Academic literature on the topic 'Ultraviolet'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Ultraviolet.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Ultraviolet"

1

Schwarz, Thomas. "Ultraviolette Strahlung - Immunantwort. Ultraviolet radiation - Immune response." Journal der Deutschen Dermatologischen Gesellschaft 3, s2 (September 2005): S11—S18. http://dx.doi.org/10.1111/j.1610-0387.2005.04393.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hebbar, Reshmi. "Ultraviolet." Appalachian Review 49, no. 3 (2021): 8–24. http://dx.doi.org/10.1353/aph.2021.0028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Correa, Melissa, Sabrina Mera, Fabián Guacho, Elio Villarreal, and Sebastián Valencia. "Desinfección mediante el uso de luz UV-C germicida en diferentes medios como estrategia preventiva ante la COVID-19." Minerva 1, no. 2 (August 9, 2020): 46–53. http://dx.doi.org/10.47460/minerva.v1i2.11.

Full text
Abstract:
En este trabajo se presentan criterios que permiten estimar parámetros de desinfección mediante el uso de luz ultravioleta UV-C de onda corta, en agua, aire y superficies. Se indican métodos para evaluar la dosificación en función de la potencia de la lámpara empleada. Este tipo de estrategia permiten resultados de hasta 99.9% de desinfección, inactivando diferentes tipos de microorganismos. Estas referencias sirven de base para el diseño de dispositivos de utilidad en la presente emergencia por COVID-19, cuyo origen, al ser viral, es susceptible al mismo método de desinfección debido al proceso de dimerización del ADN, donde el daño producido en la estructura celular, afecta la capacidad de reproducción y de funcionalidad. Palabras Clave: luz UV-C o germicida, desinfección UV, dimerización del ADN. Referencias [1]R. Wallace, M. Ouellette and J. Jean, "Effect of UV‐C light or hydrogen peroxide wipes on the inactivation of methicillin resistant Staphylococcus aureus , Clostridium difficile spores and norovirus surrogate", Journal of Applied Microbiology, vol. 127, no. 2, pp. 586-597, 2019. [2]J. Vargas, "Efecto de la radiación gamma sobre las características físico - químicas, sensoriales y microbiológicas en páprika en polvo (Capsicum annuum L.)", Revista ECIPeru, pp. 68-71, 2019. [3]M. Ángeles García y P. Fernández, "Luz ultravioleta e inmunidad", Piel, vol. 21, no. 8, pp. 367-368, 2016. [4]W. Pachuau y R. Tiwari, "(Invited) Deep Ultraviolet Light Emitting Diodes: Physics, Performance, and Applications", ECS Meeting Abstracts, 2014. [5]W. Kowalski, Ultraviolet Germicidal Irradiation Handbook, 5th ed. Berlin: Springer Berlin, 2014, pp. 1-13. [6]W. Kowalski, Ultraviolet Germicidal Irradiation Handbook, 5th ed. Berlin: Springer Berlin, 2014, pp. 17-47. [7]"Germicidal Ultraviolet (GUV)", Media.ies.org, 2020. [En línea]. Disponible en: https://media.ies.org/docs/standards/IES%20CR-2-20-V1a-20200507.pdf. [Último acceso: 16 de junio de 2020]. [8]J. Bolton y C. Cotton, The ultraviolet disinfection handbook, 3rd ed. Denver, Colo.: American Water Works Association, 2008, pp. 13-33. [9]W. Kowalski, Ultraviolet Germicidal Irradiation Handbook, 5th ed. Berlin: Springer Berlin, 2014, pp. 8-9. [10]P. Aguirre, J. García y R. Mujeriego Sahuquillo, "Desinfección con cloro y luz UV en un proceso convencional de regeneración de agua", Ingeniería del agua, vol. 11, no. 1, p. 75, 2004.
APA, Harvard, Vancouver, ISO, and other styles
4

Woo, Hyuk-Je, Ji-Hoon Kang, and Kyung Bin Song. "Comparison between Ultraviolet-A and Ultraviolet-C Irradiation on the Microbial Safety and Quality of Cherry." Journal of the Korean Society of Food Science and Nutrition 49, no. 3 (March 31, 2020): 316–21. http://dx.doi.org/10.3746/jkfn.2020.49.3.316.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kapteyn, Henry C., and Todd Ditmire. "Ultraviolet upset." Nature 420, no. 6915 (December 2002): 467–68. http://dx.doi.org/10.1038/420467a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Śpiewak, Radosław. "Ultraviolet radiation." Dermatopedia 2 (2013): 011. http://dx.doi.org/10.14320/dermatopedia.pl.2013.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

T. M. B. "Ultraviolet Verdict." Scientific American 258, no. 5 (May 1988): 26. http://dx.doi.org/10.1038/scientificamerican0588-26a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Woodruff, Phil, and Alex Bradshaw. "Ultraviolet catastrophe?" Physics World 11, no. 1 (January 1998): 17–20. http://dx.doi.org/10.1088/2058-7058/11/1/21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Graydon, Oliver. "Ultraviolet twist." Nature Photonics 11, no. 11 (October 31, 2017): 692. http://dx.doi.org/10.1038/s41566-017-0037-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Shi, Huifang, and Zhongfu An. "Ultraviolet afterglow." Nature Photonics 13, no. 2 (January 24, 2019): 74–75. http://dx.doi.org/10.1038/s41566-018-0345-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Ultraviolet"

1

Romanhole, Rodrigo Collina 1979. "Estudo da fotoestabilidade de filtros solares comerciais quando expostos a radiação ultra-violeta artificial e lâmpadas fluorescentes comerciais." [s.n.], 2014. http://repositorio.unicamp.br/jspui/handle/REPOSIP/312999.

Full text
Abstract:
Orientadores: Priscila Gava Mazzola, Patrícia Moriel
Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Ciências Médicas
Made available in DSpace on 2018-08-26T05:30:45Z (GMT). No. of bitstreams: 1 Romanhole_RodrigoCollina_M.pdf: 2407995 bytes, checksum: a3fd76e8329a74f761c010fad33c4377 (MD5) Previous issue date: 2014
Resumo: Filtros solares são moléculas com capacidade de absorver e/ou refletir a radiação UVA e UVB, evitando assim que esta radiação alcance a epiderme ou até mesmo a derme, porém alguns filtros podem apresentar instabilidade quando absorvem a radiação, com consequente perda desta função. A fotoinstabilidade após a exposição à radiação UV é bem conhecida e descrita, porém não existem muitos dados relacionando a estabilidade destes filtros após a irradiação de luz fluorescente emitida pelas lâmpadas comerciais presentes em lares e escritórios. O presente estudo propõe avaliar a fotoestabilidade de produtos comerciais com FPS 30, após irradiação UV e também após a irradiação fluorescente, correlacionando o comportamento de cada produto frente aos diferentes tipos de radiação. A metodologia aplicada é in vitro, sendo que os produtos testados foram aplicados em duas diferentes placas de polimetilmetacrilato Polimetil metacrilato (PMMA) e irradiados por um simulador solar com filtros específicos para UVA/B e por uma fonte de luz fluorescente comercial. De acordo com os resultados obtidos, foi observado que a placa de PMMA utilizada pode influenciar nos resultados e todas as amostras testadas apresentaram um comportamento fotoestável quando expostos à radiação ultravioleta ou fluorescente, ou seja, não apresentaram redução na sua capacidade de absorção da radiação UVA/B mesmo após doses de radiação bem elevadas. Estes resultados demonstram que as amostras testadas apresentaram um comportamento bastante estável em diversas situações em que a população está exposta no dia a dia
Abstract: Sunscreens are molecules with ability to absorb and/or reflect the UVA and UVB radiation, thereby preventing radiation that reaches the epidermis or dermis even though some filters can be unstable when they absorb radiation, with consequent loss of its function. The photostability after exposure to UV radiation is well known and described, but there are not many data correlating the stability of these filters after fluorescent light irradiation, emitted by commercial lamps present in homes and offices. This study proposes to assess the photostability of commercial products SPF 30 after artificial UV irradiation and also after the fluorescent radiation, correlating the behavior of each product against different types of radiation. The methodology applied was in vitro, and the products tested were applied on two different plates of polymethyl methacrylate (PMMA) and irradiated by a solar simulator with specific filters for UVA/B and a fluorescent light source commercial. According to the results, the plate can play an important role in the photostability data and all samples tested presented a similar photostable behavior when exposed to UV or fluorescent light, or showed no reduction in its capacity for absorption of UVA/B even after higher doses of radiation. These results demonstrate that the samples tested presented a very stable behavior in various situations in which the population is exposed on a daily basis
Mestrado
Ciencias Biomedicas
Mestre em Ciências Médicas
APA, Harvard, Vancouver, ISO, and other styles
2

Löfgren, Stefan. "Cataract from ultraviolet radiation /." Stockholm : Karolinska Univ. Press, 2001. http://diss.kib.ki.se/2001/91-7349-065-2/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Podskochy, Alexander. "Ultraviolet radiation and cornea /." Stockholm : Karolinska institutet, 2002. http://diss.kib.ki.se/2002/91-7349-118-7/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zhang, Zhipeng. "Ultraviolet Photodiodes Based on (Mg,Zn)O and (In,Ga)2O3 Thin Films." Doctoral thesis, Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-213220.

Full text
Abstract:
Die vorliegende Arbeit befasst sich mit der Untersuchung von Metall-Halbleiter-Metall ultravioletten Photodioden basierend auf Dünnschichten der weitbandlückigen Halbleitern Magnesiumzinkoxid (Mg,Zn)O und Galliumindiumoxid (In,Ga)2O3. Die Arbeit behandelt zwei inhaltliche Schwerpunkte. Der erste Schwerpunkt liegt auf Herstellung, Entwicklung und Charakterisierung der wellenlängenselektiven (Mg,Zn)O-Photodioden bei Erhaltung der Wurtzitstruktur in UVA und UVB Spektralbereichen. Dabei wurde eine integrierte optische Filterschicht mit einem höheren Mg-Gehalt verwendet, die einen Teil der von der Rückseite einfallende Strahlung absorbieren kann. Um die Selektivität der Absorptionskante und die Bandbreite des Detektoren abzustimmen, wurden unterschiedliche Kombinationen der Mg-Gehalte in den Schichten untersucht. Weiterhin wurde der Ansatz eines kontinuierlichen Kompositionsgradienten mittels großflächig gepulster Laserabscheidung genutzt, um monolithisch mehrkanalig schmalbandige Photodioden zu realisieren. Dadurch konnten die kontinuierliche Verschiebung der Absorptionskante von beiden Activ- und Filterschichten sowie die Photodetektion mit minimierter und einheitlicher spektraler Auflösung innerhalb von einem 2 inch im Durchmesser Wafer ermöglicht werden. Der zweite Schwerpunkt konzentriert sich auf die Untersuchung der wellenlängenselektiven Photodioden basierend auf Si-dotierten (In,Ga)2O3 Dünnschichten mittels der kontinuierlichen Kompositionsgradienten durch unterschiedliche Variation des Indium-Gehaltes. Die Absorptionskante der (In,Ga)2O3 Dünnschichten konnte von UVA bis zum UVC Spektralbereich abgestimmt werden. Die chemische und strukturelle Eigenschaften der Dünnschichten wurden mittels Kathodolumineszenzmikroskop, energiedispersive Röntgenspektroskopie and Röntgenbeugung studiert. Die elektrischen Eigenschaften der Schottky-Kontakte wurden mit hochpräzisen Strom-Spannungs-Messung bestimmt. Die Untersuchung der Absorptionskante sowie der Effzienz der Photodioden geschieht mittels spektralaufgelöster Photostrommessungen.
APA, Harvard, Vancouver, ISO, and other styles
5

Pearn, Sophie M. "Ultraviolet reflectance, ultraviolet-induced fluorescence and mate choice in the budgerigar (Melopsittacus undulatus)." Thesis, University of Bristol, 2003. http://hdl.handle.net/1983/c0e5c23f-8307-4e1a-8660-5b4e86d8576a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Abu-Kassem, Issam. "Réalisation et qualification métrologique d'une échelle d'éclairement energétique spectrique dans le proche ultraviolet." Paris, CNAM, 2002. http://www.theses.fr/2002CNAM0414.

Full text
Abstract:
Pour répondre à la demande croissante des utilisateurs du rayonnement ultraviolet, le BNM-INM a entrepris la réalisation d'une échelle d'éclairement énergétique spectrique dans le proche ultraviolet (200-400 nm) basée sur l'utilisation des radiomètres étalons. Un radiomètre est constitué par trois éléments essentiels, un détecteur optique de sensibilité connue, un filtre interéférentiel à bande étroite et un diaphragme d'une surface determinée. La caractérisation de nouvelles photodiodes à large cap et de filtre interéférentiels montre qu'il est possible de réaliser des radiomètres à filtre étalons à bande spetrale étroite de 10 à 20 nm de largeur régulièrement réparties entre 200 et 400 nm. L'utilisation de ces radiomètres permet d'étudier le spectre des sources de rayonnement émettant dans l'ultraviolet et d'améliorer leur étalonnage en éclairement. Ce travail présente d'abord les études accomplies pour sélectionner les meilleurs éléments pour la réalisation des radiomètres à filtre dans le proche ultraviolet, ensuite la réalisation des radiomètres complets et leur étalonnage par rapport au radiomètre cryogénique
To satisfy the requirements of ultraviolet radiation user, the BNM-INM has undertaken the realization of irradiance scale in the bear ultraviolet (200-400 nm) bases on the use of standard radiometers. A radiometer is composed by tree main components, an optical detector of known responsivity, a narrow band interference filter and an aperture of identified surface. The charactization of new wide-band gap photodiodes and of interference filters shows that it is possible to realize narrow spetral band filter radiometres of 10 to 20 nm of width regularly distributed between 200 and 400 nm. The use of these radiometers allows studying the spectrum of ultraviolet sources sources and also omprving their irradiance calibration. Firstly, this work presents acomplished studies carried out to select the best elements for realizing near ultraviolet filter radiometers ; then, it presents the realization and the characterization of completed filter radiometers and their calibration against cryogenic radiometer
APA, Harvard, Vancouver, ISO, and other styles
7

Campbell, Richard S. "Development and integration of the NPS middle ultraviolet spectrograph with an extreme ultraviolet spectrograph." Thesis, Monterey, California. Naval Postgraduate School, 1989. http://hdl.handle.net/10945/26983.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Porter, Michael Anthony. "Hyperspectral imaging using ultraviolet light /." Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2005. http://library.nps.navy.mil/uhtbin/hyperion/05Dec%5FPorter.pdf.

Full text
Abstract:
Thesis (M.S. in Astronautical Engineering)--Naval Postgraduate School, December 2005.
Thesis Advisor(s): Richard C. Olsen, Christopher Brophy. Includes bibliographical references (p.55-56). Also available online.
APA, Harvard, Vancouver, ISO, and other styles
9

Tracy, Daniel P. "Vacuum ultraviolet modification of polymers /." Online version of thesis, 1989. http://hdl.handle.net/1850/10954.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Szilagyi, John Michael. "Extreme ultraviolet spectral streak camera." Master's thesis, University of Central Florida, 2010. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/4578.

Full text
Abstract:
The recent development of extreme ultraviolet (EUV) sources has increased the need for diagnostic tools, and has opened up a previously limited portion of the spectrum. With ultrafast laser systems and spectroscopy moving into shorter timescales and wavelengths, the need for nanosecond scale imaging of EUV is increasing. EUV's high absorption has limited the number of imaging options due to the many atomic resonances in this spectrum. Currently EUV is imaged with photodiodes and X-ray CCDs. However photodiodes are limited in that they can only resolve intensity with respect to time and X-ray CCDs are limited to temporal resolution in the microsecond range. This work shows a novel approach to imaging EUV light over a nanosecond time scale, by using an EUV scintillator to convert EUV to visible light imaged by a conventional streak camera. A laser produced plasma, using a mass-limited tin based target, provided EUV light which was imaged by a grazing incidence flat field spectrometer onto a Ce:YAG scintillator. The EUV spectrum (5 nm-20 nm) provided by the spectrometer is filter by a zirconium filter and then converted by the scintillator to visible light (550 nm) which can then be imaged with conventional optics. Visible light was imaged by an electron image tube based streak camera. The streak camera converts the visible light image to an electron image using a photocathode, and sweeps the image across a recording medium. The streak camera also provides amplification and gating of the image by the means of a micro channel plate, within the image tube, to compensate for low EUV intensities. The system provides 42 ns streaked images of light with a temporal resolution of 440 ps at a repetition rate of 1 Hz. Upon calibration the EUV streak camera developed in this work will be used in future EUV development.
ID: 029049655; System requirements: World Wide Web browser and PDF reader.; Mode of access: World Wide Web.; Thesis (M.S.E.E.)--University of Central Florida, 2010.; Includes bibliographical references (p. 73-76).
M.S.E.E.
Masters
School of Electrical Engineering and Computer Science
Engineering and Computer Science
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Ultraviolet"

1

Ultraviolet (Ultraviolet, #1). Minneapolis: Carolrhoda Lab, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

B, Holberg J., ed. Extreme ultraviolet astronomy. Cambridge: Cambridge University Press, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Anderson, R. J. Ultraviolet. London: Orchard, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

1931-, Huffman Robert E., and Society of Photo-optical Instrumentation Engineers., eds. Ultraviolet technology. Bellingham, Wash: SPIE--The International Society for Optical Engineering, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

R, Samson James A., and Ederer D. L, eds. Vacuum ultraviolet spectroscopy. [San Diego, Calif: Academic, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zhang, Zi-Hui, Chunshuang Chu, Kangkai Tian, and Yonghui Zhang. Deep Ultraviolet LEDs. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6179-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zerefos, Christos S., and Alkiviadis F. Bais, eds. Solar Ultraviolet Radiation. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-662-03375-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Samson, James A. Vacuum Ultraviolet Spectroscopy. Burlington: Elsevier, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

The ultraviolet sky. New York: Anchor Books, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

The ultraviolet sky. Tempe, Ariz: Bilingual Press/Editorial Bilingüe, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Ultraviolet"

1

Gooch, Jan W. "Ultraviolet." In Encyclopedic Dictionary of Polymers, 779. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_12308.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Weik, Martin H. "ultraviolet." In Computer Science and Communications Dictionary, 1854. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_20332.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lin, S. Y. "Ultraviolet Spectrophotometry." In Methods in Lignin Chemistry, 217–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-74065-7_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Fukazawa, K. "Ultraviolet Microscopy." In Methods in Lignin Chemistry, 110–21. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-74065-7_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lago, M. T. V. T. "Ultraviolet Observations." In Formation and Evolution of Low Mass Stars, 209–23. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-3037-7_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Krueger, Arlin. "Ultraviolet Sensors." In Encyclopedia of Remote Sensing, 860–69. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-0-387-36699-9_186.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Panagia, Nino. "Ultraviolet Supernovae." In Supernovae and Gamma-Ray Bursters, 113–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/3-540-45863-8_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

van Bommel, Wout. "Ultraviolet Radiator." In Encyclopedia of Color Science and Technology, 1–2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-27851-8_147-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gooch, Jan W. "Ultraviolet Absorber." In Encyclopedic Dictionary of Polymers, 779. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_12309.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gooch, Jan W. "Ultraviolet Absorbers." In Encyclopedic Dictionary of Polymers, 779. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_12310.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Ultraviolet"

1

Matthews, Jerrid, Farnoosh Javadi, Gauresh Rane, Jason Zheng, Giovanni Pau, and Mario Gerla. "Ultraviolet guardian - real time ultraviolet monitoring." In the 2nd ACM international workshop. New York, New York, USA: ACM Press, 2012. http://dx.doi.org/10.1145/2248341.2248350.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sutherland, John. "Ultraviolet Photobiology*." In Free-Electron Laser Applications in the Ultraviolet. Washington, D.C.: Optica Publishing Group, 1988. http://dx.doi.org/10.1364/fel.1988.fc1.

Full text
Abstract:
Biology, for the most part, happens in an aqueous environment. Thus the optical properties of water are critical to studies of the effects of electromagnetic radiation on biological systems. Water does not absorb hard x-rays or long wavelength radio waves very well, but these regions of the spectrum are not of interest in this discussion. The regions of the spectrum that are important here are the two "windows" where water is reasonably transparent. The major "window" in the absorption spectrum of water extends from below 200 nm in the ultraviolet (UV) to about 1,000 nm in the near infrared. The "visible" region of the spectrum (380 to 800 nm) is in the center of this window and all of the biological processes that are included in the dicipline of photobiology (vision, photosynthesis, photomovement, photomorphogenesis, bioluminescence, chronobiology, photosensitization and ultraviolet photobiology) involve wavelengths in some part of the 200-1000 water window. In evaluating potential roles for UV free electron lasers (FELs) we are interested in wavelengths less than about 400 nm. In this part of the spectrum most biological effects are detrimental to biological materials and fall under the subdicipline refered to as UV photobiology. In addition to the biological effects of visible and UV light, these wavelength are used in spectroscopic experiments that probe biological structure and function. UV FELs may prove particularly useful in circular dichroism-, fluorescence- and Raman spectroscopy.
APA, Harvard, Vancouver, ISO, and other styles
3

Malley, Jr., James P., and Bruce Burris. "Ultraviolet Disinfection." In World Water and Environmental Resources Congress 2001. Reston, VA: American Society of Civil Engineers, 2001. http://dx.doi.org/10.1061/40569(2001)494.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Leitherer, Claus. "Ultraviolet and extreme ultraviolet observations of starburst galaxies." In The ultraviolet universe at low and high redshift. AIP, 1997. http://dx.doi.org/10.1063/1.53787.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sliney, David H. "Dosimetry for ultraviolet radiation exposure of the eye." In Ultraviolet Radiation Hazards. SPIE, 1994. http://dx.doi.org/10.1117/12.180811.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Belkin, Michael. "Ultraviolet eye damage: the epidemiological evidence." In Ultraviolet Radiation Hazards. SPIE, 1994. http://dx.doi.org/10.1117/12.180812.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Cleaver, James E. "Genetics of human sensitivity to ultraviolet radiation." In Ultraviolet Radiation Hazards. SPIE, 1994. http://dx.doi.org/10.1117/12.180813.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Perera, Sharmila C., and Anthony P. Cullen. "Sunlight and human conjunctival action spectrum." In Ultraviolet Radiation Hazards. SPIE, 1994. http://dx.doi.org/10.1117/12.180814.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Coroneo, Minas T. "Ophthalmohelioses and peripheral light focusing by the anterior eye." In Ultraviolet Radiation Hazards. SPIE, 1994. http://dx.doi.org/10.1117/12.180815.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Maloof, Anthony J., Arthur Ho, and Minas T. Coroneo. "Peripheral light focusing by the anterior segment." In Ultraviolet Radiation Hazards. SPIE, 1994. http://dx.doi.org/10.1117/12.180816.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Ultraviolet"

1

Hargis, P. J. Jr, B. L. Preppernau, and B. P. Aragon. Ultraviolet fluorescence monitor. Office of Scientific and Technical Information (OSTI), May 1997. http://dx.doi.org/10.2172/481480.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Goldberg, Kenneth A. Extreme ultraviolet interferometry. Office of Scientific and Technical Information (OSTI), December 1997. http://dx.doi.org/10.2172/658173.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gangl, Michael, Michael Bullinger, Richard Cundiff, Jack McKay, and John Middlestadt. Ultraviolet Array Detector Research. Fort Belvoir, VA: Defense Technical Information Center, April 1995. http://dx.doi.org/10.21236/ada312113.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Canfield, L. Randall, and Nils Swanson. Far ultraviolet detector standards. Gaithersburg, MD: National Bureau of Standards, 1987. http://dx.doi.org/10.6028/nbs.sp.250-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tsai, Yuhsin. Infrared Constraint on Ultraviolet Theories. Office of Scientific and Technical Information (OSTI), August 2012. http://dx.doi.org/10.2172/1127958.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Simons, John C. High Resolution Ultraviolet Filter Development. Fort Belvoir, VA: Defense Technical Information Center, February 1987. http://dx.doi.org/10.21236/ada184183.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Boysen, Dane. Characterization of Extreme Ultraviolet Coatings. Office of Scientific and Technical Information (OSTI), March 2020. http://dx.doi.org/10.2172/1615928.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Cross, Lee. Ultraviolet Communication for Medical Applications. Fort Belvoir, VA: Defense Technical Information Center, June 2012. http://dx.doi.org/10.21236/ada601826.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Cross, Lee W. Ultraviolet Communication for Medical Applications. Fort Belvoir, VA: Defense Technical Information Center, June 2013. http://dx.doi.org/10.21236/ada601962.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Early, E. A., and Ambler Thompson. Report on USDA ultraviolet spectroradiometers. Gaithersburg, MD: National Institute of Standards and Technology, 1996. http://dx.doi.org/10.6028/nist.ir.5871.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography