Academic literature on the topic 'Ultrasonic Sensor'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Ultrasonic Sensor.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Ultrasonic Sensor"
As Shiddiq, Muhammad, Wildian Wildian, and Nini Firmawati. "Desain Sistem Pendeteksi Penghalang Menggunakan Sensor Ultrasonik dan Sensor Inframerah dengan Keluaran Suara untuk Penyandang Tunanetra." Jurnal Fisika Unand 9, no. 4 (January 25, 2021): 436–42. http://dx.doi.org/10.25077/jfu.9.4.436-442.2020.
Full textMissa, Ivan Kavenius, Laura A. S. Lapono, and Abdul Wahid. "RANCANG BANGUN ALAT PASANG SURUT AIR LAUT BERBASIS ARDUINO UNO DENGAN MENGGUNAKAN SENSOR ULTRASONIK HC-SR04." Jurnal Fisika : Fisika Sains dan Aplikasinya 3, no. 2 (December 17, 2018): 102–5. http://dx.doi.org/10.35508/fisa.v3i2.609.
Full textPurwaningsih, Sri, Jesi Pebralia, and Rustan Rustan. "PENGEMBANGAN TEMPAT SAMPAH PINTAR MENGGUNAKAN SENSOR ULTRASONIK BERBASIS ARDUINO UNO UNTUK LIMBAH MASKER." Jurnal Kumparan Fisika 5, no. 1 (April 30, 2022): 1–6. http://dx.doi.org/10.33369/jkf.5.1.1-6.
Full textHIDAYAT, DARMAWAN, FADHIL BOMA NAUFAL, and NENDI SUHENDI SYAFEI. "Pendeteksi Pelanggaran Lalu Lintas Kendaraan Lawan Arah berbasis Sensor Ultrasonik." ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika 10, no. 4 (October 27, 2022): 798. http://dx.doi.org/10.26760/elkomika.v10i4.798.
Full textUmeda, Kazunori, Jun Ota, and Hisayuki Kimura. "Fusion of Multiple Ultrasonic Sensor Data and Image Data for Measuring an Object’s Motion." Journal of Robotics and Mechatronics 17, no. 1 (February 20, 2005): 36–43. http://dx.doi.org/10.20965/jrm.2005.p0036.
Full textYoshioka, Tetsuo. "Ultrasonic Sensor." Journal of the Acoustical Society of America 130, no. 5 (2011): 3171. http://dx.doi.org/10.1121/1.3662342.
Full textGranz, B., and G. Koehler. "Ultrasonic sensor." Journal of the Acoustical Society of America 92, no. 3 (September 1992): 1799. http://dx.doi.org/10.1121/1.403818.
Full textKota, Masaharu. "Ultrasonic sensor." Journal of the Acoustical Society of America 104, no. 6 (December 1998): 3153. http://dx.doi.org/10.1121/1.424228.
Full textOda, Kiyonari. "Ultrasonic sensor." Journal of the Acoustical Society of America 120, no. 2 (2006): 568. http://dx.doi.org/10.1121/1.2336633.
Full textHashimoto, Masahiko. "Ultrasonic sensor." Journal of the Acoustical Society of America 122, no. 1 (2007): 18. http://dx.doi.org/10.1121/1.2756397.
Full textDissertations / Theses on the topic "Ultrasonic Sensor"
Beadle, Brad Michael. "Fiber optic sensor for ultrasound." Diss., Georgia Institute of Technology, 2002. http://hdl.handle.net/1853/17869.
Full textBeadle, Brad Michael. "Fiber optic sensor for ultrasound." Thesis, Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/19173.
Full textFILHO, WAGNER MUNDY VALVERDE. "DEVELOPMENT OF FIBER OPTIC ACOUSTIC SENSOR FOR ULTRASONIC FLOWMETER." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2001. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=19330@1.
Full textAGÊNCIA NACIONAL DE PETRÓLEO
Nesta dissertação são relatadas as etapas que resultam na construção do protótipo de um receptor acústico a Fibra Óptica (RAFO). O trabalho faz parte de um projeto mais amplo visando o desenvolvimento de um medidor de vazão sônico baseado em fibras ópticas. Nesta fase inicial, os esforços foram voltados para a concepção, construção e testes do protótipo do transdutor, responsável pela deteção dos sinais sônicos emitidos por uma fonte, baseado em tecnologia de fibras ópticas. O uso de um sensor extrínseco foi a solução aqui empregada, que adota uma proposta de medição diferente da utilizada em medidores de vazão sônicos convencionais. O sistema de medição de vazão proposto na linha de pesquisa na qual este trabalho está inserido, baseia-se em medidas de tempo de transito para daí inferir a vazão volumétrica do fluido que escoa pelo duto. O sistema foi concebido para operar apenas numa banda estreita de frequências, casada com o sinal senoidal emitido pela fonte sonora. Neste trabalho um receptor acústico a fibra óptica foi projetado, montado e testado, tendo seu funcionamento sido demonstrado para freqüências de operação em torno de 3,2 kHz. A escolha desta faixa de frequências deveu-se basicamente a limitações do sistema de leitura optoeletronico utilizado nos testes de medição. Entretanto, uma vez que o princípio de funcionamento foi demonstrado com sucesso, não existem limitações para o re-dimensionamento do sensor de forma que este possa vir a operar em bandas de freqüência mais elevadas.
This thesis reports the steps that have led to the assemblage and testing of na optical fiber microphone. This is part of a greater effort directed towards the development a sonic flowmeter based on optical fiber technology. In this first phase of the project, focus has been placed on the conception, construction, and testing, of the acoustic receiver first prototype. This transducer will be responsible for capturing the acouustical signails sent by an emitter, also based on optical fiber technology, and which is yet to be developed. In constrast with conventional sonic flowmeters, in which time of flight of acoustical pulses is the measured quantity related to flow rate, we are proposing a system based on measurement of phase difference between emitted and received sinusoidal signals.Hence, the acoustic receiver has been conceived to operate in a narrow frequency band. In particular, the developed prototype has been designed to operate in a frequency band centered at 3.2 kHz. This choice has been dictated by the response of the optoeletronic circuit employed in tests performed with the receiver operating in air and water. Nevertheless, since the principle of operation has been measurement of acoustical signails in higher frequency bands.
Kranz, Michael S. "Micro-mechanical sensor for the spectral decomposition of acoustic signals." Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/39496.
Full textSalido, Monzú David, and Sánchez Oliver Roldán. "Robot Positioning System : Underwater Ultrasonic Measurement." Thesis, Mälardalen University, School of Innovation, Design and Engineering, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-5817.
Full textThis document provides a description about how the problem of the detection of thecenter of a defined geometry object was solved.This named object has been placed in an experimental environment surrounded bywater to be explored using microwaves under the water, to try to find a possibletumor. The receiver antenna is fixed in the tip of the tool of an ABB robot.Due to this working method, it was necessary to locate the center of this object tomake correctly the microwave scanning turning always around the actual center. Thiswork not only consist in give a hypothetic solution to the people who gave us theresponsibility of solve their problem, it is also to actually develop a system whichcarries out the function explained before.For the task of measuring the distance between the tip of the tool where themicrowave antenna is, ultrasonic sensors has been used, as a complement of acomplete system of communication between the sensor and finally the robot handler,using Matlab as the main controller of the whole system.One of these sensors will work out of water, measuring the zone of the object which isout of the water. In the other hand, as the researching side of the thesis, a completeultrasonic sensor will be developed to work under water, and the results obtained willbe shown as the conclusion of our investigation.The document provides a description about how the hardware and software necessaryto implement the system mentioned and some equipment more which were essentialto the final implementation was developed step by step.
Atkinson, David. "Evaluation of an active acoustic waveguide sensor for embedded structural monitoring." Thesis, University of Strathclyde, 2000. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=21138.
Full textMoisan, Jean-Francois. "Ultrasonic monitoring of die-casting process using clad buffer rod sensor." Thesis, McGill University, 2001. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=32968.
Full textFor the materials the melt temperature will not exceed 600°C because the casting is made at the semi-solid state, between the solidus and liquidus, of the materials. A novel high performance buffer rod with a cooling system is integrated into the die. Therefore, ultrasonic measurements can be carried out with high signal-to-noise ratio at elevated temperatures.
Alzebda, Said Anwar. "Low-cost oscillating sensor for ultrasonic testing and monitoring of liquids." Thesis, University of Nottingham, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.546599.
Full textMcLean, Jeffrey John. "Interdigital Capacitive Micromachined Ultrasonic Transducers for Microfluidic Applications." Diss., Georgia Institute of Technology, 2004. http://hdl.handle.net/1853/7625.
Full textKrsmanovic, Dalibor. "High temperature ultrasonic gas flow sensor based on lead free piezoelectric material." Thesis, University of Cambridge, 2011. https://www.repository.cam.ac.uk/handle/1810/245065.
Full textBooks on the topic "Ultrasonic Sensor"
Malapetsas, Tasos. The industrial sensor business. Norwalk, CT: Business Communications Co., 1997.
Find full textMullally, Margaret L. A competitive analysis of the U.S. sensor industry. [Cleveland]: Leading Edge Reports, 1988.
Find full textAsher, R. C. Ultrasonic sensors for chemical and process plant. Bristol: Institute of Physics Pub., 1997.
Find full textMiller, Richard Kendall. Survey on ultrasonic sensors. Madison, GA: Future Technology Surveys, 1989.
Find full textStrickland, W. H. Characteristics of ultrasonic ranging sensors in an underground environment. Washington, D.C: U.S. Dept. of the Interior, Bureau of Mines, 1993.
Find full textStrickland, W. H. Characteristics of ultrasonic ranging sensors in an underground environment. Washington, D.C: U.S. Dept. of the Interior, Bureau of Mines, 1993.
Find full textUnited States. National Aeronautics and Space Administration., ed. Detection of in-plane displacements of acoustic wave fields using extrinsic Fizeau fiber interferometric sensors. [Washington, DC: National Aeronautics and Space Administration, 1991.
Find full textUltrasonic transducers: Materials and design for sensors, actuators and medical applications. Cambridge [u.a.]: Woodhead Pub., 2012.
Find full textHornung, Mark R. Micromachined Ultrasound-Based Proximity Sensors. Boston, MA: Springer US, 1999.
Find full textRupp, J. O. C. Development of two EMAT sensors for the detection of ultrasonic lamb waves. Manchester: UMIST, 1994.
Find full textBook chapters on the topic "Ultrasonic Sensor"
Baumann, Peter. "Ultrasonic Transducer." In Selected Sensor Circuits, 221–43. Wiesbaden: Springer Fachmedien Wiesbaden, 2022. http://dx.doi.org/10.1007/978-3-658-38212-4_9.
Full textLu, Wei. "Introducing the Touch Sensor and Ultrasonic Sensor." In Beginning Robotics Programming in Java with LEGO Mindstorms, 183–91. Berkeley, CA: Apress, 2016. http://dx.doi.org/10.1007/978-1-4842-2005-4_10.
Full textMonchaud, S. "SONAIR Ultrasonic Range Finders." In Sensor Devices and Systems for Robotics, 111–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-74567-6_9.
Full textJuluru, Anudeep, Shriram K. Vasudevan, and T. S. Murugesh. "Overflow Detection Using Ultrasonic Sensor." In Let's Get IoT-fied!, 151–71. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003147169-10.
Full textSteiner, J. P. "Conventional IR and Ultrasonic Sensor Systems." In Handbook of Advanced Lighting Technology, 465–513. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-00176-0_64.
Full textSteiner, J. P. "Conventional IR and Ultrasonic Sensor Systems." In Handbook of Advanced Lighting Technology, 1–49. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-00295-8_64-1.
Full textHanzel, Jaroslav, Marian Klúčik, Ladislav Jurišica, and Anton Vitko. "Identification Based Model of Ultrasonic Sensor." In Communications in Computer and Information Science, 144–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21975-7_14.
Full textUrban, H. "Ultrasonic Imaging for Industrial Scene Analysis." In Sensor Devices and Systems for Robotics, 127–41. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-74567-6_10.
Full textMartín, J. M., R. Ceres, J. No, and L. Calderón. "Adaptative Ultrasonic Range-Finder for Robotics." In Sensor Devices and Systems for Robotics, 143–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-74567-6_11.
Full textSamaitis, Vykintas, Elena Jasiūnienė, Pawel Packo, and Damira Smagulova. "Ultrasonic Methods." In Structural Health Monitoring Damage Detection Systems for Aerospace, 87–131. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72192-3_5.
Full textConference papers on the topic "Ultrasonic Sensor"
Dimitrov, Atanas, and Dimitar Minchev. "Ultrasonic sensor explorer." In 2016 19th International Symposium on Electrical Apparatus and Technologies (SIELA). IEEE, 2016. http://dx.doi.org/10.1109/siela.2016.7542987.
Full text"A 3D Printed, Constriction-Resistive Sensor for the Detection of Ultrasonic Waves." In Structural Health Monitoring. Materials Research Forum LLC, 2021. http://dx.doi.org/10.21741/9781644901311-33.
Full textWenzel, S. W., E. R. Minami, J. S. Huang, and R. M. White. "Ultrasonic-Oscillator Position Sensor." In IEEE 1987 Ultrasonics Symposium. IEEE, 1987. http://dx.doi.org/10.1109/ultsym.1987.199030.
Full textSpratt, William K., John F. Vetelino, and Lawrence C. Lynnworth. "Torsional ultrasonic waveguide sensor." In 2010 IEEE Ultrasonics Symposium (IUS). IEEE, 2010. http://dx.doi.org/10.1109/ultsym.2010.5935797.
Full textGrasland-Mongrain, Pol, Bruno Gilles, Jean-Martial Mari, Jean-Yves Chapelon, and Cyril Lafon. "Electromagnetic tomographic ultrasonic sensor." In 163rd Meeting Acoustical Society of America/ACOUSTCS 2012 HONG KONG. ASA, 2013. http://dx.doi.org/10.1121/1.4826489.
Full textCai, Xiaofeng, and Robert X. Gao. "Ultrasonic Sensor Placement Strategy for a Long Cane." In ASME 1999 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/imece1999-0080.
Full textHenning, Bernd, Jens Rautenberg, Andreas Schroeder, and Carsten Unverzagt. "A2.1 - Ultrasonic Sensors for Process Applications." In SENSOR+TEST Conferences 2009. AMA Service GmbH, Von-Münchhausen-Str. 49, 31515 Wunstorf, Germany, 2009. http://dx.doi.org/10.5162/sensor09/v1/a2.1.
Full textBicz, Wieslaw, Zbigniew Gumienny, and Mieczyslaw Pluta. "Ultrasonic sensor for fingerprints recognition." In Optoelectronic and Electronic Sensors, edited by Ryszard Jachowicz and Zdzislaw Jankiewicz. SPIE, 1995. http://dx.doi.org/10.1117/12.213142.
Full textByun, Eunjeong, Juhong Nam, Hyunji Shim, Esther Kim, Albert Kim, and Seunghyun Song. "Ultrasonic Hydrogel Biochemical Sensor System." In 2020 42nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) in conjunction with the 43rd Annual Conference of the Canadian Medical and Biological Engineering Society. IEEE, 2020. http://dx.doi.org/10.1109/embc44109.2020.9176216.
Full textTam, Andrew, and Sazzadur Chowdhury. "A MEMS Sonoluminescent Ultrasonic Sensor." In 2006 IEEE International Conference on Electro/Information Technology. IEEE, 2006. http://dx.doi.org/10.1109/eit.2006.252194.
Full textReports on the topic "Ultrasonic Sensor"
Dagle, W. R. Ultrasonic Oxygen Sensor. Fort Belvoir, VA: Defense Technical Information Center, December 1987. http://dx.doi.org/10.21236/ada189723.
Full textJ. E. Daw, J.L Rempe, A.J. Palmer, B. Tittmann, and B. NEET In-Pile Ultrasonic Sensor Enablement-FY-2013. Office of Scientific and Technical Information (OSTI), September 2013. http://dx.doi.org/10.2172/1097698.
Full textDaw, J., J. Rempe, J. Palmer, P. Ramuhalli, R. Montgomery, H. Chien, B. Tittmann, B. Reinhardt, and P. Keller. NEET In-Pile Ultrasonic Sensor Enablement-Final Report. Office of Scientific and Technical Information (OSTI), September 2014. http://dx.doi.org/10.2172/1166037.
Full textDaw, Joshua, Anthony Crawford, Richard Skifton, Lance Hone, Pradeep Ramuhalli, Richard Jacob, Andrew Cassella, and Robert Montgomery. Design Requirements for Ultrasonic Deformation Sensor for TREAT Experiments. Office of Scientific and Technical Information (OSTI), June 2018. http://dx.doi.org/10.2172/1634003.
Full textDaw, Joshua, Lance Hone, Andrew Casella, Richard Jacob, Robert Montgomery, and Pradeep Ramuhalli. Integration Testing of Ultrasonic Deformation Sensor for TREAT Experiments. Office of Scientific and Technical Information (OSTI), October 2019. http://dx.doi.org/10.2172/1668671.
Full textJT Evans. Testing Results of Magnetostrictive Ultrasonic Sensor Cables for Signal Loss. Office of Scientific and Technical Information (OSTI), May 2005. http://dx.doi.org/10.2172/883695.
Full textJE Daw, JL Rempe, BR Tittmann, B Reinhardt, P Ramuhalli, R Montgomery, and HT Chien. NEET In-Pile Ultrasonic Sensor Enablement-FY 2012 Status Report. Office of Scientific and Technical Information (OSTI), September 2012. http://dx.doi.org/10.2172/1058076.
Full textYurchenko, Oleksandr, Sergiy Kolyenov, Yuriy Pilgun, Galyna Pogorielova, Oleksandr Polishko, and Eugene Smirnov. Total Internal Reflection Ultrasonic Sensor for Detection of Subsurface Flaws: Research into Underlying Physics. Fort Belvoir, VA: Defense Technical Information Center, November 2014. http://dx.doi.org/10.21236/ada620159.
Full textMizrach, Amos, Sydney L. Spahr, Ephraim Maltz, Michael R. Murphy, Zeev Schmilovitch, Jan E. Novakofski, Uri M. Peiper, et al. Ultrasonic Body Condition Measurements for Computerized Dairy Management Systems. United States Department of Agriculture, 1993. http://dx.doi.org/10.32747/1993.7568109.bard.
Full textRay, Jason, and Clayton Thurmer. 2020 guided wave inspection of California Department of Water Resources tainter gate post-tensioned trunnion anchor rods : Oroville Dam. Engineer Research and Development Center (U.S.), March 2022. http://dx.doi.org/10.21079/11681/43762.
Full text