Academic literature on the topic 'Universal curve of fracture toughness'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Universal curve of fracture toughness.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Universal curve of fracture toughness"
Sakai, M. "Atomistic considerations on the fracture toughness of brittle materials." Journal of Materials Research 8, no. 3 (March 1993): 668–74. http://dx.doi.org/10.1557/jmr.1993.0668.
Full textRamkumar, P. L., D. M. Kulkarni, and Vikas V. Chaudhari. "Effect of Cooling Medium on Fracture Toughness of Rotomoulded Product." Applied Mechanics and Materials 852 (September 2016): 85–90. http://dx.doi.org/10.4028/www.scientific.net/amm.852.85.
Full textLi, Yong Hua, F. L. Meng, Wei Tao Zheng, and Y. M. Wang. "Crack Propagating and Stress-Promoted the Precipitate of Ni3Ti in NiTi Thin Films." Key Engineering Materials 417-418 (October 2009): 657–60. http://dx.doi.org/10.4028/www.scientific.net/kem.417-418.657.
Full textSEN, DIPANJAN, and MARKUS J. BUEHLER. "ATOMISTICALLY-INFORMED MESOSCALE MODEL OF DEFORMATION AND FAILURE OF BIOINSPIRED HIERARCHICAL SILICA NANOCOMPOSITES." International Journal of Applied Mechanics 02, no. 04 (December 2010): 699–717. http://dx.doi.org/10.1142/s175882511000072x.
Full textLin, H., C. lu, H. Y. Wang, and L. H. Dai. "Non-trivial avalanches triggered by shear banding in compression of metallic glass foams." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 476, no. 2240 (August 2020): 20200186. http://dx.doi.org/10.1098/rspa.2020.0186.
Full textLi, Yong Hua, F. L. Meng, Chang Sheng Liu, and Y. M. Wang. "Crack Spacing and the Flow Stress in NiTi Thin Films Deposited on Cu Substrate." Key Engineering Materials 385-387 (July 2008): 89–92. http://dx.doi.org/10.4028/www.scientific.net/kem.385-387.89.
Full textSAWAKI, Yozo, Shigeharu HASHIMOTO, and Tadashi KAWASAKI. "Fatigue fracture toughness and fatigue crack propagation curve." Transactions of the Japan Society of Mechanical Engineers Series A 52, no. 480 (1986): 1757–63. http://dx.doi.org/10.1299/kikaia.52.1757.
Full textLambrigger, M. "Master curve for brittle cleavage fracture toughness testing." Engineering Fracture Mechanics 55, no. 4 (November 1996): 677–78. http://dx.doi.org/10.1016/0013-7944(95)00259-6.
Full textWallin, Kim. "Master curve analysis of the “Euro” fracture toughness dataset." Engineering Fracture Mechanics 69, no. 4 (March 2002): 451–81. http://dx.doi.org/10.1016/s0013-7944(01)00071-6.
Full textKleinberg, AS, B. Grugan, K. Greene, B. Benzing, JR Schroeder, M. Bruce Vieth, RL Meltzer, and SK Putatunda. "Determination of Fracture Toughness by CTOD Resistance Curve Method." Journal of Testing and Evaluation 14, no. 1 (1986): 49. http://dx.doi.org/10.1520/jte10320j.
Full textDissertations / Theses on the topic "Universal curve of fracture toughness"
Václavík, Martin. "Predikce teplotní závislosti lomové houževnatosti." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2015. http://www.nusl.cz/ntk/nusl-231943.
Full textSAKAIDA, Yoshihisa, and Keisuke TANAKA. "Evaluation of Fracture Toughness of Porous Ceramics." The Japan Society of Mechanical Engineers, 2003. http://hdl.handle.net/2237/9181.
Full textDzugan, Jan. "Crack lengths calculation by unloading compliance technique for Charpy size specimens." Forschungszentrum Dresden, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:d120-qucosa-29077.
Full textDzugan, Jan. "Crack lengths calculation by unloading compliance technique for Charpy size specimens." Forschungszentrum Rossendorf, 2003. https://hzdr.qucosa.de/id/qucosa%3A21733.
Full textViehrig, H. W., and D. Kalkhof. "Application of the Master Curve approach to fracture mechanics characterisation of reactor pressure vessel steel." Forschungszentrum Dresden, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:d120-qucosa-61451.
Full textSieber, Lars. "Zur Beurteilung der Sprödbruchgefährdung gelochter Stahltragwerke aus Flussstahl." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-223593.
Full textAl, Khaddour Samer. "Fracture Behaviour of Steels and Their Welds for Power Industry." Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2017. http://www.nusl.cz/ntk/nusl-263409.
Full text坂井田, 喜久, Yoshihisa SAKAIDA, 啓介 田中, and Keisuke TANAKA. "多孔質セラミックスの破壊靭性評価." 日本機械学会, 2001. http://hdl.handle.net/2237/9161.
Full textHolas, Jiří. "Testování lomové houževnatosti za vysokých teplot s využitím miniaturních CT těles." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2015. http://www.nusl.cz/ntk/nusl-231783.
Full textGuimarães, Valdir Alves. "Determinação da temperatura de referência T0 da curva mestre na região de transição dúctil-frágil de aços ARBL /." Guaratinguetá : [s.n.], 2006. http://hdl.handle.net/11449/116078.
Full textAbstract: Structural materials used in industrial equipments design can change fracture behavior when the temperature is varied. This type of behavior is characterized by the existence of a transition curve, where 3 areas are well defined: inferior and superior landings and the ductile brittle transition. In ductile brittle transition, experimental results present high scatter and depend highly of specimen geometry. In order to solve this problem, an analytical experimental model was developed, resulting in ASTM E1921-97 standard edition. This work includes the influence of several heat treatments analysis applied in a 4130 steel used by the aeronautical industry, a API X70 steel used by the line pipe industry and a ASTM A516 steel used by pressure vases national industry, where it was analyzed the influence in the microstructure, mechanical properties and fracture toughness. The results showed that the 4130 A450 steel presented the best correlation between resistance and toughness among the researched microstructures. This behavior should be associated with the heat treatment route applied. The isothermal quenching treatment makes possible bainite formation which, traditionally it is known by its high toughness values. The methodology proposed by ASTM is considered viable for the several researched microstructures enlarging the application of the methodology that just recommends the rehearsal for ferritics steels. However, Master Curve methodology in heat treated materials must have some parameters settling down considering the microstructure modifications suffered by the material.
Book chapters on the topic "Universal curve of fracture toughness"
Dlouhý, I., G. B. Lenkey, and M. Holzmann. "Master Curve Validity for Dynamic Fracture Toughness Characteristics." In Transferability of Fracture Mechanical Characteristics, 243–54. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0608-8_17.
Full textWallin, K. "Fracture Toughness Transition Curve Shape for Ferritic Structural Steels." In Fracture of Engineering Materials and Structures, 83–88. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3650-1_10.
Full textBarinov, Sergej M., and Vladimir Ya Shevchenko. "Universal R-curve of Crack Propagation Resistance in Ceramic Composites." In Fracture Mechanics of Ceramics, 209–17. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3350-4_15.
Full textManahan, Michael P. "A Comparison of Fracture Toughness Data on a Pressure Vessel with the ASME KIR Curve." In Proceedings of the Seventh ASTM-Euratom Symposium on Reactor Dosimetry, 21–30. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2781-3_3.
Full textPlanman, T., W. L. Server, and M. Yamamoto. "Fracture Toughness Master Curve of bcc Steels." In Comprehensive Nuclear Materials, 197–225. Elsevier, 2020. http://dx.doi.org/10.1016/b978-0-12-803581-8.11695-9.
Full textPlanman, T., and W. L. Server. "Fracture Toughness Master Curve of bcc Steels." In Comprehensive Nuclear Materials, 433–61. Elsevier, 2012. http://dx.doi.org/10.1016/b978-0-08-056033-5.00085-9.
Full textLumley, Roger. "Quality Parameters for High-Pressure Diecastings." In Encyclopedia of Aluminum and Its Alloys. Boca Raton: CRC Press, 2019. http://dx.doi.org/10.1201/9781351045636-140000169.
Full textConference papers on the topic "Universal curve of fracture toughness"
Miura, Naoki, and Naoki Soneda. "Evaluation of Fracture Toughness by Master Curve Approach Using Miniature C(T) Specimens." In ASME 2010 Pressure Vessels and Piping Division/K-PVP Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/pvp2010-25862.
Full textPlanman, Tapio, Kunio Onizawa, William Server, and Stan Rosinski. "IAEA Coordinated Research Project on Master Curve Approach to Monitor Fracture Toughness of RPV Steels: Applicability for Highly Embrittled Materials." In ASME 2007 Pressure Vessels and Piping Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/pvp2007-26097.
Full textHorn, Anthony J., and Thomas M. Axe. "Observations Arising From Exponential Fitting Methods to a Charpy V-Notch Energy Database From Tata Steel." In ASME 2011 Pressure Vessels and Piping Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/pvp2011-57488.
Full textNovak, Jiri. "Engineering Analysis of the Warm Prestressing (WPS) Effect: Influence of Stress-Strain Curve, Specimen Size and WPS Level." In ASME 2006 Pressure Vessels and Piping/ICPVT-11 Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/pvp2006-icpvt-11-93114.
Full textGui, Lele, Tong Xu, Binan Shou, and Haiyang Yu. "Estimation of Q345R Fracture Toughness Based on Master Curve." In ASME 2017 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/pvp2017-65484.
Full textKulka, R. S. "Adjustments to Master Curve Methodology and Development of Fracture Toughness Estimation." In ASME 2011 Pressure Vessels and Piping Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/pvp2011-57633.
Full textPisarski, Henryk, and Bostjan Bezensek. "Estimating Fracture Toughness From Charpy Data." In ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/omae2019-95787.
Full textRyu, Ho-Wan, Hune-Tae Kim, Jae-Jun Han, Yun-Jae Kim, Jong-Sung Kim, Myung-Rak Choi, and Jin-Weon Kim. "Effects of Side Groove on Fracture Toughness." In ASME 2015 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/pvp2015-45731.
Full textFett, Theo, Dietrich Munz, and Gerhard Thun. "Fracture Toughness Testing on Bars Under Opposite Cylinder Loading." In ASME Turbo Expo 2002: Power for Land, Sea, and Air. ASMEDC, 2002. http://dx.doi.org/10.1115/gt2002-30507.
Full textServer, William L., Timothy J. Griesbach, and Stan T. Rosinski. "Application of Master Curve Data for Reactor Vessel Steels." In ASME 2003 Pressure Vessels and Piping Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/pvp2003-2013.
Full textReports on the topic "Universal curve of fracture toughness"
Nanstad, R. K., M. A. Sokolov, and D. E. McCabe. Fracture toughness curve shift method. Office of Scientific and Technical Information (OSTI), October 1995. http://dx.doi.org/10.2172/223658.
Full textIskander, S. K., R. K. Nanstad, and E. T. Manneschmidt. Fracture toughness curve shift in low upper-shelf welds (series 8). Office of Scientific and Technical Information (OSTI), October 1995. http://dx.doi.org/10.2172/223651.
Full textChen, Xiang, Rebeca Hernandez Pascual, Marta Serrano, David Andres, Henk Nolles, and Mikhail Sokolov. Guidelines for IAEA Small Specimen Test Techniques Master Curve Fracture Toughness Testing. Office of Scientific and Technical Information (OSTI), July 2020. http://dx.doi.org/10.2172/1649107.
Full text