associated with the photoisomerization of a cyanine dye." Journal of Chemical Physics 137, no. 16 (2012): 164502. http://dx.doi.org/10.1063/1.4759264.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Luo, Jian, Yan Liu, Songqiu Yang, Amandine L. Flourat, Florent Allais, and Keli Han. "Ultrafast Barrierless Photoisomerization and Strong Ultraviolet Absorption of Photoproducts in Plant Sunscreens." Journal of Physical Chemistry Letters 8, no. 5 (2017): 1025–30. http://dx.doi.org/10.1021/acs.jpclett.7b00083.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Hamm, P., S. M. Ohline, and W. Zinth. "Vibrational cooling after ultrafast photoisomerization of azobenzene measured by femtosecond infrared spectroscopy." Journal of Chemical Physics 106, no. 2 (1997): 519–29. http://dx.doi.org/10.1063/1.473392.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Balke, Jens, Paula Díaz Gutiérrez, Timm Rafaluk-Mohr, Jonas Proksch, Beate Koksch, and Ulrike Alexiev. "Osmolytes Modulate Photoactivation of Phytochrome: Probing Protein Hydration." Molecules 28, no. 16 (2023): 6121. http://dx.doi.org/10.3390/molecules28166121.

Full text
Abstract:
Phytochromes are bistable red/far-red light-responsive photoreceptor proteins found in plants, fungi, and bacteria. Light-activation of the prototypical phytochrome Cph1 from the cyanobacterium Synechocystis sp. PCC 6803 allows photoisomerization of the bilin chromophore in the photosensory module and a subsequent series of intermediate states leading from the red absorbing Pr to the far-red-absorbing Pfr state. We show here via osmotic and hydrostatic pressure-based measurements that hydration of the photoreceptor modulates the photoconversion kinetics in a controlled manner. While small osmo
APA, Harvard, Vancouver, ISO, and other styles
38

Gruber, Elisabeth, Adil M. Kabylda, Mogens Brøndsted Nielsen, et al. "Light Driven Ultrafast Bioinspired Molecular Motors: Steering and Accelerating Photoisomerization Dynamics of Retinal." Journal of the American Chemical Society 144, no. 1 (2021): 69–73. http://dx.doi.org/10.1021/jacs.1c10752.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Rouxel, Jérémy R., Daniel Keefer, Flavia Aleotti, Artur Nenov, Marco Garavelli, and Shaul Mukamel. "Coupled Electronic and Nuclear Motions during Azobenzene Photoisomerization Monitored by Ultrafast Electron Diffraction." Journal of Chemical Theory and Computation 18, no. 2 (2022): 605–13. http://dx.doi.org/10.1021/acs.jctc.1c00792.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Stensitzki, Till, Yang Yang, Anna Lena Wölke, et al. "Influence of Heterogeneity on the Ultrafast Photoisomerization Dynamics of Pfr in Cph1 Phytochrome." Photochemistry and Photobiology 93, no. 3 (2017): 703–12. http://dx.doi.org/10.1111/php.12743.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Pang, Xiaojuan, Chenwei Jiang, Yongnan Qi, et al. "Ultrafast unidirectional chiral rotation in the Z–E photoisomerization of two azoheteroarene photoswitches." Physical Chemistry Chemical Physics 20, no. 40 (2018): 25910–17. http://dx.doi.org/10.1039/c8cp04762f.

Full text
Abstract:
Based on a large number of trajectories starting from the Z-isomer, for both azoheteroarenes, more than 99% of the trajectories decay through conical intersections with the same helicities as their initial geometries.
APA, Harvard, Vancouver, ISO, and other styles
42

Wang, Dihao, Yangzhong Qin, Sheng Zhang, Lijuan Wang, Xiaojing Yang, and Dongping Zhong. "Elucidating the Molecular Mechanism of Ultrafast Pfr-State Photoisomerization in Bathy Bacteriophytochrome PaBphP." Journal of Physical Chemistry Letters 10, no. 20 (2019): 6197–201. http://dx.doi.org/10.1021/acs.jpclett.9b02446.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Otolski, Christopher J., A. Mohan Raj, Gaurav Sharma, Rajeev Prabhakar, Vaidhyanathan Ramamurthy, and Christopher G. Elles. "Ultrafast trans → cis Photoisomerization Dynamics of Alkyl-Substituted Stilbenes in a Supramolecular Capsule." Journal of Physical Chemistry A 123, no. 24 (2019): 5061–71. http://dx.doi.org/10.1021/acs.jpca.9b03285.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Smitienko, O. A., T. B. Feldman, L. E. Petrovskaya, et al. "Ultrafast Photochemical Reaction of Exiguobacterium sibiricum Rhodopsin (ESR) at Alkaline pH." Биоорганическая химия 50, no. 4 (2024): 508–16. http://dx.doi.org/10.31857/s0132342324040107.

Full text
Abstract:
Rhodopsin from the eubacterium Exiguobacterium sibiricum (ESR) performs the function of light-dependent proton transport. The operation of ESR is based on the ultrafast photochemical reaction of isomerization of the retinal chromophore, which triggers dark processes closed in the photocycle. Many parameters of the photocycle are determined by the degree of protonation of Asp85 – the primary counterion of the chromophore group and the proton acceptor. ESR in detergent micelles pumps protons most efficiently at pH 9, when Asp85 is almost completely deprotonated. In this work, the photochemical r
APA, Harvard, Vancouver, ISO, and other styles
45

Debus, Bruno, Maylis Orio, Julien Rehault, Gotard Burdzinski, Cyril Ruckebusch, and Michel Sliwa. "Fusion of Ultraviolet–Visible and Infrared Transient Absorption Spectroscopy Data to Model Ultrafast Photoisomerization." Journal of Physical Chemistry Letters 8, no. 15 (2017): 3530–35. http://dx.doi.org/10.1021/acs.jpclett.7b01255.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Iyer, E. Siva Subramaniam, Ramprasad Misra, Arnab Maity, et al. "Temperature Independence of Ultrafast Photoisomerization in Thermophilic Rhodopsin: Assessment versus Other Microbial Proton Pumps." Journal of the American Chemical Society 138, no. 38 (2016): 12401–7. http://dx.doi.org/10.1021/jacs.6b05002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Gazzetto, Michela, Flavia Artizzu, Salahuddin S. Attar, et al. "Anti-Kasha Conformational Photoisomerization of a Heteroleptic Dithiolene Metal Complex Revealed by Ultrafast Spectroscopy." Journal of Physical Chemistry A 124, no. 51 (2020): 10687–93. http://dx.doi.org/10.1021/acs.jpca.0c07794.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Sato, Motoki, Shunsuke Adachi, and Toshinori Suzuki. "Photoisomerization of Vibrationally Hot Tetramethylethylene Produced by Ultrafast Internal Conversion from the Excited State." Journal of Physical Chemistry A 120, no. 27 (2016): 5099–102. http://dx.doi.org/10.1021/acs.jpca.6b00410.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Wang, Yaping, Song Zhang, Simei Sun, Kai Liu, and Bing Zhang. "Ultrafast excited-state dynamics associated with the photoisomerization of trans-4-diethylaminoazobenzene in solution." Journal of Photochemistry and Photobiology A: Chemistry 309 (August 2015): 1–7. http://dx.doi.org/10.1016/j.jphotochem.2015.04.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Otolski, Christopher J., A. Mohan Raj, Vaidhyanathan Ramamurthy, and Christopher G. Elles. "Ultrafast Dynamics of Encapsulated Molecules Reveals New Insight on the Photoisomerization Mechanism for Azobenzenes." Journal of Physical Chemistry Letters 10, no. 1 (2018): 121–27. http://dx.doi.org/10.1021/acs.jpclett.8b03070.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!