Academic literature on the topic 'Unconventional superconductivity'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Unconventional superconductivity.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Unconventional superconductivity"

1

Stewart, G. R. "Unconventional superconductivity." Advances in Physics 66, no. 2 (April 3, 2017): 75–196. http://dx.doi.org/10.1080/00018732.2017.1331615.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Muzikar, Paul. "Unconventional superconductivity." Journal of Physics: Condensed Matter 9, no. 6 (February 10, 1997): 1159–79. http://dx.doi.org/10.1088/0953-8984/9/6/004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Annett, James F. "Unconventional superconductivity." Contemporary Physics 36, no. 6 (November 1995): 423–37. http://dx.doi.org/10.1080/00107519508232300.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Curro, N. J., T. Caldwell, E. D. Bauer, L. A. Morales, M. J. Graf, Y. Bang, A. V. Balatsky, J. D. Thompson, and J. L. Sarrao. "Unconventional superconductivity in." Physica B: Condensed Matter 378-380 (May 2006): 915–19. http://dx.doi.org/10.1016/j.physb.2006.01.352.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Möckli, David. "Unconventional singlet-triplet superconductivity." Journal of Physics: Conference Series 2164, no. 1 (March 1, 2022): 012009. http://dx.doi.org/10.1088/1742-6596/2164/1/012009.

Full text
Abstract:
Abstract Have you been lying awake wondering what symmetries determine whether a superconductor is spin-singlet, triplet, or both? We show that if one supplies additional degrees of freedom to BCS theory, spin-singlet can coexist with spin-triplet superconductivity. We guide the reader to the most general superconducting state using symmetry arguments. If both singlet and triplet pairing channels act, a magnetic field can convert between spin-singlet and triplet states. Two possible singlet-triplet superconductors candidates are: CeRh2As2 and bilayer-NbSe2.
APA, Harvard, Vancouver, ISO, and other styles
6

Curro, N. J., T. Caldwell, E. D. Bauer, L. A. Morales, M. J. Graf, Y. Bang, A. V. Balatsky, J. D. Thompson, and J. L. Sarrao. "Unconventional superconductivity in PuCoGa5." Nature 434, no. 7033 (March 2005): 622–25. http://dx.doi.org/10.1038/nature03428.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Abu Alrub, T. R., and S. H. Curnoe. "Unconventional superconductivity in YNi2B2C." Journal of Physics: Condensed Matter 21, no. 41 (September 23, 2009): 415704. http://dx.doi.org/10.1088/0953-8984/21/41/415704.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Liu, Ying, and Zhi-Qiang Mao. "Unconventional superconductivity in Sr2RuO4." Physica C: Superconductivity and its Applications 514 (July 2015): 339–53. http://dx.doi.org/10.1016/j.physc.2015.02.039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Luke, G. M., Y. Fudamoto, K. M. Kojima, M. I. Larkin, B. Nachumi, Y. J. Uemura, J. E. Sonier, et al. "Unconventional superconductivity in Sr2RuO4." Physica B: Condensed Matter 289-290 (August 2000): 373–76. http://dx.doi.org/10.1016/s0921-4526(00)00414-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Takahashi, T. "Commentary on “unconventional superconductivity…”." Synthetic Metals 42, no. 1-2 (May 1991): 2011. http://dx.doi.org/10.1016/0379-6779(91)92001-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Unconventional superconductivity"

1

Poenicke, Andreas. "Unconventional Superconductivity near Inhomogeneities." [S.l. : s.n.], 2008. http://digbib.ubka.uni-karlsruhe.de/volltexte/1000007522.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Scaffidi, Thomas. "Unconventional superconductivity in strontium ruthenate." Thesis, University of Oxford, 2016. https://ora.ox.ac.uk/objects/uuid:af08bf3f-3934-48f1-89af-a897948172fb.

Full text
Abstract:
In this thesis, a weak coupling formalism is developed to study superconductivity in spin-orbit coupled, multi-orbital systems. This formalism is then applied to Sr2RuO4, one of the few candidates for odd-parity superconductivity. We show that spin-orbit coupling and multi-band effects are crucial to understand the physics of this material. Depending on the interaction parameters, the order parameter can either be chiral or helical. In both cases, the gap is highly anisotropic, and has accidental deep minima along certain directions, in accordance with experiments. Focusing then on the chiral case, we show that the total Chern number is -7 instead of the usually assumed +1. This leads to drastically different predictions for the thermal and charge Hall conductances. In particular, we show that the absence of measurable charge edge currents is not incompatible with a chiral state. Finally, we study the evolution of superconductivity in Sr2RuO4 under ?100? uniaxial strain. We find a good agreement with experiments for our prediction of Tc as a function of strain. Furthermore, we find that (1) the absence of a measurable cusp of Tc at zero strain is not incompatible with a chiral state and that (2) there could be a transition to an even-parity state at larger strain close to a Van Hove singularity. We propose Hc,2/Tc2 c as a measurable quantity to identify this transition.
APA, Harvard, Vancouver, ISO, and other styles
3

Wu, Beilun. "Unconventional superconductivity in the ferromagnetic superconductor UCoGe." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAY010/document.

Full text
Abstract:
Cette thèse discute essentiellement sur le champ critique supérieur du supraconducteur ferromagnétique UCoGe. La conductivité thermique et d'autres méthodes expérimentales ont été utilisées pour confirmer les nombreux comportements particuliers de Hc2 dans UCoGe, précédemment observés dans des études de résistivité. Ces caractéristiques, y compris une anisotropie forte et des courbures anormales, ne peuvent pas être interprétées en termes de théories classiques pour Hc2. Au lieu de cela, un phénomène spécifique aux supraconducteurs ferromagnétiques - la dépendance en champ de l'interaction d'appariement doit être considéré. Nous montrons que cet effet peut être analysé de façon cohérente avec des propriétés de la phase normales et peut être aussi comparé quantitativement avec une théorie existante. Ceci conduit à une clarification nette pour le cas de H//c dans UCoGe, et explique en même temps le comportement différent de Hc2 dans UCoGe et URhGe. Ces résultats soutiennent fortement l'origine magnétique de la supraconductivité dans ces systèmes. Pour H//b, nous montrons que certaines observations expérimentales convergentes suggèrent un possible changement d'état supraconducteur induit par le champ magnétique transversal dans UCoGe. Indépendamment du reste de l'étude, le dernier chapitre présente quelques résultats expérimentaux sur la phase normale de UCoGe et sur l'autre système de fermions lourds UBe13
This thesis mainly discuss the upper critical field of the ferromagnetic superconductor UCoGe.Thermal conductivity and other experimental methods have been used to confirm the numerous particularbehaviors of Hc2 in UCoGe, previously observed in resistivity studies. These features, including the stronganisotropy and the anomalous curvatures, cannot be interpreted in terms of classical theories for Hc2.Instead, a phenomenon specific to the ferromagnetic superconductors - the field dependence of the pairinginteraction, needs to be considered. We show that this effect can be consistently analyzed with normalphase properties, and is quantitatively compared with existing theory. This leads to a net clarificationfor the case of H//c in UCoGe, and at the same timeexplains the different behavior of Hc2 in UCoGe and URhGe. These resultsstrongly support the magnetic origin of superconductivity in these systems. For H//b, we showconvergent experimental observations that suggest a possible change of the superconducting state inducedby the transverse magnetic field in UCoGe. Independent from the rest of the study, the last chapter presents someexperimental results on the normal phase of UCoGe and on the other heavy-fermion system UBe13
APA, Harvard, Vancouver, ISO, and other styles
4

Ko, Yuen Ting. "Search for unconventional superconductivity in transition metal compounds." Thesis, University of Cambridge, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.609099.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

汪琳力 and Linli Wang. "Supercurrents across unconventional superconducting junctions." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2001. http://hub.hku.hk/bib/B31226814.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wang, Linli. "Supercurrents across unconventional superconducting junctions /." Hong Kong : University of Hong Kong, 2001. http://sunzi.lib.hku.hk/hkuto/record.jsp?B23540321.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Freye, Dominik Matthias. "The border of antiferromagnetism in CeIn₃ : possible unconventional superconductivity." Thesis, University of Cambridge, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.627256.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Naritsuka, Masahiro. "Controlling unconventional superconductivity in artificially engineered heavy-fermion superlattices." Kyoto University, 2020. http://hdl.handle.net/2433/253073.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Curran, Peter John. "Vortex phenomena in unconventional superconductors." Thesis, University of Bath, 2013. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.601640.

Full text
Abstract:
Unconventional superconductors are those which are not described by the BCS theory, and for which no known theoretical description currently exists. The careful study of the behaviour of superconducting vortices in such systems yields crucial insights into the underlying physics of these exciting materials. This thesis describes a series of magnetometry experiments conducted on three different unconventional superconductors: Sr2RuO4, MgB2 and Bi2Sr2CaCu2O8+; utilising two techniques: Scanning Hall probe microscopy and magneto-optical imaging. An exotic p-wave chiral order parameter is thought to exist in Sr2RuO4 and is expected to produce several identifiable magnetic signatures. A search for these signals via scanning Hall probe measurements failed to detect any such signatures, but did capture a structural transition of the vortex lattice that is consistent with the proposed chiral order parameter. Studies of several samples also suggest that the vortex behaviour is strongly modified with even tiny amounts of disorder, a conclusion that has important consequences for interpretations of vortex patterns in Sr2RuO4. Several recent experiments have reported vortex configurations consistent with a competing short-range repulsion and long-range attraction in the intervortex interaction in MgB2 single crystals. We observe the spontaneous formation of vortex chains and labyrinths in a 160nm MgB2 thin-film that are suggestive of a non-monotonic vortex interaction, but perhaps more indicative of an intermediate-range attraction in harness with short and long-range repulsions. The suitability of seven potential mechanisms of vortex attraction in MgB2 are reviewed in light of the unusually short electronic mean-free path of our sample. Finally, magneto-optical imaging has been used to study the penetration of flux into regular polygon-shaped Bi2Sr2CaCu2O8+ platelets with various geometries. The variation of HP with geometry qualitatively contradicts conventional estimates of demagnetisation factors based on equivalent ellipsoids using inscribed circles. This work has important implications for the estimation of appropriate effective demagnetisation factors in arbitrarily shaped superconducting bodies.
APA, Harvard, Vancouver, ISO, and other styles
10

Li, Qunqing. "Vortex physics of unconventional superconductors Ginzburg-Lindau theory /." Hong Kong : University of Hong Kong, 2000. http://sunzi.lib.hku.hk/hkuto/record.jsp?B22424817.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Unconventional superconductivity"

1

Mineev, Vladimir P. Introduction to unconventional superconductivity. Amsterdam, The Netherlands: Gordon and Breach Science Publishers, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

1979-, Brusov Pavel, ed. Collective excitations in unconventional superconductors and superfluids. Hackensack, NJ: World Scientific, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

1940-, Narlikar A. V., ed. Cuprates and some unconventional systems. Hauppauge, N.Y: Nova Science Publishers, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

service), SpringerLink (Online, ed. Electron-Phonon Interaction in Conventional and Unconventional Superconductors. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Karp, Jonathan Judah. Theoretical Studies of Unconventional Superconductivity in Materials with Strong Electronic Correlations. [New York, N.Y.?]: [publisher not identified], 2022.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Noce, C. Ruthenate and Rutheno-Cuprate Materials: Unconventional Superconductivity, Magnetism and Quantum Phase Transitions. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

C, Noce, ed. Ruthenate and rutheno-cuprate materials: Unconventional superconductivity, magnetism, and quantum phase transitions. Berlin: Springer, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Safarali, Dzhumanov. Theory of conventional and unconventional superconductivity in the High-Tc cuprates and other systems. Hauppauge, N.Y: Nova Science Publishers, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Goll, Gernot. Unconventional Superconductors. Springer, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Unconventional Superconductors Experimental Investigation Of The Orderparameter Symmetry. Springer, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Unconventional superconductivity"

1

Aynajian, Pegor. "Unconventional Superconductivity." In Electron-Phonon Interaction in Conventional and Unconventional Superconductors, 25–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14968-9_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Won, H., and K. Maki. "Unconventional Superconductivity and Borocarbides." In Rare Earth Transition Metal Borocarbides (Nitrides): Superconducting, Magnetic and Normal State Properties, 379–92. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0763-4_42.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Millis, A. J., D. Rainer, and J. Sauls. "Proximity Effects between Conventional and Unconventional Superconductors." In Novel Superconductivity, 265–73. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4613-1937-5_27.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Maple, M. Brian, Eric D. Bauer, Vivien S. Zapf, and Jochen Wosnitza. "Unconventional Superconductivity in Novel Materials." In The Physics of Superconductors, 555–730. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-642-18914-2_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Aynajian, Pegor. "Conventional Superconductivity." In Electron-Phonon Interaction in Conventional and Unconventional Superconductors, 15–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14968-9_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Keller, H. "Unconventional Isotope Effects in Cuprate Superconductors." In Superconductivity in Complex Systems, 143–69. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/b101019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sigrist, Manfred. "Ruthenates: Unconventional Superconductivity and Magnetic Properties." In Concepts in Electron Correlation, 27–34. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-010-0213-4_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Julian, Stephen R. "Unconventional Superconductivity in Heavy Fermion and Ruthenate Materials." In Handbook of Superconductivity, 316–33. 2nd ed. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9780429179181-34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Fisher, R. A., S. Kim, B. F. Woodfield, N. E. Phillips, L. Taillefer, K. Hasselbach, J. Flouquet, A. L. Giorgi, and J. L. Smith. "Specific Heat of UPt3: Evidence for Unconventional Superconductivity." In Ten Years of Superconductivity: 1980–1990, 189–92. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-011-1622-0_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ishimaru, Yoshihiro, Jianguo Wen, Tadashi Utagawa, Naoki Koshizuka, and Youichi Enomoto. "Observation of Unconventional SQUID-like Properties for Asymmetrical Bicrystal Josephson Junction." In Advances in Superconductivity X, 51–54. Tokyo: Springer Japan, 1998. http://dx.doi.org/10.1007/978-4-431-66879-4_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Unconventional superconductivity"

1

Fernandes, R. M., Agustín Conde-Gallardo, Eloy Ayón-Beato, Juan José Godina-Nava, Martín Hernández-Contreras, and Liliana Velasco-Sevilla. "Conventional and unconventional superconductivity." In ADVANCED SUMMER SCHOOL IN PHYSICS 2011: EAV2011. AIP, 2012. http://dx.doi.org/10.1063/1.3678624.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sigrist, Manfred. "Introduction to Unconventional Superconductivity." In LECTURES ON THE PHYSICS OF HIGHLY CORRELATED ELECTRON SYSTEMS IX: Ninth Training Course in the Physics of Correlated Electron Systems and High-Tc Superconductors. AIP, 2005. http://dx.doi.org/10.1063/1.2080350.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sigrist, M. "Unconventional superconductivity in non-centrosymmetric materials." In EFFECTIVE MODELS FOR LOW-DIMENSIONAL STRONGLY CORRELATED SYSTEMS. AIP, 2006. http://dx.doi.org/10.1063/1.2178038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Badica, Elvira, Marco Aprili, Mark W. Covington, and Laura H. Greene. "Andreev bound state tunneling: spectroscopy of unconventional superconductivity." In AeroSense 2000, edited by Davor Pavuna and Ivan Bozovic. SPIE, 2000. http://dx.doi.org/10.1117/12.397867.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wen, Hai-Hu. "Study on Unconventional Superconductivity after the BCS Paradigm." In Proceedings of the 12th Asia Pacific Physics Conference (APPC12). Journal of the Physical Society of Japan, 2014. http://dx.doi.org/10.7566/jpscp.1.011005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sigrist, Manfred, Adolfo Avella, and Ferdinando Mancini. "Introduction to unconventional superconductivity in non-centrosymmetric metals." In LECTURES ON THE PHYSICS OF STRONGLY CORRELATED SYSTEMS XIII: Thirteenth Training Course in the Physics of Strongly Correlated Systems. AIP, 2009. http://dx.doi.org/10.1063/1.3225489.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

KU, H. C., B. N. LIN, Y. Y. HSU, Y. H. LIN, and H. B. YANG. "UNUSUAL MAGNETIC PROPERTIES OR UNCONVENTIONAL SUPERCONDUCTIVITY IN PrBa2Cu3O7?" In Proceedings of the 8th Asia-Pacific Physics Conference. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812811523_0060.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

HIRAI, T., Y. TANAKA, J. INOUE, and Y. ASANO. "PROXIMITY EFFECT IN FERROMAGNET / UNCONVENTIONAL SUPERCONDUCTOR JUNCTION." In Toward the Controllable Quantum States - International Symposium on Mesoscopic Superconductivity and Spintronics (MS+S2002). WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812705556_0040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

SHIGETA, IDURU, YUKIO TANAKA, FUSAO ICHIKAWA, YASUHIRO ASANO, and SATOSHI KASHIWAYA. "CIRCUIT THEORY ANALYSIS OF AB-PLANE TUNNEL JUNCTIONS OF UNCONVENTIONAL SUPERCONDUCTOR BI2SR2CACU2O8+δ." In Proceedings of the International Symposium on Mesoscopic Superconductivity and Spintronics — In the Light of Quantum Computation. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812701619_0025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Qian, Peng, Hong Yi, and Yinghui Li. "Hydrodynamic Performance of an S-SWATH Ship in Calm Water and Waves." In ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/omae2014-24100.

Full text
Abstract:
An unconventional SWATH (Small-Waterplane-Area-Twin-Hull) ship is introduced, named S-SWATH, which is a catamaran with twin hulls that are slightly curved in an S-form and arranged at a mean yaw angle but mirror symmetric to their common longitudinal center plane. Based on the “shallow-channel superconductivity” theory, proposed by Chen and Sharma, in this paper a more accurate viscous flow theory, solving the Reynolds-averaged Navier–Stokes equations (or RANS equations), is used to study the hydrodynamic performance of the S-SWATH ship. The simulation results of calm-water resistance and motions in waves are presented. In comparison with a benchmark conventional SWATH ship, which features a typical torpedo-shaped body, the simulation results prove the effectiveness of the S-shape design. On one hand, the S-SWATH ship inherits the major advantages of SWATH ships, such as the superior ride quality, acceptable acceleration levels for human habitability and therefore comfort and overall superior seakeeping characteristics. On the other hand, the S-SWATH ship has much less low-speed drag than its conventional SWATH counterpart, and comparable total drag at high speeds.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Unconventional superconductivity"

1

MOVSHOVICH, R., and A. V. BALATSKY. UNCONVENTIONAL SUPERCONDUCTIVITY AND VIOLATION OF TIME-REVERSAL INVARIANCE. Office of Scientific and Technical Information (OSTI), September 2001. http://dx.doi.org/10.2172/786910.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Andraka, Bohdan. Heavy fermions, quantum criticality, and unconventional superconductivity in filled skutterudites and related materials. Office of Scientific and Technical Information (OSTI), May 2015. http://dx.doi.org/10.2172/1179456.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mounce, Andrew M., and Joe David Thompson. Kondo Physics and Unconventional Superconductivity in the U Intermetallic U2PtC2 Revealed by NMR. Office of Scientific and Technical Information (OSTI), December 2015. http://dx.doi.org/10.2172/1233260.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Basov, Dmitri N., Richard Averitt, Michael Fogler, James Hone, and Andrew J. Millis. Ultrafast infrared nano-spectroscopy and nano-imaging of unconventional superconductivity in cuprate and pnictide high-Tc systems. Office of Scientific and Technical Information (OSTI), February 2019. http://dx.doi.org/10.2172/1495215.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Clay, Rudolf Torsten, and Sumit Mazumdar. Theory of unconventional superconductivity in the 1/4-filled band correlated-electron super-conductors [and previous titles]. Final Report, DOE-BES grant DE-FG02-06ER46315. Office of Scientific and Technical Information (OSTI), November 2017. http://dx.doi.org/10.2172/1406919.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography