To see the other types of publications on this topic, follow the link: Umbral calculus.

Journal articles on the topic 'Umbral calculus'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Umbral calculus.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Kim, K. H. "The Umbral Calculus." Mathematical Social Sciences 11, no. 1 (1986): 94–95. http://dx.doi.org/10.1016/0165-4896(86)90009-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Yun, Sang Jo, та Jin-Woo Park. "Identities of Degenerate Poly-Changhee Polynomials Arising from λ -Sheffer Sequences". Journal of Mathematics 2022 (14 липня 2022): 1–9. http://dx.doi.org/10.1155/2022/1482534.

Full text
Abstract:
In the 1970s, Gian-Carlo Rota constructed the umbral calculus for investigating the properties of special functions, and by Kim-Kim, umbral calculus is generalized called λ -umbral calculus. In this paper, we find some important relationships between degenerate Changhee polynomials and some important special polynomials by expressing the Changhee polynomial as a linear combination of some special polynomials. In addition, we derive some interesting identities related to degenerate poly-Changhee polynomials and some important special functions by using λ -umbral calculus.
APA, Harvard, Vancouver, ISO, and other styles
3

Rota, G. C., and B. D. Taylor. "The Classical Umbral Calculus." SIAM Journal on Mathematical Analysis 25, no. 2 (1994): 694–711. http://dx.doi.org/10.1137/s0036141093245616.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Verdoodt, Ann. "Non-Archimedean Umbral Calculus." Annales mathématiques Blaise Pascal 5, no. 1 (1998): 55–73. http://dx.doi.org/10.5802/ambp.105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sun, Xie-Hua. "On Umbral Calculus I." Journal of Mathematical Analysis and Applications 244, no. 2 (2000): 279–90. http://dx.doi.org/10.1006/jmaa.1999.6686.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Verdoodt, Ann. "p-adicq-umbral Calculus." Journal of Mathematical Analysis and Applications 198, no. 1 (1996): 166–77. http://dx.doi.org/10.1006/jmaa.1996.0074.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Benyattou, Abdelkader. "Congruences via umbral calculus." Notes on Number Theory and Discrete Mathematics 28, no. 4 (2022): 719–29. http://dx.doi.org/10.7546/nntdm.2022.28.4.719-729.

Full text
Abstract:
In this paper, we use the properties of the classical umbral calculus to give some congruences related to the Bell numbers and Bell polynomials. We also present a new congruence involving Appell polynomials with integer coefficients.
APA, Harvard, Vancouver, ISO, and other styles
8

Roman, Steven. "More on the umbral calculus, with emphasis on the q-umbral calculus." Journal of Mathematical Analysis and Applications 107, no. 1 (1985): 222–54. http://dx.doi.org/10.1016/0022-247x(85)90367-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zeilberger, Doron. "Book Review: The umbral calculus." Bulletin of the American Mathematical Society 13, no. 1 (1985): 73–77. http://dx.doi.org/10.1090/s0273-0979-1985-15374-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

López-Sendino, J. E., J. Negro, M. A. del Olmo, and E. Salgado. "Quantum mechanics and umbral calculus." Journal of Physics: Conference Series 128 (August 1, 2008): 012056. http://dx.doi.org/10.1088/1742-6596/128/1/012056.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Benouaret, Chahrazed, and Alain Salinier. "Umbral calculus in Ore extensions." Journal of Pure and Applied Algebra 224, no. 3 (2020): 958–86. http://dx.doi.org/10.1016/j.jpaa.2019.06.017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Ueno, Kazuo. "Umbral calculus and special functions." Advances in Mathematics 67, no. 2 (1988): 174–229. http://dx.doi.org/10.1016/0001-8708(88)90040-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Finkelshtein, Dmitri, Yuri Kondratiev, Eugene Lytvynov, and Maria João Oliveira. "An infinite dimensional umbral calculus." Journal of Functional Analysis 276, no. 12 (2019): 3714–66. http://dx.doi.org/10.1016/j.jfa.2019.03.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Kochubei, Anatoly N. "Umbral calculus in positive characteristic." Advances in Applied Mathematics 34, no. 1 (2005): 175–91. http://dx.doi.org/10.1016/j.aam.2004.07.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Bottreau, A., A. Di Bucchianico, and D. E. Loeb. "Computer algebra and Umbral Calculus." Discrete Mathematics 180, no. 1-3 (1998): 65–72. http://dx.doi.org/10.1016/s0012-365x(97)00108-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Gzyl, Henryk. "Umbral calculus via integral transforms." Journal of Mathematical Analysis and Applications 129, no. 2 (1988): 315–25. http://dx.doi.org/10.1016/0022-247x(88)90252-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Behr, Nicolas, Giuseppe Dattoli, Ambra Lattanzi, and Silvia Licciardi. "Dual Numbers and Operational Umbral Methods." Axioms 8, no. 3 (2019): 77. http://dx.doi.org/10.3390/axioms8030077.

Full text
Abstract:
Dual numbers and their higher-order version are important tools for numerical computations, and in particular for finite difference calculus. Based on the relevant algebraic rules and matrix realizations of dual numbers, we present a novel point of view, embedding dual numbers within a formalism reminiscent of operational umbral calculus.
APA, Harvard, Vancouver, ISO, and other styles
18

Dere, Rahime. "Some Hermite base polynomials on q-umbral algebra." Filomat 30, no. 4 (2016): 961–67. http://dx.doi.org/10.2298/fil1604961d.

Full text
Abstract:
The aim of this paper is to investigate the q-Hermite type polynomials by using umbral calculus methods. Using this method, we derive new type polynomials which are related to the q-Bernoulli polynomials and the q-Hermite type polynomials. Furthermore, we also derive some new identities of those polynomials which are derived from q-umbral calculus.
APA, Harvard, Vancouver, ISO, and other styles
19

Diarra, Bertin. "Ultrametric umbral calculus in characteristic $p$." Bulletin of the Belgian Mathematical Society - Simon Stevin 14, no. 5 (2007): 845–69. http://dx.doi.org/10.36045/bbms/1197908899.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Kholodov, Alexander Nickolaevich. "The umbral calculus on logarithmic algebras." Acta Applicandae Mathematicae 19, no. 1 (1990): 55–76. http://dx.doi.org/10.1007/bf00047231.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Kholodov, Alexander Nickolaevich. "The umbral calculus and orthogonal polynomials." Acta Applicandae Mathematicae 19, no. 1 (1990): 1–54. http://dx.doi.org/10.1007/bf00047230.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Kim, Dae San, and Taekyun Kim. "Umbral calculus associated with Bernoulli polynomials." Journal of Number Theory 147 (February 2015): 871–82. http://dx.doi.org/10.1016/j.jnt.2013.09.013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Razpet, Marko. "An application of the umbral calculus." Journal of Mathematical Analysis and Applications 149, no. 1 (1990): 1–16. http://dx.doi.org/10.1016/0022-247x(90)90281-j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Kisil, V. V. "Umbral Calculus and Cancellative Semigroup Algebras." Zeitschrift für Analysis und ihre Anwendungen 19, no. 2 (2000): 315–38. http://dx.doi.org/10.4171/zaa/953.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Hammouch, H. "Umbral Calculus, Martingales, and Associated Polynomials." Stochastic Analysis and Applications 22, no. 2 (2004): 443–47. http://dx.doi.org/10.1081/sap-120028600.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Méndez, Miguel A. "The Umbral Calculus of Symmetric Functions." Advances in Mathematics 124, no. 2 (1996): 207–71. http://dx.doi.org/10.1006/aima.1996.0083.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Gessel, Ira M. "Applications of the classical umbral calculus." Algebra Universalis 49, no. 4 (2003): 397–434. http://dx.doi.org/10.1007/s00012-003-1813-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Niederhausen, Heinrich. "Rota?s umbral calculus and recursions." Algebra Universalis 49, no. 4 (2003): 435–57. http://dx.doi.org/10.1007/s00012-003-1820-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Guo, Li. "Baxter Algebras and the Umbral Calculus." Advances in Applied Mathematics 27, no. 2-3 (2001): 405–26. http://dx.doi.org/10.1006/aama.2001.0742.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Maheswaran, A., and C. Elango. "Effect of Delta Operator on Umbral Composition in Finite Operator calculus." JOURNAL OF ADVANCES IN MATHEMATICS 12, no. 7 (2016): 6392–97. http://dx.doi.org/10.24297/jam.v12i7.5482.

Full text
Abstract:
The main objective of this paper is to propose the matrix representation of umbral composition and investigate the effect of delta operator on umbral composition by using the sequential representation of delta operator in finite operator calculus.
APA, Harvard, Vancouver, ISO, and other styles
31

Kim, Dae San, and Taekyun Kim. "Applications of Umbral Calculus Associated withp-Adic Invariant Integrals onZp." Abstract and Applied Analysis 2012 (2012): 1–12. http://dx.doi.org/10.1155/2012/865721.

Full text
Abstract:
Recently, Dere and Simsek (2012) have studied the applications of umbral algebra to some special functions. In this paper, we investigate some properties of umbral calculus associated withp-adic invariant integrals onZp. From our properties, we can also derive some interesting identities of Bernoulli polynomials.
APA, Harvard, Vancouver, ISO, and other styles
32

Kim, Taekyun, Dae San Kim, Toufik Mansour, Seog-Hoon Rim, and Matthias Schork. "Umbral calculus and Sheffer sequences of polynomials." Journal of Mathematical Physics 54, no. 8 (2013): 083504. http://dx.doi.org/10.1063/1.4817853.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Dattoli, G., D. Levi, and P. Winternitz. "Heisenberg algebra, umbral calculus and orthogonal polynomials." Journal of Mathematical Physics 49, no. 5 (2008): 053509. http://dx.doi.org/10.1063/1.2909731.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Ray, Nigel. "Umbral calculus, binomial enumeration and chromatic polynomials." Transactions of the American Mathematical Society 309, no. 1 (1988): 191. http://dx.doi.org/10.1090/s0002-9947-1988-0957067-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Chen, William Y. C., H. W. Galbraith, and J. D. Louck. "Angular momentum theory, umbral calculus, and combinatorics." Computers & Mathematics with Applications 41, no. 9 (2001): 1199–214. http://dx.doi.org/10.1016/s0898-1221(01)00091-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Kim, Dae San, and Tae Kyun Kim. "q-Bernoulli polynomials and q-umbral calculus." Science China Mathematics 57, no. 9 (2014): 1867–74. http://dx.doi.org/10.1007/s11425-014-4821-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Kim, Dae San, Taekyun Kim, and Sang-Hun Lee. "Umbral Calculus and the Frobenius-Euler Polynomials." Abstract and Applied Analysis 2013 (2013): 1–6. http://dx.doi.org/10.1155/2013/871512.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Gzyl, Henryk. "Canonical transformations, umbral calculus, and orthogonal theory." Journal of Mathematical Analysis and Applications 111, no. 2 (1985): 547–58. http://dx.doi.org/10.1016/0022-247x(85)90234-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Ueno, Kazuo. "General power umbral calculus in several variables." Journal of Pure and Applied Algebra 59, no. 3 (1989): 299–308. http://dx.doi.org/10.1016/0022-4049(89)90100-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Behr, Nicolas, Giuseppe Dattoli, Gérard Duchamp, and Silvia Penson. "Operational Methods in the Study of Sobolev-Jacobi Polynomials." Mathematics 7, no. 2 (2019): 124. http://dx.doi.org/10.3390/math7020124.

Full text
Abstract:
Inspired by ideas from umbral calculus and based on the two types of integrals occurring in the defining equations for the gamma and the reciprocal gamma functions, respectively, we develop a multi-variate version of umbral calculus and of the so-called umbral image technique. Besides providing a class of new formulae for generalized hypergeometric functions and an implementation of series manipulations for computing lacunary generating functions, our main application of these techniques is the study of Sobolev-Jacobi polynomials. Motivated by applications to theoretical chemistry, we moreover
APA, Harvard, Vancouver, ISO, and other styles
41

Dattoli, Giuseppe, Silvia Licciardi, Bruna Germano, and Maria Renata Martinelli. "q-Functions and Distributions, Operational and Umbral Methods." Mathematics 9, no. 21 (2021): 2664. http://dx.doi.org/10.3390/math9212664.

Full text
Abstract:
The use of non-standard calculus means have been proven to be extremely powerful for studying old and new properties of special functions and polynomials. These methods have helped to frame either elementary and special functions within the same logical context. Methods of Umbral and operational calculus have been embedded in a powerful and efficient analytical tool, which will be applied to the study of the properties of distributions such as Tsallis, Weibull and Student’s. We state that they can be viewed as standard Gaussian distributions and we take advantage of the relevant properties to
APA, Harvard, Vancouver, ISO, and other styles
42

Kim, T. "Identities involving Laguerre polynomials derived from umbral calculus." Russian Journal of Mathematical Physics 21, no. 1 (2014): 36–45. http://dx.doi.org/10.1134/s1061920814010038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Kim, T., and T. Mansour. "Umbral calculus associated with Frobenius-type Eulerian polynomials." Russian Journal of Mathematical Physics 21, no. 4 (2014): 484–93. http://dx.doi.org/10.1134/s1061920814040062.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Kim, T., та D. S. Kim. "On λ-Bell polynomials associated with umbral calculus". Russian Journal of Mathematical Physics 24, № 1 (2017): 69–78. http://dx.doi.org/10.1134/s1061920817010058.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Senato, D., and A. Venezia. "A set-theoretic interpretation of the umbral calculus." Computers & Mathematics with Applications 41, no. 9 (2001): 1109–24. http://dx.doi.org/10.1016/s0898-1221(01)00085-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Saliani, Sandra, and Domenico Senato. "Compactly Supported Wavelets Through the Classical Umbral Calculus." Journal of Fourier Analysis and Applications 12, no. 1 (2006): 27–36. http://dx.doi.org/10.1007/s00041-005-4085-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Wiseman, Gus. "Set maps, umbral calculus, and the chromatic polynomial." Discrete Mathematics 308, no. 16 (2008): 3551–64. http://dx.doi.org/10.1016/j.disc.2007.07.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Andrews, George E. "Umbral Calculus, Bailey Chains, and Pentagonal Number Theorems." Journal of Combinatorial Theory, Series A 91, no. 1-2 (2000): 464–75. http://dx.doi.org/10.1006/jcta.2000.3111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Benyattou, Abdelkader, and Miloud Mihoubi. "Note on some sequences having periods that divide (formula)." Notes on Number Theory and Discrete Mathematics 28, no. 2 (2022): 234–39. http://dx.doi.org/10.7546/nntdm.2022.28.2.234-239.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Licciardi, Silvia, Rosa Maria Pidatella, Marcello Artioli, and Giuseppe Dattoli. "Voigt Transform and Umbral Image." Mathematical and Computational Applications 25, no. 3 (2020): 49. http://dx.doi.org/10.3390/mca25030049.

Full text
Abstract:
In this paper, we show that the use of methods of an operational nature, such as umbral calculus, allows achieving a double target: on one side, the study of the Voigt function, which plays a pivotal role in spectroscopic studies and in other applications, according to a new point of view, and on the other, the introduction of a Voigt transform and its possible use. Furthermore, by the same method, we point out that the Hermite and Laguerre functions, extension of the corresponding polynomials to negative and/or real indices, can be expressed through a definition in a straightforward and unifi
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!