To see the other types of publications on this topic, follow the link: Ultrathin magnetic films.

Journal articles on the topic 'Ultrathin magnetic films'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Ultrathin magnetic films.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Huang, Feng, John A. Barnard, and Mark L. Weaver. "Ultrathin TiB2 protective films." Journal of Materials Research 16, no. 4 (2001): 945–54. http://dx.doi.org/10.1557/jmr.2001.0134.

Full text
Abstract:
TiB2 thin films demonstrate considerable potential for use as protective overcoats in the magnetic recording industry due to their excellent mechanical and tribological properties and good chemical and thermal stability. In the many studies performed on TiB2 films, the relative effectiveness of ultrathin TiB2 films has not been systematically investigated for very thin TiB2 films. In the present investigation, film stress and microstructure in as-sputtered and annealed ultrathin TiB2 films were investigated as a function of thickness. Ultrathin TiB2 films, as thin as 5 nm, were observed to ade
APA, Harvard, Vancouver, ISO, and other styles
2

Vedmedenko, E., A. Ghazali, and J. C. Lévy. "Magnetic vortices in ultrathin films." Physical Review B 59, no. 5 (1999): 3329–32. http://dx.doi.org/10.1103/physrevb.59.3329.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Roberts, D. J., and G. A. Gehring. "Surface magnetic anisotropies in ultrathin magnetic films." Journal of Magnetism and Magnetic Materials 156, no. 1-3 (1996): 293–95. http://dx.doi.org/10.1016/0304-8853(95)00873-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Guo, Meng, Hongbo He, Kui Yi, Shuying Shao, Guohang Hu, and Jianda Shao. "Optical characteristics of ultrathin amorphous Ge films." Chinese Optics Letters 18, no. 10 (2020): 103101. http://dx.doi.org/10.3788/col202018.103101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Aranda, Arantxa, and Konstantin Guslienko. "Single Chiral Skyrmions in Ultrathin Magnetic Films." Materials 11, no. 11 (2018): 2238. http://dx.doi.org/10.3390/ma11112238.

Full text
Abstract:
The stability and sizes of chiral skyrmions in ultrathin magnetic films are calculated accounting for the isotropic exchange, Dzyaloshinskii–Moriya exchange interaction (DMI), and out-of-plane magnetic anisotropy within micromagnetic approach. Bloch skyrmions in ultrathin magnetic films with B20 cubic crystal structure (MnSi, FeGe) and Neel skyrmions in ultrathin films and multilayers Co/X (X = Ir, Pd, Pt) are considered. The generalized DeBonte ansatz is used to describe the inhomogeneous skyrmion magnetization. The single skyrmion metastability/instability area, skyrmion radius, and skyrmion
APA, Harvard, Vancouver, ISO, and other styles
6

Afremov, Leonid, and Ilia Ilyushin. "Magnetic Concentration Phase Transitions in Ultrathin Films." Advanced Materials Research 683 (April 2013): 69–72. http://dx.doi.org/10.4028/www.scientific.net/amr.683.69.

Full text
Abstract:
Modeling study of magnetic and concentration phase transition in ultrathin films of diluted magnet has been carried out under approximation of random interaction between atomic magnetic moments of nearest neighbors and within the framework of Ising model. The dependence of Curie temperature on concentration of magnetic atoms was formed. It is shown that with increasing of thickness of ultrathin film the critical concentration of transition from unordered to ordered magnetic state decreases down to the value equal to the percolation threshold.
APA, Harvard, Vancouver, ISO, and other styles
7

Bayreuther, G., P. Bruno, G. Lugert, and C. Turtur. "Magnetic aftereffect in ultrathin ferromagnetic films." Physical Review B 40, no. 10 (1989): 7399–402. http://dx.doi.org/10.1103/physrevb.40.7399.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

McManus, M. K., E. D. Crozier, D. T. Jiang, and B. Heinrich. "Lattice Strain in Magnetic Ultrathin Films." Le Journal de Physique IV 7, no. C2 (1997): C2–683—C2–685. http://dx.doi.org/10.1051/jp4:1997204.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zablotskii, V., W. Stefanowicz, and A. Maziewski. "Magnetic phase diagram of ultrathin films." Journal of Applied Physics 101, no. 11 (2007): 113904. http://dx.doi.org/10.1063/1.2738461.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hu, Xiao, and Yoshiyuki Kawazoe. "Micromagnetic study of ultrathin magnetic films." Computational Materials Science 10, no. 1-4 (1998): 198–204. http://dx.doi.org/10.1016/s0927-0256(97)00096-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Snigirev, O. V., A. M. Tishin, K. E. Andreev, S. A. Gudoshnikov, and J. Bohr. "Magnetic properties of ultrathin Ni films." Physics of the Solid State 40, no. 9 (1998): 1530–33. http://dx.doi.org/10.1134/1.1130592.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Prudnikov, P. V., V. V. Prudnikov, and M. A. Medvedeva. "Dimensional effects in ultrathin magnetic films." JETP Letters 100, no. 7 (2014): 446–50. http://dx.doi.org/10.1134/s0021364014190096.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Han, G. C., J. J. Qiu, Q. J. Yap, et al. "Magnetic stability of ultrathin FeRh films." Journal of Applied Physics 113, no. 17 (2013): 17C107. http://dx.doi.org/10.1063/1.4794980.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Bochi, Gabriel, H. J. Hug, D. I. Paul, et al. "Magnetic Domain Structure in Ultrathin Films." Physical Review Letters 75, no. 9 (1995): 1839–42. http://dx.doi.org/10.1103/physrevlett.75.1839.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Elmers, H. J., J. Hauschild, H. Fritzsche, G. Liu, U. Gradmann, and U. Köhler. "Magnetic Frustration in Ultrathin Fe Films." Physical Review Letters 75, no. 10 (1995): 2031–34. http://dx.doi.org/10.1103/physrevlett.75.2031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Booth, I., A. B. MacIsaac, J. P. Whitehead, and K. De'Bell. "Domain Structures in Ultrathin Magnetic Films." Physical Review Letters 75, no. 5 (1995): 950–53. http://dx.doi.org/10.1103/physrevlett.75.950.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Chui, S. T. "Phase boundaries in ultrathin magnetic films." Physical Review B 50, no. 17 (1994): 12559–67. http://dx.doi.org/10.1103/physrevb.50.12559.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Le Cann, X., C. Boeglin, K. Hricovini, and B. Carriére. "Magnetic circular dichroism of ultrathin films." Thin Solid Films 275, no. 1-2 (1996): 95–98. http://dx.doi.org/10.1016/0040-6090(95)07061-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Zakeri, Kh, J. Prokop, Y. Zhang, and J. Kirschner. "Magnetic excitations in ultrathin magnetic films: Temperature effects." Surface Science 630 (December 2014): 311–16. http://dx.doi.org/10.1016/j.susc.2014.07.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Heinrich, B., and J. F. Cochran. "Ultrathin metallic magnetic films: magnetic anisotropies and exchange interactions." Advances in Physics 42, no. 5 (1993): 523–639. http://dx.doi.org/10.1080/00018739300101524.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Matsubara, Fumitaka, Shin-ichi Endoh, and Takanori Sasaki. "Computer Simulation of Magnetic Domains in Ultrathin Magnetic Films." Journal of the Physical Society of Japan 72, no. 6 (2003): 1326–29. http://dx.doi.org/10.1143/jpsj.72.1326.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

ELMERS, HANS-JOACHIM. "FERROMAGNETIC MONOLAYERS." International Journal of Modern Physics B 09, no. 24 (1995): 3115–80. http://dx.doi.org/10.1142/s0217979295001191.

Full text
Abstract:
The ferromagnetic properties of ultrathin films grown on non-magnetic substrates provide interesting new insights into the physics of magnetism. In this report we review experiments in the very low coverage regime (Θ < 2 atomic layers). The Fe monolayer on W plays an outstanding role, because it forms a ferromagnetic and thermodynamically stable monolayer. Ferromagnetic Fe monolayers on W can be prepared with a high degree of perfection. We therefore focus on ultrathin Fe films on W(110) and W(100) substrates. Experimental results for these in-plane magnetized films, prepared as close as po
APA, Harvard, Vancouver, ISO, and other styles
23

Cong, Bach Thanh, and Pham Huong Thao. "Thickness dependent properties of magnetic ultrathin films." Physica B: Condensed Matter 426 (October 2013): 144–49. http://dx.doi.org/10.1016/j.physb.2013.05.043.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Cinti, Fabio, Alessandro Cuccoli, and Angelo Rettori. "Magnetic phases in ultrathin helimagnetic holmium films." Journal of Applied Physics 105, no. 7 (2009): 07E117. http://dx.doi.org/10.1063/1.3068482.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Isella, G., M. Marcon, R. Bertacco, et al. "Versatile apparatus for investigating ultrathin magnetic films." Journal of Electron Spectroscopy and Related Phenomena 122, no. 3 (2002): 221–29. http://dx.doi.org/10.1016/s0368-2048(01)00359-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Schindler, W., Th Koop, D. Hofmann, and J. Kirschner. "Reversible electrodeposition of ultrathin magnetic Co films." IEEE Transactions on Magnetics 34, no. 4 (1998): 963–67. http://dx.doi.org/10.1109/20.706327.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Chui, S. T. "Spin reversal in bilayer ultrathin magnetic films." Physical Review B 55, no. 6 (1997): 3688–92. http://dx.doi.org/10.1103/physrevb.55.3688.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Hicken, R. J., and G. T. Rado. "Magnetic surface anisotropy in ultrathin amorphousFe70B30andCo80B20multilayer films." Physical Review B 46, no. 18 (1992): 11688–96. http://dx.doi.org/10.1103/physrevb.46.11688.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Asada, T., G. Bihlmayer, S. Handschuh, S. Heinze, Ph Kurz, and S. Blügel. "First-principles theory of ultrathin magnetic films." Journal of Physics: Condensed Matter 11, no. 48 (1999): 9347–63. http://dx.doi.org/10.1088/0953-8984/11/48/302.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Oepen, H. P., M. Benning, H. Ibach, C. M. Schneider, and J. Kirschner. "Magnetic domain structure in ultrathin cobalt films." Journal of Magnetism and Magnetic Materials 86, no. 2-3 (1990): L137—L142. http://dx.doi.org/10.1016/0304-8853(90)90113-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Oepen, H. P., M. Benning, C. M. Schneider, and J. Kirschner. "Magnetic domain structure in ultrathin ferromagnetic films." Vacuum 41, no. 1-3 (1990): 489–90. http://dx.doi.org/10.1016/0042-207x(90)90393-d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Kaplan, B., and G. A. Gehring. "The domain structure in ultrathin magnetic films." Journal of Magnetism and Magnetic Materials 128, no. 1-2 (1993): 111–16. http://dx.doi.org/10.1016/0304-8853(93)90863-w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Oepen, H. P. "Magnetic domain structure in ultrathin cobalt films." Journal of Magnetism and Magnetic Materials 93 (February 1991): 116–22. http://dx.doi.org/10.1016/0304-8853(91)90314-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Afremov, Leonid L., and Aleksandr A. Petrov. "Phase Transition in Ultrathin Films." Solid State Phenomena 215 (April 2014): 227–32. http://dx.doi.org/10.4028/www.scientific.net/ssp.215.227.

Full text
Abstract:
Within the frame of average spin the dependence of Neel temperature of ultrathin antiferromagnetic film for FCC crystalline lattice on its thickness and the concentration of magnetic atoms has been defined. The λ values calculated by us are close to experimental values obtained for the films СoO/SiO2. The increasing of thickness leads to decreasing of the critical concentration down to the value equal to percolation threshold.
APA, Harvard, Vancouver, ISO, and other styles
35

Ching-Ming Lee, Lin-Xiu Ye, Jia-Mou Lee, et al. "Magnetic Properties of Ultrathin TbFeCo Magnetic Films With Perpendicular Magnetic Anisotropy." IEEE Transactions on Magnetics 45, no. 10 (2009): 4023–26. http://dx.doi.org/10.1109/tmag.2009.2024887.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Ducharme, Stephen, A. Bune, V. Fridkin, et al. "Ultrathin ferroelectric polymer films." Ferroelectrics 202, no. 1 (1997): 29–37. http://dx.doi.org/10.1080/00150199708213458.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Moroni, R., F. Bisio, F. Buatier de Mongeot, et al. "Onset of magnetic anisotropy in ion-sculpted ultrathin magnetic films." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 256, no. 1 (2007): 419–22. http://dx.doi.org/10.1016/j.nimb.2006.12.037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Sasaki, J., and F. Matsubara. "Magnetic properties of mesoscopic ultrathin magnetic films with uniaxial anisotropy." Journal of Applied Physics 87, no. 6 (2000): 3018–22. http://dx.doi.org/10.1063/1.372293.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Heinrich, B. "Magnetic nanostructures. From physical principles to spintronics." Canadian Journal of Physics 78, no. 3 (2000): 161–99. http://dx.doi.org/10.1139/p00-017.

Full text
Abstract:
A brief summary of underlying principles governing ultrathin film magnetic nanostructures and magnetoelectronics will be presented. The presentation will be based more on physical intuition than on rather complex physical and mathematical models in order to bring this new and rapidly expanding field to a broad audience. The success of this field has been based on the ability to create new structures in which interfaces play a crucial role. Three major phenomena have strongly affected progress in the development of new magnetic materials based on ultrathin films: (a) interface anisotropies; (b)
APA, Harvard, Vancouver, ISO, and other styles
40

Su, C. W., F. C. Chen, Y. E. Wu, and C. S. Shern. "Magnetic properties of Ag/Co/Pt() ultrathin films." Surface Science 507-510 (June 2002): 492–97. http://dx.doi.org/10.1016/s0039-6028(02)01291-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Kaplan, B. "Analysis of checkerboard pattern in ultrathin magnetic films." Journal of Magnetism and Magnetic Materials 303, no. 1 (2006): 9–13. http://dx.doi.org/10.1016/j.jmmm.2005.10.232.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Cinti, F., A. Cuccoli, and A. Rettori. "Magnetic phase transition in ultrathin helimagnetic Ho films." Journal of Magnetism and Magnetic Materials 322, no. 9-12 (2010): 1334–36. http://dx.doi.org/10.1016/j.jmmm.2009.03.066.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Negusse, Ezana, J. Dvorak, J. S. Holroyd, et al. "Magnetic characterization of ultrathin EuO films with XMCD." Journal of Applied Physics 105, no. 7 (2009): 07C930. http://dx.doi.org/10.1063/1.3076044.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Hyman, R. A., A. Zangwill, and M. D. Stiles. "Magnetic reversal of ultrathin films with planar magnetization." Physical Review B 60, no. 21 (1999): 14830–36. http://dx.doi.org/10.1103/physrevb.60.14830.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Chui, S. T. "Finite temperature magnetization reversal in ultrathin magnetic films." Journal of Applied Physics 79, no. 8 (1996): 4951. http://dx.doi.org/10.1063/1.361600.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Banerjee, S., W. L. O'Brien, and B. P. Tonner. "Unusual magnetic phases in MnCo ultrathin alloy films." Journal of Magnetism and Magnetic Materials 198-199 (June 1999): 267–69. http://dx.doi.org/10.1016/s0304-8853(98)01093-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Lévy, J. C. S., A. Ghazali, and E. Yu Vedmedenko. "Magnetic Structures in Ultrathin Films and Nanostructures: Simulation." Acta Physica Polonica A 97, no. 3 (2000): 431–34. http://dx.doi.org/10.12693/aphyspola.97.431.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Zablotskii, V., M. Kisielewski, O. Tsiganenko, and J. Ferre. "Coercivity of Ultrathin Magnetic Films with Perpendicular Anisotropy." Acta Physica Polonica A 97, no. 3 (2000): 471–74. http://dx.doi.org/10.12693/aphyspola.97.471.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Popova, Elena, Andres Felipe Franco Galeano, Marwan Deb, et al. "Magnetic anisotropies in ultrathin bismuth iron garnet films." Journal of Magnetism and Magnetic Materials 335 (June 2013): 139–43. http://dx.doi.org/10.1016/j.jmmm.2013.02.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Farle, M., W. Platow, E. Kosubek, and K. Baberschke. "Magnetic anisotropy of Co/Cu(111) ultrathin films." Surface Science 439, no. 1-3 (1999): 146–52. http://dx.doi.org/10.1016/s0039-6028(99)00762-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!