To see the other types of publications on this topic, follow the link: Unconventional superconductivity.

Journal articles on the topic 'Unconventional superconductivity'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Unconventional superconductivity.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Stewart, G. R. "Unconventional superconductivity." Advances in Physics 66, no. 2 (April 3, 2017): 75–196. http://dx.doi.org/10.1080/00018732.2017.1331615.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Muzikar, Paul. "Unconventional superconductivity." Journal of Physics: Condensed Matter 9, no. 6 (February 10, 1997): 1159–79. http://dx.doi.org/10.1088/0953-8984/9/6/004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Annett, James F. "Unconventional superconductivity." Contemporary Physics 36, no. 6 (November 1995): 423–37. http://dx.doi.org/10.1080/00107519508232300.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Curro, N. J., T. Caldwell, E. D. Bauer, L. A. Morales, M. J. Graf, Y. Bang, A. V. Balatsky, J. D. Thompson, and J. L. Sarrao. "Unconventional superconductivity in." Physica B: Condensed Matter 378-380 (May 2006): 915–19. http://dx.doi.org/10.1016/j.physb.2006.01.352.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Möckli, David. "Unconventional singlet-triplet superconductivity." Journal of Physics: Conference Series 2164, no. 1 (March 1, 2022): 012009. http://dx.doi.org/10.1088/1742-6596/2164/1/012009.

Full text
Abstract:
Abstract Have you been lying awake wondering what symmetries determine whether a superconductor is spin-singlet, triplet, or both? We show that if one supplies additional degrees of freedom to BCS theory, spin-singlet can coexist with spin-triplet superconductivity. We guide the reader to the most general superconducting state using symmetry arguments. If both singlet and triplet pairing channels act, a magnetic field can convert between spin-singlet and triplet states. Two possible singlet-triplet superconductors candidates are: CeRh2As2 and bilayer-NbSe2.
APA, Harvard, Vancouver, ISO, and other styles
6

Curro, N. J., T. Caldwell, E. D. Bauer, L. A. Morales, M. J. Graf, Y. Bang, A. V. Balatsky, J. D. Thompson, and J. L. Sarrao. "Unconventional superconductivity in PuCoGa5." Nature 434, no. 7033 (March 2005): 622–25. http://dx.doi.org/10.1038/nature03428.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Abu Alrub, T. R., and S. H. Curnoe. "Unconventional superconductivity in YNi2B2C." Journal of Physics: Condensed Matter 21, no. 41 (September 23, 2009): 415704. http://dx.doi.org/10.1088/0953-8984/21/41/415704.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Liu, Ying, and Zhi-Qiang Mao. "Unconventional superconductivity in Sr2RuO4." Physica C: Superconductivity and its Applications 514 (July 2015): 339–53. http://dx.doi.org/10.1016/j.physc.2015.02.039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Luke, G. M., Y. Fudamoto, K. M. Kojima, M. I. Larkin, B. Nachumi, Y. J. Uemura, J. E. Sonier, et al. "Unconventional superconductivity in Sr2RuO4." Physica B: Condensed Matter 289-290 (August 2000): 373–76. http://dx.doi.org/10.1016/s0921-4526(00)00414-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Takahashi, T. "Commentary on “unconventional superconductivity…”." Synthetic Metals 42, no. 1-2 (May 1991): 2011. http://dx.doi.org/10.1016/0379-6779(91)92001-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Aoki, D., Y. Haga, T. D. Matsuda, S. Ikeda, Y. Homma, H. Sakai, Y. Shiokawa, et al. "Unconventional superconductivity of NpPd5Al2." Journal of Physics: Condensed Matter 21, no. 16 (March 31, 2009): 164203. http://dx.doi.org/10.1088/0953-8984/21/16/164203.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Fil, D. V., and S. I. Shevchenko. "Unconventional superconductivity and superfluidity." Low Temperature Physics 46, no. 5 (May 2020): 433–35. http://dx.doi.org/10.1063/10.0001044.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Hu, Xiaomei, Zhiyi Liu, and Xingyuan Hou. "Upper critical field beyond Pauli limit in the exfoliated RbCr3As3 nanowires." Journal of Physics: Conference Series 2313, no. 1 (July 1, 2022): 012027. http://dx.doi.org/10.1088/1742-6596/2313/1/012027.

Full text
Abstract:
Abstract Unconventional superconductivity in the quasi-two-dimensional cuprates and iron-based superconductors has attracted great attention in these years. Recently, the discovery of the Cr-based ternary compounds has aroused the research upsurge for the possible spin-triplet superconductivity revealed from the bulk samples. Here we carried out the electrical transport measurements of the air-stable RbCr3As3 after the dimensionality reduction. It is founded that the superconductivity is suppressed, while the upper critical field is still far larger than the Pauli paramagnetic limit, providing an ideal platform to shed light on the unconventional superconductivity.
APA, Harvard, Vancouver, ISO, and other styles
14

Sigrist, Manfred, and Kazuo Ueda. "Phenomenological theory of unconventional superconductivity." Reviews of Modern Physics 63, no. 2 (April 1, 1991): 239–311. http://dx.doi.org/10.1103/revmodphys.63.239.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Norman, M. R. "The Challenge of Unconventional Superconductivity." Science 332, no. 6026 (April 7, 2011): 196–200. http://dx.doi.org/10.1126/science.1200181.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Spałek, Józef. "From correlations to unconventional superconductivity." Philosophical Magazine 95, no. 5-6 (February 11, 2015): 451–52. http://dx.doi.org/10.1080/14786435.2014.1000416.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Luke, G. M., M. T. Rovers, A. Fukaya, I. M. Gat, M. I. Larkin, A. Savici, Y. J. Uemura, et al. "Unconventional superconductivity in (TMTSF)2ClO4." Physica B: Condensed Matter 326, no. 1-4 (February 2003): 378–80. http://dx.doi.org/10.1016/s0921-4526(02)01634-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Maki, K., H. Won, M. Kohmoto, J. Shiraishi, Y. Morita, and G. F. Wang. "Vortex state in unconventional superconductivity." Physica C: Superconductivity 317-318 (May 1999): 353–60. http://dx.doi.org/10.1016/s0921-4534(99)00079-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Bauer, E., G. Hilscher, H. Michor, M. Sieberer, E. W. Scheidt, A. Gribanov, Yu Seropegin, et al. "Unconventional superconductivity and magnetism in." Physica B: Condensed Matter 359-361 (April 2005): 360–67. http://dx.doi.org/10.1016/j.physb.2005.01.062.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Ott, H. R. "Unconventional superconductivity in exotic metals." Czechoslovak Journal of Physics 46, S6 (June 1996): 3131–38. http://dx.doi.org/10.1007/bf02548120.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

YEH, N. C., and A. D. BEYER. "UNCONVENTIONAL LOW-ENERGY EXCITATIONS OF CUPRATE SUPERCONDUCTORS." International Journal of Modern Physics B 23, no. 22 (September 10, 2009): 4543–77. http://dx.doi.org/10.1142/s021797920905403x.

Full text
Abstract:
Recent development in the physics of high-temperature cuprate superconductivity is reviewed, with special emphasis on the phenomena of unconventional and non-universal low-energy excitations of hole- and electron-type cuprate superconductors and the possible physical origin. A phenomenology based on coexisting competing orders with cuprate superconductivity in the ground state appears to provide a consistent account for a wide range of experimental findings, including the presence (absence) of pseudogaps and Fermi arcs above the superconducting transition Tc in hole-type (electron-type) cuprate superconductors and the novel conductance modulations below Tc, particularly in the vortex state. Moreover, the competing order scenario is compatible with the possibility of pre-formed Cooper pairs and significant phase fluctuations in cuprate superconductors. The physical implications of the unified phenomenology and remaining open issues for the microscopic mechanism of cuprate superconductivity are discussed.
APA, Harvard, Vancouver, ISO, and other styles
22

Tolédano, Pierre, and Antonio M. Figueiredo Neto. "Analogy between Unconventional Superconductivity and Unconventional States of Liquid Crystals." Physical Review Letters 84, no. 24 (June 12, 2000): 5540–43. http://dx.doi.org/10.1103/physrevlett.84.5540.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Tolédano, P., and A. M. Figueiredo Neto. "Unconventional states of liquid crystals: an analogy with unconventional superconductivity." Liquid Crystals Today 10, no. 3 (September 2001): 5–9. http://dx.doi.org/10.1080/14645180110099227.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Aoki, D., J.-P. Brison, J. Flouquet, K. Ishida, G. Knebel, Y. Tokunaga, and Y. Yanase. "Unconventional superconductivity in UTe2." Journal of Physics: Condensed Matter 34, no. 24 (April 13, 2022): 243002. http://dx.doi.org/10.1088/1361-648x/ac5863.

Full text
Abstract:
Abstract The novel spin-triplet superconductor candidate UTe2 was discovered only recently at the end of 2018 and already attracted enormous attention. We review key experimental and theoretical progress which has been achieved in different laboratories. UTe2 is a heavy-fermion paramagnet, but following the discovery of superconductivity, it has been expected to be close to a ferromagnetic instability, showing many similarities to the U-based ferromagnetic superconductors, URhGe and UCoGe. This view might be too simplistic. The competition between different types of magnetic interactions and the duality between the local and itinerant character of the 5f Uranium electrons, as well as the shift of the U valence appear as key parameters in the rich phase diagrams discovered recently under extreme conditions like low temperature, high magnetic field, and pressure. We discuss macroscopic and microscopic experiments at low temperature to clarify the normal phase properties at ambient pressure for field applied along the three axis of this orthorhombic structure. Special attention will be given to the occurrence of a metamagnetic transition at H m = 35 T for a magnetic field applied along the hard magnetic axis b. Adding external pressure leads to strong changes in the magnetic and electronic properties with a direct feedback on superconductivity. Attention is paid on the possible evolution of the Fermi surface as a function of magnetic field and pressure. Superconductivity in UTe2 is extremely rich, exhibiting various unconventional behaviors which will be highlighted. It shows an exceptionally huge superconducting upper critical field with a re-entrant behavior under magnetic field and the occurrence of multiple superconducting phases in the temperature-field-pressure phase diagrams. There is evidence for spin-triplet pairing. Experimental indications exist for chiral superconductivity and spontaneous time reversal symmetry breaking in the superconducting state. Different theoretical approaches will be described. Notably we discuss that UTe2 is a possible example for the realization of a fascinating topological superconductor. Exploring superconductivity in UTe2 reemphasizes that U-based heavy fermion compounds give unique examples to study and understand the strong interplay between the normal and superconducting properties in strongly correlated electron systems.
APA, Harvard, Vancouver, ISO, and other styles
25

Aoki, Dai, Ai Nakamura, Fuminori Honda, DeXin Li, Yoshiya Homma, Yusei Shimizu, Yoshiki J. Sato, et al. "Unconventional Superconductivity in Heavy Fermion UTe2." Journal of the Physical Society of Japan 88, no. 4 (April 15, 2019): 043702. http://dx.doi.org/10.7566/jpsj.88.043702.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

nuki, Y., R. Settai, T. Takeuchi, Y. Haga, E. Yamamoto, N. Tateiwa, M. Nakashima, H. Shishido, T. C. Kobayashi, and D. Aoki. "Unconventional Superconductivity in f-Electron Systems." Journal of the Korean Physical Society 53, no. 9(2) (August 14, 2008): 1034–40. http://dx.doi.org/10.3938/jkps.53.1034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Park, T., V. A. Sidorov, F. Ronning, J. X. Zhu, Y. Tokiwa, H. Lee, E. D. Bauer, R. Movshovich, J. L. Sarrao, and J. D. Thompson. "Isotropic quantum scattering and unconventional superconductivity." Nature 456, no. 7220 (November 2008): 366–68. http://dx.doi.org/10.1038/nature07431.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Miller, Johanna L. "Unconventional superconductivity discovered in graphene bilayers." Physics Today 71, no. 5 (May 2018): 15–19. http://dx.doi.org/10.1063/pt.3.3913.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Pugh, Emma. "Unconventional superconductivity and novel quantum order." Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 361, no. 1813 (November 3, 2003): 2715–29. http://dx.doi.org/10.1098/rsta.2003.1265.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Zhao, Guo-meng. "Unconventional phonon-mediated superconductivity in MgB2." New Journal of Physics 4 (February 12, 2002): 3. http://dx.doi.org/10.1088/1367-2630/4/1/303.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Wälti, Ch, H. R. Ott, Z. Fisk, and J. L. Smith. "Spectroscopic Evidence for Unconventional Superconductivity inUBe13." Physical Review Letters 84, no. 24 (June 12, 2000): 5616–19. http://dx.doi.org/10.1103/physrevlett.84.5616.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Sacks, William, Alain Mauger, and Yves Noat. "Mean-field approach to unconventional superconductivity." Physica C: Superconductivity and its Applications 503 (August 2014): 14–24. http://dx.doi.org/10.1016/j.physc.2014.04.041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

White, B. D., J. D. Thompson, and M. B. Maple. "Unconventional superconductivity in heavy-fermion compounds." Physica C: Superconductivity and its Applications 514 (July 2015): 246–78. http://dx.doi.org/10.1016/j.physc.2015.02.044.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Movshovich, R., A. Bianchi, M. Jaime, M. F. Hundley, J. D. Thompson, N. Curro, P. C. Hammel, Z. Fisk, P. G. Pagliuso, and J. L. Sarrao. "Unconventional superconductivity in CeIrIn5 and CeCoIn5." Physica B: Condensed Matter 312-313 (March 2002): 7–12. http://dx.doi.org/10.1016/s0921-4526(01)01062-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Mineev, V. P. "Recent Developments in Unconventional Superconductivity Theory." Journal of Low Temperature Physics 158, no. 3-4 (October 31, 2009): 615–30. http://dx.doi.org/10.1007/s10909-009-0032-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Brawner, D. A., and H. R. Ott. "Evidence for unconventional superconductivity in YBa2Cu3O6.9." Physica C: Superconductivity 235-240 (December 1994): 1867–68. http://dx.doi.org/10.1016/0921-4534(94)92155-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Foltin, J. "Unconventional view of high-temperature superconductivity." Physics Letters A 216, no. 1-5 (June 1996): 191–96. http://dx.doi.org/10.1016/0375-9601(96)00302-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Kowalewski, L., M. M. Nogala, M. Thomas, and R. J. Wojciechowski. "Unconventional Superconductivity in Strong Magnetic Field." Acta Physica Polonica A 91, no. 2 (February 1997): 395–98. http://dx.doi.org/10.12693/aphyspola.91.395.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Ogawa, Nobuyuki, Manfred Sigrist, and Kazuo Ueda. "Unconventional Superconductivity in a Thin Film." Journal of the Physical Society of Japan 61, no. 5 (May 15, 1992): 1730–41. http://dx.doi.org/10.1143/jpsj.61.1730.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Kitaoka, Y., S. Kawasaki, T. Mito, and Y. Kawasaki. "Unconventional Superconductivity in Heavy-Fermion Systems." Journal of the Physical Society of Japan 74, no. 1 (January 2005): 186–99. http://dx.doi.org/10.1143/jpsj.74.186.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Ott, H. R. "Unconventional superconductivity in heavy-electron systems." Physica C: Superconductivity and its Applications 162-164 (December 1989): 1669–72. http://dx.doi.org/10.1016/0921-4534(89)90875-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Wölfle, P. "Unconventional superconductivity in heavy fermion compounds." Journal of Magnetism and Magnetic Materials 76-77 (December 1988): 492–98. http://dx.doi.org/10.1016/0304-8853(88)90465-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Mazumdar, Sumitendra, and Rudolf Torsten Clay. "The chemical physics of unconventional superconductivity." International Journal of Quantum Chemistry 114, no. 16 (February 20, 2014): 1053–59. http://dx.doi.org/10.1002/qua.24637.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

MINEEV, V. P. "SUPERCONDUCTIVITY IN FERROMAGNETIC METALS AND IN COMPOUNDS WITHOUT INVERSION CENTRE." International Journal of Modern Physics B 18, no. 22 (September 20, 2004): 2963–90. http://dx.doi.org/10.1142/s021797920402504x.

Full text
Abstract:
The symmetry properties and the general overview of the superconductivity theory in the itinerant ferromagnets and in materials without space parity are presented. The basic notions of unconventional superconductivity are introduced in broad context of multiband superconductivity which is an inherent property of ferromagnetic metals or metals without centre of inversion.
APA, Harvard, Vancouver, ISO, and other styles
45

Lebed, A. G. "Type-IV superconductivity: Can superconductivity be more exotic than unconventional?" Journal of Low Temperature Physics 142, no. 3-4 (February 2006): 173–78. http://dx.doi.org/10.1007/bf02679489.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Lebed, A. G. "Type-IV Superconductivity: Can Superconductivity be more Exotic than Unconventional?" Journal of Low Temperature Physics 142, no. 3-4 (April 12, 2006): 173–78. http://dx.doi.org/10.1007/s10909-006-9015-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Xing, Ying, Zhibin Shao, Jun Ge, Jiawei Luo, Jinhua Wang, Zengwei Zhu, Jun Liu, et al. "Surface superconductivity in the type II Weyl semimetal TaIrTe4." National Science Review 7, no. 3 (December 16, 2019): 579–87. http://dx.doi.org/10.1093/nsr/nwz204.

Full text
Abstract:
Abstract The search for unconventional superconductivity in Weyl semimetal materials is currently an exciting pursuit, since such superconducting phases could potentially be topologically non-trivial and host exotic Majorana modes. The layered material TaIrTe4 is a newly predicted time-reversal invariant type II Weyl semimetal with the minimum number of Weyl points. Here, we report the discovery of surface superconductivity in Weyl semimetal TaIrTe4. Our scanning tunneling microscopy/spectroscopy (STM/STS) visualizes Fermi arc surface states of TaIrTe4 that are consistent with the previous angle-resolved photoemission spectroscopy results. By a systematic study based on STS at ultralow temperature, we observe uniform superconducting gaps on the sample surface. The superconductivity is further confirmed by electrical transport measurements at ultralow temperature, with an onset transition temperature (Tc) up to 1.54 K being observed. The normalized upper critical field h*(T/Tc) behavior and the stability of the superconductivity against the ferromagnet indicate that the discovered superconductivity is unconventional with the p-wave pairing. The systematic STS, and thickness- and angular-dependent transport measurements reveal that the detected superconductivity is quasi-1D and occurs in the surface states. The discovery of the surface superconductivity in TaIrTe4 provides a new novel platform to explore topological superconductivity and Majorana modes.
APA, Harvard, Vancouver, ISO, and other styles
48

Dahal, Kul Prasad. "Superconductivity: A Centenary Celebration." Himalayan Physics 2 (July 31, 2011): 26–34. http://dx.doi.org/10.3126/hj.v2i2.5207.

Full text
Abstract:
Superconductivity was empirically discovered 100 years ago. This paper describes briefly the history and developments in critical temperature of different superconductors. Many efforts have been put on research and development so as to raise critical temperature. Different superconducting materials both conventional and unconventional have been discovered. The phenomenon of superconductivity is widely applicable in different fields of S&T so as to ease human life and activities. High - temperature superconductors have taken central stage as a dream material after long research and development. Hitherto, superconductors have proven to be highly varied in composition but elusive and mysterious.Keywords: Centenary of superconductor; Chronological development of Tc; Conventional and unconventional superconductors; High temperature superconductors; Insufficiency of BCS theoryThe Himalayan Physics Vol.2, No.2, May, 2011Page: 26-34Uploaded Date: 1 August, 2011
APA, Harvard, Vancouver, ISO, and other styles
49

Takabayashi, Yasuhiro, and Kosmas Prassides. "Unconventional high- T c superconductivity in fullerides." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 374, no. 2076 (September 13, 2016): 20150320. http://dx.doi.org/10.1098/rsta.2015.0320.

Full text
Abstract:
A 3 C 60 molecular superconductors share a common electronic phase diagram with unconventional high-temperature superconductors such as the cuprates: superconductivity emerges from an antiferromagnetic strongly correlated Mott-insulating state upon tuning a parameter such as pressure (bandwidth control) accompanied by a dome-shaped dependence of the critical temperature, T c . However, unlike atom-based superconductors, the parent state from which superconductivity emerges solely by changing an electronic parameter—the overlap between the outer wave functions of the constituent molecules—is controlled by the C 60 3− molecular electronic structure via the on-molecule Jahn–Teller effect influence of molecular geometry and spin state. Destruction of the parent Mott–Jahn–Teller state through chemical or physical pressurization yields an unconventional Jahn–Teller metal, where quasi-localized and itinerant electron behaviours coexist. Localized features gradually disappear with lattice contraction and conventional Fermi liquid behaviour is recovered. The nature of the underlying (correlated versus weak-coupling Bardeen–Cooper–Schrieffer theory) s-wave superconducting states mirrors the unconventional/conventional metal dichotomy: the highest superconducting critical temperature occurs at the crossover between Jahn–Teller and Fermi liquid metal when the Jahn–Teller distortion melts. This article is part of the themed issue ‘Fullerenes: past, present and future, celebrating the 30th anniversary of Buckminster Fullerene’.
APA, Harvard, Vancouver, ISO, and other styles
50

Szymanski, N. J., I. Khatri, J. G. Amar, D. Gall, and S. V. Khare. "Unconventional superconductivity in 3d rocksalt transition metal carbides." Journal of Materials Chemistry C 7, no. 40 (2019): 12619–32. http://dx.doi.org/10.1039/c9tc03793d.

Full text
Abstract:
Through calculation and analysis of the dynamic and electronic properties of 3d rocksalt transition metal carbides, we identify MnC as a novel material displaying ferromagnetic superconductivity mediated by minority-spin-triplet Cooper pairs.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography