To see the other types of publications on this topic, follow the link: Ultraviolet detection.

Journal articles on the topic 'Ultraviolet detection'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Ultraviolet detection.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Vissers, Gregal J. M., Luc H. M. Rouppe van der Voort, and Robert J. Rutten. "Automating Ellerman bomb detection in ultraviolet continua." Astronomy & Astrophysics 626 (May 30, 2019): A4. http://dx.doi.org/10.1051/0004-6361/201834811.

Full text
Abstract:
Ellerman bombs are transient brightenings in the wings of Hα 6563 Å that pinpoint photospheric sites of magnetic reconnection in solar active regions. Their partial visibility in the 1600 Å and 1700 Å continua registered routinely by the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO) offers a unique opportunity to inventory such magnetic-field disruptions throughout the AIA database if a reliable recipe for their detection can be formulated. This is done here. We have improved and applied an Hα Ellerman bomb detection code to ten data sets spanning viewing angles from solar disc centre to the limb. They combine high-quality Hα imaging spectroscopy from the Swedish 1 m Solar Telescope with simultaneous AIA imaging around 1600 Å and 1700 Å. A trial grid of brightness, lifetime and area constraints is imposed on the AIA images to define optimal recovery of the 1735 Ellerman bombs detected in Hα. The best results when optimising simultaneously for recovery fraction and reliability are obtained from 1700 Å images by requiring 5σ brightening above the average 1700 Å nearby quiet-Sun intensity, lifetime above one minute, area of 1–18 AIA pixels. With this recipe 27% of the AIA detections are Hα-detected Ellerman bombs while it recovers 19% of these (of which many are smaller than the AIA resolution). Better yet, among the top 10% AIA 1700 Å detections selected with combined brightness, lifetime and area thresholds as many as 80% are Hα Ellerman bombs. Automated selection of the best 1700 Å candidates therefore opens the entire AIA database for detecting most of the more significant photospheric reconnection events. This proxy is applicable as a flux-dynamics tell-tale in studying any Earth-side solar active region since early 2010 up to the present.
APA, Harvard, Vancouver, ISO, and other styles
2

Wu, Jun, Hao Fu, and Xiashi Zhu. "Separation/Analysis Rhodamine B by Anion Surfactant/Ionic Liquid Aqueous Two-Phase Systems Coupled with Ultraviolet Spectrometry." Detection 02, no. 03 (2014): 17–25. http://dx.doi.org/10.4236/detection.2014.23004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ben-Kish, A., A. Fisher, E. Cheifetz, and J. L. Schwob. "Extreme ultraviolet–vacuum ultraviolet spectrum detection using image plates." Review of Scientific Instruments 71, no. 7 (July 2000): 2651–54. http://dx.doi.org/10.1063/1.1150671.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Li, Xiang, Chenxin Zhu, Xi Zhu, Zhihuang Xu, Xinxin Zhuang, Xiaoli Ji, and Feng Yan. "Background limited ultraviolet photodetectors of solar-blind ultraviolet detection." Applied Physics Letters 103, no. 17 (October 21, 2013): 171110. http://dx.doi.org/10.1063/1.4826458.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Autrey, Tom, Nancy Foster, Derek Hopkins, and John Price. "Tunable ultraviolet visible photoacoustic detection." Analytica Chimica Acta 434, no. 2 (May 2001): 217–22. http://dx.doi.org/10.1016/s0003-2670(01)00834-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

S., Nonitha, Ramesh C., Yogesh T.L., Nandaprasad ., Tejavathy ., and Yashwanth Reddy. "Dried Salivary Stain Detection using Ultraviolet- Light Spectrophotometer, Fluorescent and Raman Spectroscopy." Indian Journal of Forensic Medicine and Pathology 11, no. 3 (2018): 183–86. http://dx.doi.org/10.21088/ijfmp.0974.3383.11318.6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Monroy, Eva, Fernando Calle, Carlos Angulo, Pablo Vila, Angel Sanz, Jose Antonio Garrido, Enrique Calleja, et al. "GaN-based solar-ultraviolet detection instrument." Applied Optics 37, no. 22 (August 1, 1998): 5058. http://dx.doi.org/10.1364/ao.37.005058.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Liu, K. W., D. Z. Shen, C. X. Shan, J. Y. Zhang, B. Yao, D. X. Zhao, Y. M. Lu, and X. W. Fan. "Zn0.76Mg0.24O homojunction photodiode for ultraviolet detection." Applied Physics Letters 91, no. 20 (November 12, 2007): 201106. http://dx.doi.org/10.1063/1.2805816.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Pauchard, A., B. Furrer, Z. Randjelovic, A. Rochas, D. Manic, and R. S. Popovic. "Integrated microsystem for blue/ultraviolet detection." Sensor Review 20, no. 1 (March 2000): 31–35. http://dx.doi.org/10.1108/02602280010311374.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Luo, Li, Qing Yang, Jin-Long Gong, and Yi-Fan Wang. "Corona Discharge Detection System Based on Ultraviolet Sensor and Optical Lens." Journal of Nanoelectronics and Optoelectronics 14, no. 12 (December 1, 2019): 1686–92. http://dx.doi.org/10.1166/jno.2019.2716.

Full text
Abstract:
Ultraviolet radiation produced by corona discharge can be used for discharge diagnosis, but the ultraviolet imager is expensive and the ultraviolet signal is susceptible to external interference during the day, so it can not accurately identify the occurrence of corona discharge. In this paper, an optical lens is designed to collect ultraviolet signal. In this paper, a corona detection method based on ultraviolet sensor and optical lens was proposed. The design of optical lens to concentrate the ultraviolet signal so as to suppress external interference was presented. By carrying out insulator corona discharge experiments, the feasibility of the proposed method was studied. Finally, a comparison and verification was made with the combination of corona discharge images collected by UV imager. Research results by this paper indicate that, when the detection distance is smaller than 5 m, and the power supply is about 700 V, the proposed corona detection method can effectively collect the ultraviolet rays generated by corona discharge, thus realizing the feasible recognition of corona discharge. Moreover, this method can feasibly reflect the changing of UV intensity with applied voltage and detection distance. The research results can provide important reference for the development and calibration of ultraviolet detection equipment.
APA, Harvard, Vancouver, ISO, and other styles
11

Yafan Shi, Yafan Shi, Zhaohui Li Zhaohui Li, Baicheng Feng Baicheng Feng, Peiqin Yan Peiqin Yan, Bingcheng Du Bingcheng Du, Hui Zhou Hui Zhou, Haifeng Pan Haifeng Pan, and and Guang Wu and Guang Wu. "Enhanced solar-blind ultraviolet single-photon detection with a Geiger-mode silicon avalanche photodiode." Chinese Optics Letters 14, no. 3 (2016): 030401–30404. http://dx.doi.org/10.3788/col201614.030401.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Shen, Tao, Xiaoshuang Dai, Daqing Zhang, Wenkang Wang, and Yue Feng. "ZnO Composite Graphene Coating Micro-Fiber Interferometer for Ultraviolet Detection." Sensors 20, no. 5 (March 8, 2020): 1478. http://dx.doi.org/10.3390/s20051478.

Full text
Abstract:
A simple and reliable ultraviolet sensing method with high sensitivity is proposed. ZnO and ZnO composite graphene are successfully prepared by the hydrothermal method. The optical fiber sensor is fabricated by coating the single-mode-taper multimode-single-mode (STMS) with different shapes of ZnO. The effects of the sensitivity of ultraviolet sensors are further investigated. The results show that the sensor with ZnO nanosheets exhibits a higher sensitivity of 357.85 pm/nW·cm−2 for ultraviolet sensing ranging from 0 to 4 nW/cm2. The ultraviolet characteristic of STMS coated flake ZnO composite graphene has been demonstrated with a sensitivity of 427.76 pm/nW·cm−2. The combination of sensitive materials and optical fiber sensing technology provides a novel and convenient platform for ultraviolet detection technology.
APA, Harvard, Vancouver, ISO, and other styles
13

Brosch, N. "Ultraviolet Sky Surveys." Symposium - International Astronomical Union 179 (1998): 57–67. http://dx.doi.org/10.1017/s0074180900128219.

Full text
Abstract:
Among all spectral bands, the ultraviolet has long been neglected, despite the advantage of small space experiments: the sky is very dark, thus detection of faint objects does not compete against an enhanced background (O'Connell 1987) and the telescope construction techniques are very similar (at least longward of ∼50 nm) to those of optical astronomy.
APA, Harvard, Vancouver, ISO, and other styles
14

Yongli, Liao, Wang Liming, Wang Ke, Wang Canlin, and Guan Zhicheng. "Ultraviolet Corona Discharge Detection Based on Photomultiplier." IEEJ Transactions on Fundamentals and Materials 128, no. 5 (2008): 357–66. http://dx.doi.org/10.1541/ieejfms.128.357.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Wang Baohua, 王保华, 李妥妥 Li Tuotuo, and 郑国宪 Zheng Guoxian. "Research of Solar Blind Ultraviolet Detection System." Laser & Optoelectronics Progress 51, no. 2 (2014): 022202. http://dx.doi.org/10.3788/lop51.022202.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Heap, S. R. "Ultraviolet detection of the nucleus of NGC2440." Nature 326, no. 6113 (April 1987): 571–73. http://dx.doi.org/10.1038/326571a0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Ghosh, Anupam, Prakhar Kannoje, and Aniruddha Mondal. "Ultraviolet detection by Cr doped In2O3 TF." IET Optoelectronics 13, no. 4 (August 1, 2019): 172–76. http://dx.doi.org/10.1049/iet-opt.2018.5018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Kaaret, Philip, Hua Feng, Diane S. Wong, and Lian Tao. "DIRECT DETECTION OF AN ULTRALUMINOUS ULTRAVIOLET SOURCE." Astrophysical Journal 714, no. 1 (April 9, 2010): L167—L170. http://dx.doi.org/10.1088/2041-8205/714/1/l167.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Harker, Audrey, Simin Mehrabani, and Andrea M. Armani. "Ultraviolet light detection using an optical microcavity." Optics Letters 38, no. 17 (August 28, 2013): 3422. http://dx.doi.org/10.1364/ol.38.003422.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Field, M. R., B. J. Murdoch, D. G. McCulloch, and J. G. Partridge. "Ultraviolet detection from energetically deposited titania films." Applied Physics Letters 104, no. 13 (March 31, 2014): 131905. http://dx.doi.org/10.1063/1.4870069.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

FANG Xiang-ming, 方向明, 范怀云 FAN Huai-yun, 高世勇 GAO Shi-yong, 万永彪 WAN Yong-biao, 张. 勇. ZHANG Yong, 矫淑杰 JIAO Shu-jie, and 王金忠 WANG Jin-zhong. "Fabrication and Ultraviolet Detection of ZnO Nanorods." Chinese Journal of Luminescence 39, no. 3 (2018): 369–74. http://dx.doi.org/10.3788/fgxb20183903.0369.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Yu, Fang, Alexander A. Kachanov, Serguei Koulikov, Ann Wainright, and Richard N. Zare. "Ultraviolet thermal lensing detection of amino acids." Journal of Chromatography A 1216, no. 16 (April 2009): 3423–30. http://dx.doi.org/10.1016/j.chroma.2008.05.096.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Miwa, Takashi, Yasuko Yamada Maruo, Kunihiko Akaoka, Tatsuya Kunioka, and Jiro Nakamura. "Development of Colorimetric Ozone Detection Papers with High Ultraviolet Resistance Using Ultraviolet Absorbers." Journal of the Air & Waste Management Association 59, no. 7 (July 2009): 801–8. http://dx.doi.org/10.3155/1047-3289.59.7.801.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Willis, P. A., H. U. Stauffer, R. Z. Hinrichs, and H. F. Davis. "Rotatable source crossed molecular beams apparatus with pulsed ultraviolet/vacuum ultraviolet photoionization detection." Review of Scientific Instruments 70, no. 6 (June 1999): 2606–14. http://dx.doi.org/10.1063/1.1149817.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Naval, V., C. Smith, V. Ryzhikov, S. Naydenov, F. Alves, and G. Karunasiri. "Zinc Selenide-Based Schottky Barrier Detectors for Ultraviolet-A and Ultraviolet-B Detection." Advances in OptoElectronics 2010 (December 2, 2010): 1–5. http://dx.doi.org/10.1155/2010/619571.

Full text
Abstract:
Wide-bandgap semiconductors such as zinc selenide (ZnSe) have become popular for ultraviolet (UV) photodetectors due to their broad UV spectral response. Schottky barrier detectors made of ZnSe in particular have been shown to have both low dark current and high responsivity. This paper presents the results of electrical and optical characterization of UV sensors based on ZnSe/Ni Schottky diodes fabricated using single-crystal ZnSe substrate with integrated UV-A (320–400 nm) and UV-B (280–320 nm) filters. For comparison, characteristics characterization of an unfiltered detector is also included. The measured photoresponse showed good discrimination between the two spectral bands. The measured responsivities of the UV-A and UV-B detectors were 50 mA/W and 10 mA/W, respectively. A detector without a UV filter showed a maximum responsivity of about 110 mA/W at 375 nm wavelength. The speed of the unfiltered detector was found to be about 300 kHz primarily limited by the RC time constant determined largely by the detector area.
APA, Harvard, Vancouver, ISO, and other styles
26

Hodyss, Robert, and J. L. Beauchamp. "Multidimensional Detection of Nitroorganic Explosives by Gas Chromatography-Pyrolysis-Ultraviolet Detection." Analytical Chemistry 77, no. 11 (June 2005): 3607–10. http://dx.doi.org/10.1021/ac050308e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Li Hongxia, 李红霞, 钮洁青 Niu Jieqing, 黄云刚 Huang Yungang, 毛林杰 Mao Linjie, and 陈敬蓉 Chen Jingrong. "Noninvasive Detection of Latent Fingerprints Using Ultraviolet Laser." Laser & Optoelectronics Progress 48, no. 9 (2011): 092501. http://dx.doi.org/10.3788/lop48.092501.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Suto, Masako, E. R. Manzanares, and L. C. Lee. "Detection of sulfuric acid aerosols by ultraviolet scattering." Environmental Science & Technology 19, no. 9 (September 1985): 815–20. http://dx.doi.org/10.1021/es00139a008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Chai, Guangyu, Oleg Lupan, Lee Chow, and Helge Heinrich. "Crossed zinc oxide nanorods for ultraviolet radiation detection." Sensors and Actuators A: Physical 150, no. 2 (March 2009): 184–87. http://dx.doi.org/10.1016/j.sna.2008.12.020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Xue, Yongjun, and Edward S. Yeung. "Laser-Based Ultraviolet Absorption Detection in Capillary Electrophoresis." Applied Spectroscopy 48, no. 4 (April 1994): 502–6. http://dx.doi.org/10.1366/000370294775268983.

Full text
Abstract:
Laser-based UV absorption in capillary electrophoresis is demonstrated. The use of vacuum photodiodes and an all-electronic noise canceller provides adequate baseline stability despite the large inherent intensity noise in UV lasers. A 4-fold improvement in the detection limit is achieved in comparison to that of commercial instruments. The main advantage here is the better optical coupling with small capillary tubes, maximizing the available optical pathlength for absorption.
APA, Harvard, Vancouver, ISO, and other styles
31

Whitfield, Michael D., Simon SM Chan, and Richard B. Jackman. "Thin film diamond photodiode for ultraviolet light detection." Applied Physics Letters 68, no. 3 (January 15, 1996): 290–92. http://dx.doi.org/10.1063/1.116062.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Mazzillo, M., and A. Sciuto. "4H-SiC Schottky photodiodes for ultraviolet flame detection." Journal of Instrumentation 10, no. 10 (October 19, 2015): P10029. http://dx.doi.org/10.1088/1748-0221/10/10/p10029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Mazzeo, G., G. Conte, J. L. Reverchon, A. Dussaigne, and J. Y. Duboz. "Deep ultraviolet detection dynamics of AlGaN based devices." Applied Physics Letters 89, no. 22 (November 27, 2006): 223513. http://dx.doi.org/10.1063/1.2397019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

A. Zawadzki, D. S. Shrestha, and B. He. "Biodiesel Blend Level Detection Using Ultraviolet Absorption Spectra." Transactions of the ASABE 50, no. 4 (2007): 1349–53. http://dx.doi.org/10.13031/2013.23612.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Courtial, J., B. A. Patterson, W. Hirst, A. R. Harvey, A. J. Duncan, W. Sibbett, and M. J. Padgett. "Static Fourier-transform ultraviolet spectrometer for gas detection." Applied Optics 36, no. 13 (May 1, 1997): 2813. http://dx.doi.org/10.1364/ao.36.002813.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Hodges-Kluck, Edmund, and Joel N. Bregman. "DETECTION OF ULTRAVIOLET HALOS AROUND HIGHLY INCLINED GALAXIES." Astrophysical Journal 789, no. 2 (June 23, 2014): 131. http://dx.doi.org/10.1088/0004-637x/789/2/131.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Weinberger, Scot R., and Danyl J. Bornhop. "Scanning ultraviolet detection in capillary supercritical fluid chromatography." Journal of Microcolumn Separations 1, no. 2 (March 1989): 90–95. http://dx.doi.org/10.1002/mcs.1220010208.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Kloock, Carl T., Abraham Kubli, and Ricco Reynolds. "Ultraviolet light detection: a function of scorpion fluorescence." Journal of Arachnology 38, no. 3 (December 2010): 441–45. http://dx.doi.org/10.1636/b09-111.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Warntjes, J. B. M., A. Gürtler, A. Osterwalder, F. Rosca-Pruna, M. J. J. Vrakking, and L. D. Noordam. "Atomic spectral detection of tunable extreme ultraviolet pulses." Optics Letters 26, no. 19 (October 1, 2001): 1463. http://dx.doi.org/10.1364/ol.26.001463.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Bornhop, Darryl J., Louis Hlousek, Murray Hackett, Houle Wang, and Glenn C. Miller. "Remote scanning ultraviolet detection for capillary gas chromatography." Review of Scientific Instruments 63, no. 1 (January 1992): 191–201. http://dx.doi.org/10.1063/1.1142956.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Fang, W., D. B. Buchholz, R. C. Bailey, J. T. Hupp, R. P. H. Chang, and H. Cao. "Detection of chemical species using ultraviolet microdisk lasers." Applied Physics Letters 85, no. 17 (October 25, 2004): 3666–68. http://dx.doi.org/10.1063/1.1807967.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Tuschel, David D., Aleksandr V. Mikhonin, Brian E. Lemoff, and Sanford A. Asher. "Deep Ultraviolet Resonance Raman Excitation Enables Explosives Detection." Applied Spectroscopy 64, no. 4 (April 2010): 425–32. http://dx.doi.org/10.1366/000370210791114194.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Rustambekyan, S. S. "Detection of binary systems from their ultraviolet spectra." Astronomical & Astrophysical Transactions 3, no. 1 (November 1992): 73–80. http://dx.doi.org/10.1080/10556799208230541.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

O'Connell, Robert W. "Ultraviolet detection of very low-surface-brightness objects." Astronomical Journal 94 (October 1987): 876. http://dx.doi.org/10.1086/114522.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Hopkins, Adam J., Justin L. Cooper, Luisa T. M. Profeta, and Alan R. Ford. "Portable Deep-Ultraviolet (DUV) Raman for Standoff Detection." Applied Spectroscopy 70, no. 5 (April 8, 2016): 861–73. http://dx.doi.org/10.1177/0003702816638285.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Judge, D. L., P. Gangopadhyay, H. S. Ogawa, and P. Blum. "Vacuum ultraviolet detection of the VLISM-heliosphere interaction." Advances in Space Research 12, no. 8 (August 1992): 390–94. http://dx.doi.org/10.1016/0273-1177(92)90414-s.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Sauli, F. "Ultraviolet photon detection and localization with Multiwire Chambers." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 248, no. 1 (July 1986): 143–49. http://dx.doi.org/10.1016/0168-9002(86)90507-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Rao, Zhimin, Dengxin Hua, Tingyao He, Qiang Wang, and Jing Le. "Ultraviolet laser-induced fluorescence lidar for pollen detection." Optik 136 (May 2017): 497–502. http://dx.doi.org/10.1016/j.ijleo.2017.02.075.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Bi, Zongjie, Yanchao Zhang, Shanshan Zhang, Ling Wang, Erdan Gu, and Zhaoshuo Tian. "A Handheld Miniature Ultraviolet LED Fluorescence Detection Spectrometer." Journal of Applied Spectroscopy 86, no. 3 (July 2019): 538–41. http://dx.doi.org/10.1007/s10812-019-00855-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Henry, Richard C. "Diffuse Ultraviolet Background Radiation." International Astronomical Union Colloquium 171 (1999): 357–64. http://dx.doi.org/10.1017/s0252921100054567.

Full text
Abstract:
AbstractDiffuse ultraviolet background radiation may contain important information concerning the dark matter of the universe. I briefly review new Voyager observations of the diffuse background, which give a very low upper limit on the background radiation shortward of Lyman α, and I review the capabilities for detection and characterization of diffuse radiation that will be provided by a proposed new NASA mission. Low-surface-brightness radiation remains largely an unexplored frontier, particularly in the ultraviolet.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography