Academic literature on the topic 'Unipotent automorphism'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Unipotent automorphism.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Unipotent automorphism"

1

Varea, V. R., and J. J. Varea. "On Automorphisms and Derivations of a Lie Algebra." Algebra Colloquium 13, no. 01 (2006): 119–32. http://dx.doi.org/10.1142/s1005386706000149.

Full text
Abstract:
We study automorphisms and derivations of a Lie algebra L of finite dimension satisfying certain centrality conditions. As a consequence, we obtain that every nilpotent normal subgroup of the automorphism group of L is unipotent for a very large class of Lie algebras. This result extends one of Leger and Luks. We show that the automorphism group of a nilpotent Lie algebra can have trivial center and have yet a unipotent identity component.
APA, Harvard, Vancouver, ISO, and other styles
2

Li, Sichen. "Derived length of zero entropy groups acting on projective varieties in arbitrary characteristic — A remark to a paper of Dinh-Oguiso-Zhang." International Journal of Mathematics 31, no. 08 (2020): 2050059. http://dx.doi.org/10.1142/s0129167x20500597.

Full text
Abstract:
Let [Formula: see text] be a projective variety of dimension [Formula: see text] over an algebraically closed field of arbitrary characteristic. We prove a Fujiki–Lieberman type theorem on the structure of the automorphism group of [Formula: see text]. Let [Formula: see text] be a group of zero entropy automorphisms of [Formula: see text] and [Formula: see text] the set of elements in [Formula: see text] which are isotopic to the identity. We show that after replacing [Formula: see text] by a suitable finite-index subgroup, [Formula: see text] is a unipotent group of the derived length at most
APA, Harvard, Vancouver, ISO, and other styles
3

Lawther, Ross, Martin W. Liebeck, and Gary M. Seitz. "Outer unipotent classes in automorphism groups of simple algebraic groups." Proceedings of the London Mathematical Society 109, no. 3 (2014): 553–95. http://dx.doi.org/10.1112/plms/pdu011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

REGETA, ANDRIY. "CHARACTERIZATION OF n-DIMENSIONAL NORMAL AFFINE SLn-VARIETIES." Transformation Groups 27, no. 1 (2022): 271–93. http://dx.doi.org/10.1007/s00031-022-09701-3.

Full text
Abstract:
AbstractWe show that any normal irreducible affine n-dimensional SLn-variety X is determined by its automorphism group seen as an ind-group in the category of normal irreducible affine varieties. In other words, if Y is an irreducible affine normal algebraic variety such that Aut(Y) ≃ Aut(X) as an ind-group, then Y ≃ X as a variety. If we drop the condition of normality on Y , then this statement fails. In case n ≥ 3, the result above holds true if we replace Aut(X) by 𝒰(X), where 𝒰(X) is the subgroup of Aut(X) generated by all one-dimensional unipotent subgroups. In dimension 2 we have some i
APA, Harvard, Vancouver, ISO, and other styles
5

Waldspurger, J. L. "Le Groupe GLn Tordu, Sur un Corps Fini." Nagoya Mathematical Journal 182 (June 2006): 313–79. http://dx.doi.org/10.1017/s002776300002691x.

Full text
Abstract:
AbstractLet q be a finite field, G = GLn(q), θ be the outer automorphism of G, suitably normalized. Consider the non-connected group G ⋊ {1, θ} and its connected component = Gθ. We know two ways to produce functions on , with complex values and invariant by conjugation by G: on one hand, let π be an irreducible representation of G we can and do extend to a representation π+ of G ⋊ {1, θ}, then the restriction trace to of the character of π+ is such a function; on the other hand, Lusztig define character-sheaves a, whose characteristic functions ϕ(a) are such functions too. We consider only “qu
APA, Harvard, Vancouver, ISO, and other styles
6

Barbari, P., and A. Kobotis. "On nilpotent filiform Lie algebras of dimension eight." International Journal of Mathematics and Mathematical Sciences 2003, no. 14 (2003): 879–94. http://dx.doi.org/10.1155/s016117120311201x.

Full text
Abstract:
The aim of this paper is to determine both the Zariski constructible set of characteristically nilpotent filiform Lie algebrasgof dimension8and that of the set of nilpotent filiform Lie algebras whose group of automorphisms consists of unipotent automorphisms, in the variety of filiform Lie algebras of dimension8overC.
APA, Harvard, Vancouver, ISO, and other styles
7

Hanzer, Marcela, and Gordan Savin. "Eisenstein Series Arising from Jordan Algebras." Canadian Journal of Mathematics 72, no. 1 (2019): 183–201. http://dx.doi.org/10.4153/cjm-2018-033-2.

Full text
Abstract:
AbstractWe describe poles and the corresponding residual automorphic representations of Eisenstein series attached to maximal parabolic subgroups whose unipotent radicals admit Jordan algebra structure.
APA, Harvard, Vancouver, ISO, and other styles
8

Levchuk, V. M. "Automorphisms of unipotent subgroups of chevalley groups." Algebra and Logic 29, no. 3 (1990): 211–24. http://dx.doi.org/10.1007/bf01979936.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bavula, V. V., and T. H. Lenagan. "Quadratic and cubic invariants of unipotent affine automorphisms." Journal of Algebra 320, no. 12 (2008): 4132–55. http://dx.doi.org/10.1016/j.jalgebra.2008.07.029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gourevitch, Dmitry, Henrik P. A. Gustafsson, Axel Kleinschmidt, Daniel Persson, and Siddhartha Sahi. "A reduction principle for Fourier coefficients of automorphic forms." Mathematische Zeitschrift 300, no. 3 (2021): 2679–717. http://dx.doi.org/10.1007/s00209-021-02784-w.

Full text
Abstract:
AbstractWe consider a special class of unipotent periods for automorphic forms on a finite cover of a reductive adelic group $$\mathbf {G}(\mathbb {A}_\mathbb {K})$$ G ( A K ) , which we refer to as Fourier coefficients associated to the data of a ‘Whittaker pair’. We describe a quasi-order on Fourier coefficients, and an algorithm that gives an explicit formula for any coefficient in terms of integrals and sums involving higher coefficients. The maximal elements for the quasi-order are ‘Levi-distinguished’ Fourier coefficients, which correspond to taking the constant term along the unipotent
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Unipotent automorphism"

1

Ye, Lizao. "Faisceau automorphe unipotent pour G₂, nombres de Franel, et stratification de Thom-Boardman." Electronic Thesis or Diss., Université de Lorraine, 2019. http://www.theses.fr/2019LORR0081.

Full text
Abstract:
Dans cette thèse, d’une part, nous généralisons au cas équivariant un résultat de J. Denef et F. Loeser sur les sommes trigonométriques sur un tore ; d’autre part, nous étudions la stratification de Thom-Boardman associée à la multiplication des sections globales des fibrés en droites sur une courbe. Nous montrons une inégalité subtile sur les dimensions de ces strates. Notre motivation vient du programme de Langlands géométrique. En s’appuyant sur les travaux de W. T. Gan, N. Gurevich, D. Jiang et de S. Lysenko, nous proposons, pour le groupe réductif G de type G2, une construction conjectura
APA, Harvard, Vancouver, ISO, and other styles
2

Ye, Lizao. "Faisceau automorphe unipotent pour G₂, nombres de Franel, et stratification de Thom-Boardman." Thesis, Université de Lorraine, 2019. http://www.theses.fr/2019LORR0081/document.

Full text
Abstract:
Dans cette thèse, d’une part, nous généralisons au cas équivariant un résultat de J. Denef et F. Loeser sur les sommes trigonométriques sur un tore ; d’autre part, nous étudions la stratification de Thom-Boardman associée à la multiplication des sections globales des fibrés en droites sur une courbe. Nous montrons une inégalité subtile sur les dimensions de ces strates. Notre motivation vient du programme de Langlands géométrique. En s’appuyant sur les travaux de W. T. Gan, N. Gurevich, D. Jiang et de S. Lysenko, nous proposons, pour le groupe réductif G de type G2, une construction conjectura
APA, Harvard, Vancouver, ISO, and other styles
3

FRATI, MARCO. "Unipotent Automorphisms of Soluble Groups." Doctoral thesis, 2013. http://hdl.handle.net/2158/806278.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Unipotent automorphism"

1

James, Arthur. Unipotent automorphic representations: Conjectures. Dept. of Mathematics, University of Toronto, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Unipotent automorphism"

1

Mœglin, Colette. "Stabilite pour les representations elliptiques de reduction unipotente; le cas des groupes unitaires." In Automorphic Representations, L-Functions and Applications: Progress and Prospects, edited by James W. Cogdell, Dihua Jiang, Stephen S. Kudla, David Soudry, and Robert J. Stanton. DE GRUYTER, 2005. http://dx.doi.org/10.1515/9783110892703.361.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!