Academic literature on the topic 'Underwater robotics'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Underwater robotics.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Underwater robotics"
Yuh, J., and M. West. "Underwater robotics." Advanced Robotics 15, no. 5 (January 2001): 609–39. http://dx.doi.org/10.1163/156855301317033595.
Full textYunanto, Bagus, and Naoyuki Takesue. "Experimental Development of Fins for Underwater Robots." Journal of Robotics and Mechatronics 35, no. 6 (December 20, 2023): 1638–44. http://dx.doi.org/10.20965/jrm.2023.p1638.
Full textKeerthi, Koyippilly Satheesh, Bandana Mahapatra, and Varun Girijan Menon. "Into the World of Underwater Swarm Robotics: Architecture, Communication, Applications and Challenges." Recent Advances in Computer Science and Communications 13, no. 2 (June 3, 2020): 110–19. http://dx.doi.org/10.2174/2213275912666181129141638.
Full textSingh, Hanumant, and Vincent Rigaud. "Underwater robotics, editorial." Journal of Field Robotics 24, no. 6 (2007): 435–36. http://dx.doi.org/10.1002/rob.20203.
Full textCentelles, Diego, Antonio Soriano-Asensi, José Vicente Martí, Raúl Marín, and Pedro J. Sanz. "Underwater Wireless Communications for Cooperative Robotics with UWSim-NET." Applied Sciences 9, no. 17 (August 28, 2019): 3526. http://dx.doi.org/10.3390/app9173526.
Full textCasalino, Giuseppe, Massimo Caccia, Stefano Caselli, Claudio Melchiorri, Gianluca Antonelli, Andrea Caiti, Giovanni Indiveri, et al. "Underwater Intervention Robotics: An Outline of the Italian National Project MARIS." Marine Technology Society Journal 50, no. 4 (July 1, 2016): 98–107. http://dx.doi.org/10.4031/mtsj.50.4.7.
Full textNyrkov, A. P., A. A. Zhilenkov, V. V. Korotkov, S. S. Sokolov, and S. G. Chernyi. "Development of underwater robotics." Journal of Physics: Conference Series 803 (January 2017): 012108. http://dx.doi.org/10.1088/1742-6596/803/1/012108.
Full textKawabata, Kuniaki, Fumiaki Takemura, Shinichi Sagara, Kazuo Ishii, and Teruo Fujii. "Special Issue on Underwater Robotics and Mechatronics." Journal of Robotics and Mechatronics 25, no. 5 (October 20, 2013): 771. http://dx.doi.org/10.20965/jrm.2013.p0771.
Full textMaevsky, Andrey, Vladislav Zanin, and Igor Kozhemyakin. "Promising high-tech export-oriented and demanded by the domestic market areas of marine robotics." Robotics and Technical Cybernetics 10, no. 1 (March 2022): 5–13. http://dx.doi.org/10.31776/rtcj.10101.
Full textSubad, Rafsan Al Shafatul Islam, Liam B. Cross, and Kihan Park. "Soft Robotic Hands and Tactile Sensors for Underwater Robotics." Applied Mechanics 2, no. 2 (June 8, 2021): 356–83. http://dx.doi.org/10.3390/applmech2020021.
Full textDissertations / Theses on the topic "Underwater robotics"
Andresen, Simen. "Underwater Robotics : control of marine manipulator-vehicle systems." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for teknisk kybernetikk, 2014. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-25875.
Full textLudwig, Peter M. "Formation control for multi-vehicle robotic minesweeping." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2000. http://handle.dtic.mil/100.2/ADA380324.
Full textSarafis, Ilias Thoma. "Electrically driven underwater manipulator for remote operated vehicles." Thesis, University of Liverpool, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.262585.
Full textPérez, Soler Javier. "Visibility in underwater robotics: Benchmarking and single image dehazing." Doctoral thesis, Universitat Jaume I, 2017. http://hdl.handle.net/10803/432778.
Full textUna de las dificultades más grandes de la robótica autónoma submarina es lidiar con la falta de visibilidad en imágenes submarinas. La transmisión de la luz en el agua degrada las imágenes dificultando el reconocimiento de objetos y en consecuencia la intervención. Ésta tesis se centra en el análisis del impacto de la degradación de las imágenes submarinas en algoritmos de visión a través de benchmarking, desarrollando un entorno de trabajo en la nube que permite analizar los resultados bajo diferentes condiciones. Teniendo en cuenta los resultados obtenidos con este entorno, se proponen métodos basados en técnicas de aprendizaje profundo para mitigar el impacto de la degradación de las imágenes en tiempo real introduciendo un paso previo que permita recuperar los colores originales.
Marut, Kenneth Joseph. "Underwater Robotic Propulsors Inspired by Jetting Jellyfish." Thesis, Virginia Tech, 2014. http://hdl.handle.net/10919/64199.
Full textMaster of Science
Nicholson, John W. "Autonomous optimal rendezvous of underwater vehicles." Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2004. http://library.nps.navy.mil/uhtbin/hyperion/04Sep%5FNicholson.pdf.
Full textEl-Fakdi, Sencianes Andrés. "Gradient-based reinforcement learning techniques for underwater robotics behavior learning." Doctoral thesis, Universitat de Girona, 2011. http://hdl.handle.net/10803/7610.
Full textA considerable interest has arisen around Autonomous Underwater Vehicle (AUV) applications. AUVs are very useful because of their size and their independence from human operators. However, comparison with humans in terms of efficiency and flexibility is often unequal. The development of autonomous control systems able to deal with such issues becomes a priority. The use of AUVs for covering large unknown dynamic underwater areas is a very complex problem, mainly when the AUV is required to react in real time to unpredictable changes in the environment. This thesis is concerned with the field of AUVs and the problem of action-decision. The methodology chosen to solve this problem is Reinforcement Learning (RL). The work presented here focuses on the study and development of RL-based behaviors and their application to AUVs in real robotic tasks. The principal contribution of this thesis is the application of different RL techniques for autonomy improvement of an AUV, with the final purpose of demonstrating the feasibility of learning algorithms to help AUVs perform autonomous tasks. In RL, the robot tries to maximize a scalar evaluation obtained as a result of its interaction with the environment with the aim of finding an optimal policy to map the state of the environment to an action which in turn will maximize the accumulated future rewards. Thus, this dissertation is based on the principals of RL theory, surveying the two main classes of RL algorithms: Value Function (VF)-based methods and Policy Gradient (PG)-based techniques. A particular class of algorithms, Actor-Critic methods, born of the combination of PG algorithms with VF methods, is used for the final experimental results of this thesis: a real underwater task in which the underwater robot Ictineu AUV learns to perform an autonomous cable tracking task.
Nawrot, Michael T. "Conceptual design of a thrust-vectoring tailcone for underwater robotics." Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/75671.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 66-67).
Thrust-vectoring on Autonomous Underwater Vehicles is an appealing directional-control solution because it improves turning radius capabilities. Unfortunately, thrust-vectoring requires the entire propulsion system be articulated in two degrees of freedom. Consequently, substantial internal volume must be utilized for this system, reducing payload and battery capacity. To combat this problem, an alternative thrust-vectoring system is desired for an existing vehicle. A number of alternative design strategies and concepts are explored herein. One design concept is then chosen and feasibility calculations are performed. Analysis of hydrodynamic loading, actuators, bearings, and structural components is conducted. The design is then reviewed and improvements are suggested.
by Michael T. Nawrot.
S.B.
Lewis, Amy Jeannette. "Surveying Underwater Shipwrecks with Probabilistic Roadmaps." DigitalCommons@CalPoly, 2019. https://digitalcommons.calpoly.edu/theses/2059.
Full textTena, Ruiz Ioseba Joaquin. "Enhanced concurrent mapping and localisation using forward-looking sonar." Thesis, Heriot-Watt University, 2001. http://hdl.handle.net/10399/503.
Full textBooks on the topic "Underwater robotics"
MacPherson, David L. A computer simulation study of rule-based control of an autonomous underwater vehicle. Monterey, California: Naval Postgraduate School, 1988.
Find full textNordman, Douglas B. A computer simulation study of mission planning and control for the NPS autonomous underwater vehicle. Monterey, Calif: Naval Postgraduate School, 1989.
Find full textWorld Automation Congress (4th 2000 Maui, Hawaii). Underwater vehicle technology: Proceedings of the Symposium on Underwater Robotic Technology (SURT 2000) at the Fourth Biannual World Automation Congress (WAC 2000), June 12-15, 2000, Maui, Hawaii, USA. Edited by Choi Song K and Yuh Junku. Albuquerque, NM: TSI Press, 2002.
Find full textYuh, Junku, Tamaki Ura, and George A. Bekey, eds. Underwater Robots. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-1419-6.
Full textAntonelli, Gianluca. Underwater Robots. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-14387-2.
Full textAntonelli, Gianluca. Underwater Robots. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-02877-4.
Full textAntonelli, Gianluca. Underwater Robots. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-77899-0.
Full textJunku, Yuh, Ura Tamaki, and Bekey George A. 1928-, eds. Underwater robots. Boston: Kluwer Academic, 1996.
Find full textWorkshop on Future Research Directions in Underwater Robotics (1994 Maui, Hawaii). Underwater robotic vehicles: Design and control. Edited by Yuh Junku, University of Hawaii at Manoa. Sea Grant College Program., National Science Foundation (U.S.), and Hawaii. Dept. of Business, Economic Development & Tourism. Albuquerque, NM: TSI Press, 1995.
Find full textBook chapters on the topic "Underwater robotics"
Antonelli, Gianluca, Thor I. Fossen, and Dana R. Yoerger. "Underwater Robotics." In Springer Handbook of Robotics, 987–1008. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-30301-5_44.
Full textGothi, Arpit, Priyanka Patel, and Mrudang Pandya. "Underwater Robotics." In ICT with Intelligent Applications, 445–53. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-4177-0_45.
Full textCasalino, Giuseppe, and Enrico Simetti. "Underwater Intervention." In Encyclopedia of Robotics, 1–7. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-642-41610-1_10-1.
Full textCaiti, Andrea, Andrea Munafò, and Roberto Petroccia. "Underwater Communication." In Encyclopedia of Robotics, 1–10. Berlin, Heidelberg: Springer Berlin Heidelberg, 2020. http://dx.doi.org/10.1007/978-3-642-41610-1_14-1.
Full textVertut, Jean, and Philippe Coiffet. "Underwater applications." In Teleoperation and Robotics, 189–204. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-011-6103-9_8.
Full textChoi, Hyun-Taek, and Junku Yuh. "Underwater Robots." In Springer Handbook of Robotics, 595–622. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-32552-1_25.
Full textFossen, Thor I., and Kristin Y. Pettersen. "Modeling of Underwater Vehicles." In Encyclopedia of Robotics, 1–9. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-642-41610-1_12-1.
Full textKruusmaa, Maarja. "Bio-inspired Underwater Robots." In Encyclopedia of Robotics, 1–7. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-642-41610-1_13-1.
Full textPaull, Liam, Mae Seto, Sajad Saeedi, and John J. Leonard. "Navigation for Underwater Vehicles." In Encyclopedia of Robotics, 1–15. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-642-41610-1_15-1.
Full textZhu, Zhong-ben, Hong-de Qin, and Xiang Yu. "Single-Beacon Based Underwater Robot Navigation." In Offshore Robotics, 59–85. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2078-2_3.
Full textConference papers on the topic "Underwater robotics"
Zuo, Wenyu, John Allen, James B. Dabney, and Ramanan Krishnamoorti. "Robotics Workforce Training, Offshore Energy Transformation." In Offshore Technology Conference. OTC, 2023. http://dx.doi.org/10.4043/32666-ms.
Full textChampion, Benjamin T., and Matthew A. Joordens. "Underwater swarm robotics review." In 2015 10th System of Systems Engineering Conference (SoSE). IEEE, 2015. http://dx.doi.org/10.1109/sysose.2015.7151953.
Full textJi, Yingfeng, Ryoichi S. Amano, and Ronald A. Perez. "Model-Based Optimal Control for Underwater Robotics." In ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/detc2010-29056.
Full textAlcaraz, Daniel, Gianluca Antonelli, Massimo Caccia, Gerard Dooly, Niamh Flavin, Achim Kopf, Martin Ludvigsen, et al. "The Marine Robotics Research Infrastructure Network (EUMarine Robots): An Overview." In 2020 IEEE/OES Autonomous Underwater Vehicles Symposium (AUV). IEEE, 2020. http://dx.doi.org/10.1109/auv50043.2020.9267940.
Full textCONTE, G., S. ZANOLI, D. SCARADOZZI, and L. GAMBELLA. "ROBOTICS TOOLS FOR UNDERWATER ARCHAEOLOGY." In Science for Cultural Heritage - Technological Innovation and Case Studies in Marine and Land Archaeology in the Adriatic Region and Inland - VII International Conference on Science, Arts and Culture. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814307079_0016.
Full textPotokar, Easton, Spencer Ashford, Michael Kaess, and Joshua G. Mangelson. "HoloOcean: An Underwater Robotics Simulator." In 2022 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2022. http://dx.doi.org/10.1109/icra46639.2022.9812353.
Full textChantler, M. J. "Probabilistic sensing for underwater robotics." In Second International Conference on `Intelligent Systems Engineering'. IEE, 1994. http://dx.doi.org/10.1049/cp:19940647.
Full textJoordens, Matthew A., and Mo Jamshidi. "Underwater swarm robotics consensus control." In 2009 IEEE International Conference on Systems, Man and Cybernetics - SMC. IEEE, 2009. http://dx.doi.org/10.1109/icsmc.2009.5346165.
Full textRajendran, Sunil Kumar, and Feitian Zhang. "Developing a Novel Robotic Fish With Antagonistic Artificial Muscle Actuators." In ASME 2017 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/dscc2017-5380.
Full textClaus, Brian, James Kinsey, and Yogesh Girdhar. "Towards persistent cooperative marine robotics." In 2016 IEEE/OES Autonomous Underwater Vehicles (AUV). IEEE, 2016. http://dx.doi.org/10.1109/auv.2016.7778706.
Full textReports on the topic "Underwater robotics"
Zhang, Fumin. Automation Middleware and Algorithms for Robotic Underwater Sensor Networks. Fort Belvoir, VA: Defense Technical Information Center, September 2010. http://dx.doi.org/10.21236/ada542612.
Full textZhang, Fumin. Automation Middleware and Algorithms for Robotic Underwater Sensor Networks. Fort Belvoir, VA: Defense Technical Information Center, September 2011. http://dx.doi.org/10.21236/ada557080.
Full textTan, Yong C. Synthesis of a Controller for Swarming Robots Performing Underwater Mine Countermeasures. Fort Belvoir, VA: Defense Technical Information Center, May 2004. http://dx.doi.org/10.21236/ada424661.
Full text