Journal articles on the topic 'Universal curve of fracture toughness'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Universal curve of fracture toughness.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Sakai, M. "Atomistic considerations on the fracture toughness of brittle materials." Journal of Materials Research 8, no. 3 (March 1993): 668–74. http://dx.doi.org/10.1557/jmr.1993.0668.
Full textRamkumar, P. L., D. M. Kulkarni, and Vikas V. Chaudhari. "Effect of Cooling Medium on Fracture Toughness of Rotomoulded Product." Applied Mechanics and Materials 852 (September 2016): 85–90. http://dx.doi.org/10.4028/www.scientific.net/amm.852.85.
Full textLi, Yong Hua, F. L. Meng, Wei Tao Zheng, and Y. M. Wang. "Crack Propagating and Stress-Promoted the Precipitate of Ni3Ti in NiTi Thin Films." Key Engineering Materials 417-418 (October 2009): 657–60. http://dx.doi.org/10.4028/www.scientific.net/kem.417-418.657.
Full textSEN, DIPANJAN, and MARKUS J. BUEHLER. "ATOMISTICALLY-INFORMED MESOSCALE MODEL OF DEFORMATION AND FAILURE OF BIOINSPIRED HIERARCHICAL SILICA NANOCOMPOSITES." International Journal of Applied Mechanics 02, no. 04 (December 2010): 699–717. http://dx.doi.org/10.1142/s175882511000072x.
Full textLin, H., C. lu, H. Y. Wang, and L. H. Dai. "Non-trivial avalanches triggered by shear banding in compression of metallic glass foams." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 476, no. 2240 (August 2020): 20200186. http://dx.doi.org/10.1098/rspa.2020.0186.
Full textLi, Yong Hua, F. L. Meng, Chang Sheng Liu, and Y. M. Wang. "Crack Spacing and the Flow Stress in NiTi Thin Films Deposited on Cu Substrate." Key Engineering Materials 385-387 (July 2008): 89–92. http://dx.doi.org/10.4028/www.scientific.net/kem.385-387.89.
Full textSAWAKI, Yozo, Shigeharu HASHIMOTO, and Tadashi KAWASAKI. "Fatigue fracture toughness and fatigue crack propagation curve." Transactions of the Japan Society of Mechanical Engineers Series A 52, no. 480 (1986): 1757–63. http://dx.doi.org/10.1299/kikaia.52.1757.
Full textLambrigger, M. "Master curve for brittle cleavage fracture toughness testing." Engineering Fracture Mechanics 55, no. 4 (November 1996): 677–78. http://dx.doi.org/10.1016/0013-7944(95)00259-6.
Full textWallin, Kim. "Master curve analysis of the “Euro” fracture toughness dataset." Engineering Fracture Mechanics 69, no. 4 (March 2002): 451–81. http://dx.doi.org/10.1016/s0013-7944(01)00071-6.
Full textKleinberg, AS, B. Grugan, K. Greene, B. Benzing, JR Schroeder, M. Bruce Vieth, RL Meltzer, and SK Putatunda. "Determination of Fracture Toughness by CTOD Resistance Curve Method." Journal of Testing and Evaluation 14, no. 1 (1986): 49. http://dx.doi.org/10.1520/jte10320j.
Full textXie, Wei, Shao Wei Tu, Qi Qing Huang, and Ya Zhi Li. "Determination of Fracture Toughness and K-R Curve for 2524-T3 Aluminum Alloy." Advanced Materials Research 291-294 (July 2011): 1039–42. http://dx.doi.org/10.4028/www.scientific.net/amr.291-294.1039.
Full textKübler, Jakob, Gurdial Blugan, Hans Jelitto, Gerold A. Schneider, and Richard Dobedoe. "Structural Micro-Layered Ceramics with Surfaces under Tension and Compression with Increasing Apparent Fracture Toughness." Key Engineering Materials 336-338 (April 2007): 2564–68. http://dx.doi.org/10.4028/www.scientific.net/kem.336-338.2564.
Full textXu, Shi Lian, Rui Hong Wang, Ruo Qi Li, and Ren Ping Xu. "The Experiment for the Fracture Toughness of the Compound Bioceramic and the Analysis for the Confidence Level of its Reliability." Applied Mechanics and Materials 44-47 (December 2010): 3003–10. http://dx.doi.org/10.4028/www.scientific.net/amm.44-47.3003.
Full textYoon, Han Ki, Dong Hyun Kim, Won Jo Park, and Akira Kohyama. "Influence of Specimen Configuration and TIG Welding on Fracture Toughness of RAFs (JLF-1)." Key Engineering Materials 297-300 (November 2005): 788–93. http://dx.doi.org/10.4028/www.scientific.net/kem.297-300.788.
Full textBhowmik, Sumit, Prasanta Sahoo, Sanjib Kumar Acharyya, Sankar Dhar, and Jayanta Chattopadhyay. "Effect of Microstructure Degradation on Fracture Toughness of 20MnMoNi55 Steel in DBT Region." International Journal of Manufacturing, Materials, and Mechanical Engineering 6, no. 3 (July 2016): 11–27. http://dx.doi.org/10.4018/ijmmme.2016070102.
Full textFett, T., D. Munz, and G. Thun. "Fracture Toughness Testing on Bars Under Opposite Cylinder Loading." Journal of Engineering for Gas Turbines and Power 126, no. 1 (January 1, 2004): 50–54. http://dx.doi.org/10.1115/1.1639003.
Full textYoon, K. K., W. A. Van Der Sluys, and K. Hour. "Effect of Loading Rate on Fracture Toughness of Pressure Vessel Steels." Journal of Pressure Vessel Technology 122, no. 2 (March 7, 2000): 125–29. http://dx.doi.org/10.1115/1.556176.
Full textHu, Shao Wei, and Liang Hu. "Experimental Research on Size Effect of Mode II Fracture Toughness of Concrete." Applied Mechanics and Materials 438-439 (October 2013): 229–34. http://dx.doi.org/10.4028/www.scientific.net/amm.438-439.229.
Full textAger, J. W., G. Balooch, and R. O. Ritchie. "Fracture, aging, and disease in bone." Journal of Materials Research 21, no. 8 (August 1, 2006): 1878–92. http://dx.doi.org/10.1557/jmr.2006.0242.
Full textMills, W. J., and L. D. Blackburn. "Fracture Toughness Variations in Alloy 718." Journal of Engineering Materials and Technology 110, no. 3 (July 1, 1988): 286–93. http://dx.doi.org/10.1115/1.3226050.
Full textHuh, Nam-Su, Yun-Jae Kim, Jae-Boong Choi, Young-Jin Kim, and Chang-Ryul Pyo. "Prediction of Failure Behavior for Nuclear Piping Using Curved Wide-Plate Test." Journal of Pressure Vessel Technology 126, no. 4 (November 1, 2004): 419–25. http://dx.doi.org/10.1115/1.1806447.
Full textFranşois, D., and A. Krasowsky. "Relation between various fracture transition temperatures and the k1c fracture toughness transition curve." Engineering Fracture Mechanics 23, no. 2 (January 1986): 455–65. http://dx.doi.org/10.1016/0013-7944(86)90087-1.
Full textAlfred Franklin, V., and T. Christopher. "Generation of R-Curve from 4ENF Specimens: An Experimental Study." Journal of Composites 2014 (November 12, 2014): 1–10. http://dx.doi.org/10.1155/2014/956268.
Full textNagel, G., and J. G. Blauel. "Evaluation of the standard master curve for fracture toughness determination." Nuclear Engineering and Design 190, no. 1-2 (June 1999): 159–69. http://dx.doi.org/10.1016/s0029-5493(98)00321-5.
Full textLambrigger, M. "Apparent fracture toughness master curve of a zirconia—alumina composite." Philosophical Magazine A 77, no. 2 (February 1998): 363–74. http://dx.doi.org/10.1080/01418619808223758.
Full textSATO, Kazushi, Hitoshi AWAYAMA, Toshiyuki HASHIDA, and Hideaki TAKAHASHI. "Determination of strain-softening curve and fracture toughness of granite." Transactions of the Japan Society of Mechanical Engineers Series A 56, no. 526 (1990): 1400–1405. http://dx.doi.org/10.1299/kikaia.56.1400.
Full textWolfenden, A., R. Herrera, and JD Landes. "A Direct J-R Curve Analysis of Fracture Toughness Tests." Journal of Testing and Evaluation 16, no. 5 (1988): 427. http://dx.doi.org/10.1520/jte11618j.
Full textEricksonKirk, Mark, and Marjorie EricksonKirk. "An upper-shelf fracture toughness master curve for ferritic steels." International Journal of Pressure Vessels and Piping 83, no. 8 (August 2006): 571–83. http://dx.doi.org/10.1016/j.ijpvp.2006.05.001.
Full textAdachi, T., M. Osaki, A. Yamaji, and M. Gamou. "Time-temperature dependence of the fracture toughness of a poly(phenylene sulphide) polymer." Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 217, no. 1 (January 1, 2003): 29–34. http://dx.doi.org/10.1177/146442070321700104.
Full textBelmonte, M., J. S. Moya, P. Miranzo, D. Nguyen, J. Dubois, and G. Fantozzi. "Fracture behavior of Al2O3/SiC-platelet composites." Journal of Materials Research 11, no. 10 (October 1996): 2528–35. http://dx.doi.org/10.1557/jmr.1996.0318.
Full textZhang, Ya Lin, and Hu Hui. "Investigation of Mechanical Properties and Ductile-Brittle Transition Behaviors of SA738Gr.B Steel Used as Reactor Containment." Key Engineering Materials 795 (March 2019): 66–73. http://dx.doi.org/10.4028/www.scientific.net/kem.795.66.
Full textFuhrmann, D., D. Murchison, S. Whipple, and K. Vandewalle. "Properties of New Glass-Ionomer Restorative Systems Marketed for Stress-Bearing Areas." Operative Dentistry 45, no. 1 (January 1, 2020): 104–10. http://dx.doi.org/10.2341/18-176-l.
Full textLin, Jeng-Shyong, and Sheng-Kuen Wu. "Effect of Heat Treatment on the Fracture Toughness of Glass Fibre Reinforced Polypropylene." Polymers and Polymer Composites 10, no. 3 (March 2002): 211–18. http://dx.doi.org/10.1177/096739110201000303.
Full textGuo, Hai, Dae Hyun Yoon, and Dong Woo Shin. "Prediction of Fracture Toughness in Fibrous Si3 N4 Monolithic Ceramics." Key Engineering Materials 317-318 (August 2006): 301–4. http://dx.doi.org/10.4028/www.scientific.net/kem.317-318.301.
Full textShi, Kai Kai, Li Xun Cai, Chen Bao, and Yao Yao. "The Dimensionless Load Separation Method Used for Fracture Toughness Test and its Application." Applied Mechanics and Materials 117-119 (October 2011): 460–66. http://dx.doi.org/10.4028/www.scientific.net/amm.117-119.460.
Full textBaer, Wolfram. "Performance of Modern DCI Materials – Investigation of Microstructural, Temperature and Loading Rate Effects on Mechanical and Fracture Mechanical Properties." Materials Science Forum 783-786 (May 2014): 2244–49. http://dx.doi.org/10.4028/www.scientific.net/msf.783-786.2244.
Full textChou, Y.-S., J. J. Mecholsky, and M. Silsbee. "Fracture toughness of macro-defect-free cement using small crack techniques." Journal of Materials Research 5, no. 8 (August 1990): 1774–80. http://dx.doi.org/10.1557/jmr.1990.1774.
Full textGui, Le Le, Tong Xu, Bin An Shou, Han Kui Wang, and Jing Xiang. "Estimation of Fracture Toughness JIC by Miniature Specimen Hydraulic Bulge Test." Materials Science Forum 898 (June 2017): 753–57. http://dx.doi.org/10.4028/www.scientific.net/msf.898.753.
Full textOmiya, Masaki, Kikuo Kishimoto, and Wei Yang. "Interface Debonding Model and its Application to the Mixed Mode Interface Fracture Toughness." International Journal of Damage Mechanics 11, no. 3 (July 2002): 263–86. http://dx.doi.org/10.1106/105678902026413.
Full textMeshii, Toshiyuki. "Characterization of fracture toughness based on yield stress and successful application to construct a lower-bound fracture toughness master curve." Engineering Failure Analysis 116 (October 2020): 104713. http://dx.doi.org/10.1016/j.engfailanal.2020.104713.
Full textYANG, SHUICHENG, LI SONG, ZHE LI, and SONGMEI HUANG. "EXPERIMENTAL INVESTIGATION ON FRACTURE TOUGHNESS OF INTERFACE CRACK FOR ROCK/CONCRETE." International Journal of Modern Physics B 22, no. 31n32 (December 30, 2008): 6141–48. http://dx.doi.org/10.1142/s0217979208051704.
Full textLee, Sin Ae, Sung Jun Lee, Sang Hwan Lee, and Yoon Suk Chang. "Evaluation of P-T Limit Curves According to Alternative Fracture Toughness Requirements." Advanced Materials Research 1051 (October 2014): 896–901. http://dx.doi.org/10.4028/www.scientific.net/amr.1051.896.
Full textQing, Long Bang, and Huan Huan Liu. "The Effects of Tensile Softening Curve Parameters on Fracture in Concrete Based on Initial Fracture Toughness Criterion." Advanced Materials Research 904 (March 2014): 232–35. http://dx.doi.org/10.4028/www.scientific.net/amr.904.232.
Full textMueller, Pablo, P. Spätig, R. Bonadé, G. R. Odette, and D. Gragg. "Fracture toughness master-curve analysis of the tempered martensitic steel Eurofer97." Journal of Nuclear Materials 386-388 (April 2009): 323–27. http://dx.doi.org/10.1016/j.jnucmat.2008.12.122.
Full textMIURA, Naoki, and Naoki SONEDA. "Evaluation of Fracture Toughness by Master Curve Approach Using Miniature Specimens." TRANSACTIONS OF THE JAPAN SOCIETY OF MECHANICAL ENGINEERS Series A 77, no. 777 (2011): 680–84. http://dx.doi.org/10.1299/kikaia.77.680.
Full textHesse, W., and W. Dahl. "Influence of loading rate on the fracture toughness versus temperature curve." Nuclear Engineering and Design 84, no. 2 (January 1985): 273–78. http://dx.doi.org/10.1016/0029-5493(85)90197-9.
Full textBloyer, D. R., R. O. Ritchie, and K. T. Venkateswara Rao. "Fracture toughness and R-Curve behavior of laminated brittle-matrix composites." Metallurgical and Materials Transactions A 29, no. 10 (October 1998): 2483–96. http://dx.doi.org/10.1007/s11661-998-0220-0.
Full textYoon, Ji-Hyun, and Eui-Pak Yoon. "Fracture toughness and the master curve for modified 9Cr−1Mo steel." Metals and Materials International 12, no. 6 (December 2006): 477–82. http://dx.doi.org/10.1007/bf03027747.
Full textDžindo, Emina, Zoran Radaković, Blagoj Petrovski, Srdjan Tadić, Sanja Petronić, Simon Sedmak, and Branislav Đorđević. "Fracture Toughness in the Transition Temperature Region." Advanced Materials Research 1146 (April 2018): 92–97. http://dx.doi.org/10.4028/www.scientific.net/amr.1146.92.
Full textKitajima, Kaoru, S. Joseph Wright, and Jared W. Westbrook. "Leaf cellulose density as the key determinant of inter- and intra-specific variation in leaf fracture toughness in a species-rich tropical forest." Interface Focus 6, no. 3 (June 6, 2016): 20150100. http://dx.doi.org/10.1098/rsfs.2015.0100.
Full text