To see the other types of publications on this topic, follow the link: Unnatural amino acids incorporation.

Journal articles on the topic 'Unnatural amino acids incorporation'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Unnatural amino acids incorporation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Kigawa, Takanori, Shigeyuki Yokoyama, and Tatsuo Miyazawa. "Incorporation of unnatural amino acids proteins." Kobunshi 39, no. 7 (1990): 500–503. http://dx.doi.org/10.1295/kobunshi.39.500.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ko, Wooseok, Sanggil Kim, Kyubong Jo, and Hyun Soo Lee. "Genetic incorporation of recycled unnatural amino acids." Amino Acids 48, no. 2 (2015): 357–63. http://dx.doi.org/10.1007/s00726-015-2087-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Nödling, Alexander R., Luke A. Spear, Thomas L. Williams, Louis Y. P. Luk, and Yu-Hsuan Tsai. "Using genetically incorporated unnatural amino acids to control protein functions in mammalian cells." Essays in Biochemistry 63, no. 2 (2019): 237–66. http://dx.doi.org/10.1042/ebc20180042.

Full text
Abstract:
Abstract Genetic code expansion allows unnatural (non-canonical) amino acid incorporation into proteins of interest by repurposing the cellular translation machinery. The development of this technique has enabled site-specific incorporation of many structurally and chemically diverse amino acids, facilitating a plethora of applications, including protein imaging, engineering, mechanistic and structural investigations, and functional regulation. Particularly, genetic code expansion provides great tools to study mammalian proteins, of which dysregulations often have important implications in hea
APA, Harvard, Vancouver, ISO, and other styles
4

Adhikari, Anup, Bibek Raj Bhattarai, Ashika Aryal, et al. "Reprogramming natural proteins using unnatural amino acids." RSC Advances 11, no. 60 (2021): 38126–45. http://dx.doi.org/10.1039/d1ra07028b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Voloshchuk, Natalya, and Jin Kim Montclare. "Incorporation of unnatural amino acids for synthetic biology." Mol. BioSyst. 6, no. 1 (2010): 65–80. http://dx.doi.org/10.1039/b909200p.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gao, Wei, Ning Bu, and Yuan Lu. "Efficient Incorporation of Unnatural Amino Acids into Proteins with a Robust Cell-Free System." Methods and Protocols 2, no. 1 (2019): 16. http://dx.doi.org/10.3390/mps2010016.

Full text
Abstract:
Unnatural proteins are crucial biomacromolecules and have been widely applied in fundamental science, novel biopolymer materials, enzymes, and therapeutics. Cell-free protein synthesis (CFPS) system can serve as a robust platform to synthesize unnatural proteins by highly effective site-specific incorporation of unnatural amino acids (UNAAs), without the limitations of cell membrane permeability and the toxicity of unnatural components. Here, we describe a quick and simple method to synthesize unnatural proteins in CFPS system based on Escherichia coli crude extract, with unnatural orthogonal
APA, Harvard, Vancouver, ISO, and other styles
7

Drienovská, Ivana, Ana Rioz-Martínez, Apparao Draksharapu, and Gerard Roelfes. "Novel artificial metalloenzymes by in vivo incorporation of metal-binding unnatural amino acids." Chemical Science 6, no. 1 (2015): 770–76. http://dx.doi.org/10.1039/c4sc01525h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Pless, Stephan A., and Christopher A. Ahern. "Incorporation of Unnatural Amino Acids into Trimeric Ion Channels." Biophysical Journal 104, no. 2 (2013): 542a. http://dx.doi.org/10.1016/j.bpj.2012.11.3001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Strømgaard, Anne, Anders A. Jensen, and Kristian Strømgaard. "Site-Specific Incorporation of Unnatural Amino Acids into Proteins." ChemBioChem 5, no. 7 (2004): 909–16. http://dx.doi.org/10.1002/cbic.200400060.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Tookmanian, Elise M., Edward E. Fenlon, and Scott H. Brewer. "Synthesis and protein incorporation of azido-modified unnatural amino acids." RSC Advances 5, no. 2 (2015): 1274–81. http://dx.doi.org/10.1039/c4ra14244f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Rut, Wioletta, Mikolaj Zmudzinski, Scott J. Snipas, Miklos Bekes, Tony T. Huang, and Marcin Drag. "Engineered unnatural ubiquitin for optimal detection of deubiquitinating enzymes." Chemical Science 11, no. 23 (2020): 6058–69. http://dx.doi.org/10.1039/d0sc01347a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Iida, Shin, Noriyuki Asakura, Kenji Tabata, Ichiro Okura, and Toshiaki Kamachi. "Incorporation of Unnatural Amino Acids into Cytochrome c3 and Specific Viologen Binding to the Unnatural Amino Acid." ChemBioChem 7, no. 12 (2006): 1853–55. http://dx.doi.org/10.1002/cbic.200600347.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Rudack, Till, Christian Teuber, Marvin Scherlo, et al. "The Ras dimer structure." Chemical Science 12, no. 23 (2021): 8178–89. http://dx.doi.org/10.1039/d1sc00957e.

Full text
Abstract:
By combining the incorporation of unnatural amino acids, click chemistry, FRET and EPR distance measurements, protein modeling and biomolecular simulations, we obtained an unambiguous Ras dimer structural model and disrupt the dimer by mutagenesis.
APA, Harvard, Vancouver, ISO, and other styles
14

Bąchor, Urszula, Agnieszka Lizak, Remigiusz Bąchor та Marcin Mączyński. "5-Amino-3-methyl-Isoxazole-4-carboxylic Acid as a Novel Unnatural Amino Acid in the Solid Phase Synthesis of α/β-Mixed Peptides". Molecules 27, № 17 (2022): 5612. http://dx.doi.org/10.3390/molecules27175612.

Full text
Abstract:
The hybrid peptides consisting of α and β-amino acids show great promise as peptidomimetics that can be used as therapeutic agents. Therefore, the development of new unnatural amino acids and the methods of their incorporation into the peptide chain is an important task. Here, we described our investigation of the possibility of 5-amino-3-methyl-isoxazole-4-carboxylic acid (AMIA) application in the solid phase peptide synthesis. This new unnatural β-amino acid, presenting various biological activities, was successfully coupled to a resin-bound peptide using different reaction conditions, inclu
APA, Harvard, Vancouver, ISO, and other styles
15

Minaba, Masaomi, and Yusuke Kato. "High-Yield, Zero-Leakage Expression System with a Translational Switch Using Site-Specific Unnatural Amino Acid Incorporation." Applied and Environmental Microbiology 80, no. 5 (2013): 1718–25. http://dx.doi.org/10.1128/aem.03417-13.

Full text
Abstract:
ABSTRACTSynthetic biologists construct complex biological circuits by combinations of various genetic parts. Many genetic parts that are orthogonal to one another and are independent of existing cellular processes would be ideal for use in synthetic biology. However, our toolbox is still limited with respect to the bacteriumEscherichia coli, which is important for both research and industrial use. The site-specific incorporation of unnatural amino acids is a technique that incorporates unnatural amino acids into proteins using a modified exogenous aminoacyl-tRNA synthetase/tRNA pair that is or
APA, Harvard, Vancouver, ISO, and other styles
16

Ugwumba, Isaac N., Kiyoshi Ozawa, Zhi-Qiang Xu, et al. "Improving a Natural Enzyme Activity through Incorporation of Unnatural Amino Acids." Journal of the American Chemical Society 133, no. 2 (2011): 326–33. http://dx.doi.org/10.1021/ja106416g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Wang, Feng, Scott Robbins, Jiantao Guo, Weijun Shen, and Peter G. Schultz. "Genetic Incorporation of Unnatural Amino Acids into Proteins in Mycobacterium tuberculosis." PLoS ONE 5, no. 2 (2010): e9354. http://dx.doi.org/10.1371/journal.pone.0009354.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Liu, Wenshe, Ansgar Brock, Shuo Chen, Shuibing Chen, and Peter G. Schultz. "Genetic incorporation of unnatural amino acids into proteins in mammalian cells." Nature Methods 4, no. 3 (2007): 239–44. http://dx.doi.org/10.1038/nmeth1016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Ryu, Youngha, and Peter G. Schultz. "Efficient incorporation of unnatural amino acids into proteins in Escherichia coli." Nature Methods 3, no. 4 (2006): 263–65. http://dx.doi.org/10.1038/nmeth864.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Wang, Qian, and Lei Wang. "New Methods Enabling Efficient Incorporation of Unnatural Amino Acids in Yeast." Journal of the American Chemical Society 130, no. 19 (2008): 6066–67. http://dx.doi.org/10.1021/ja800894n.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Lee, Byeong Sung, Seunggun Shin, Jong Yeob Jeon, et al. "Incorporation of Unnatural Amino Acids in Response to the AGG Codon." ACS Chemical Biology 10, no. 7 (2015): 1648–53. http://dx.doi.org/10.1021/acschembio.5b00230.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Lang, Kathrin, and Jason W. Chin. "Cellular Incorporation of Unnatural Amino Acids and Bioorthogonal Labeling of Proteins." Chemical Reviews 114, no. 9 (2014): 4764–806. http://dx.doi.org/10.1021/cr400355w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Won, Yumi, Amol D. Pagar, Mahesh D. Patil, Philip E. Dawson, and Hyungdon Yun. "Recent Advances in Enzyme Engineering through Incorporation of Unnatural Amino Acids." Biotechnology and Bioprocess Engineering 24, no. 4 (2019): 592–604. http://dx.doi.org/10.1007/s12257-019-0163-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Curnew, Leah Jane Fitzgerald, Kate McNicholas, Bridgette Green, et al. "Visualizing HCV Core Protein via Fluorescent Unnatural Amino Acid Incorporation." Proceedings 50, no. 1 (2020): 129. http://dx.doi.org/10.3390/proceedings2020050129.

Full text
Abstract:
Introduction: Unnatural amino acids (UAAs) share the same basic structure as proteinogenic amino acids. However, UAAs permit additional functions and applications to proteins due to their different side chains. Recent UAA applications include using fluorescent UAAs to label proteins. The UAA system provides an alternative method to traditional protein labeling mechanisms (antibodies, GFP, and tags, such as HA and HIS), which can affect protein functionality and topology. The purpose of this study was to visualize the hepatitis C virus (HCV) core protein using the fluorescent UAA Anap (3-[(6-ac
APA, Harvard, Vancouver, ISO, and other styles
25

Jung, Jae-Eun, Sang Yeul Lee, Hyojin Park та ін. "Genetic incorporation of unnatural amino acids biosynthesized from α-keto acids by an aminotransferase". Chemical Science 5, № 5 (2014): 1881. http://dx.doi.org/10.1039/c3sc51617b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Stein, Alina, Alexandria Deliz Liang, Reyhan Sahin, and Thomas R. Ward. "Incorporation of metal-chelating unnatural amino acids into halotag for allylic deamination." Journal of Organometallic Chemistry 962 (March 2022): 122272. http://dx.doi.org/10.1016/j.jorganchem.2022.122272.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Chen, Mingjie, Lei Cai, Zhengzhi Fang, Hong Tian, Xiangdong Gao, and Wenbing Yao. "Site-specific incorporation of unnatural amino acids into urate oxidase inEscherichia coli." Protein Science 17, no. 10 (2008): 1827–33. http://dx.doi.org/10.1110/ps.034587.108.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Johnson, David B. F., Jianfeng Xu, Zhouxin Shen, et al. "RF1 knockout allows ribosomal incorporation of unnatural amino acids at multiple sites." Nature Chemical Biology 7, no. 11 (2011): 779–86. http://dx.doi.org/10.1038/nchembio.657.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Xiao, Han, Abhishek Chatterjee, Sei-hyun Choi, Krishna M. Bajjuri, Subhash C. Sinha, and Peter G. Schultz. "Genetic Incorporation of Multiple Unnatural Amino Acids into Proteins in Mammalian Cells." Angewandte Chemie 125, no. 52 (2013): 14330–33. http://dx.doi.org/10.1002/ange.201308137.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Xiao, Han, Abhishek Chatterjee, Sei-hyun Choi, Krishna M. Bajjuri, Subhash C. Sinha, and Peter G. Schultz. "Genetic Incorporation of Multiple Unnatural Amino Acids into Proteins in Mammalian Cells." Angewandte Chemie International Edition 52, no. 52 (2013): 14080–83. http://dx.doi.org/10.1002/anie.201308137.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Ye, Shixin, Caroline Köhrer, Thomas Huber, et al. "Site-specific Incorporation of Keto Amino Acids into Functional G Protein-coupled Receptors Using Unnatural Amino Acid Mutagenesis." Journal of Biological Chemistry 283, no. 3 (2007): 1525–33. http://dx.doi.org/10.1074/jbc.m707355200.

Full text
Abstract:
G protein-coupled receptors (GPCRs) are ubiquitous heptahelical transmembrane proteins involved in a wide variety of signaling pathways. The work described here on application of unnatural amino acid mutagenesis to two GPCRs, the chemokine receptor CCR5 (a major co-receptor for the human immunodeficiency virus) and rhodopsin (the visual photoreceptor), adds a new dimension to studies of GPCRs. We incorporated the unnatural amino acids p-acetyl-l-phenylalanine (Acp) and p-benzoyl-l-phenylalanine (Bzp) into CCR5 at high efficiency in mammalian cells to produce functional receptors harboring reac
APA, Harvard, Vancouver, ISO, and other styles
32

Zeynaloo, Elnaz, Elsayed M. Zahran, Yu-Ping Yang, et al. "Reagentless electrochemical biosensors through incorporation of unnatural amino acids on the protein structure." Biosensors and Bioelectronics 200 (March 2022): 113861. http://dx.doi.org/10.1016/j.bios.2021.113861.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Rodriguez, E. A., H. A. Lester, and D. A. Dougherty. "In vivo incorporation of multiple unnatural amino acids through nonsense and frameshift suppression." Proceedings of the National Academy of Sciences 103, no. 23 (2006): 8650–55. http://dx.doi.org/10.1073/pnas.0510817103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Noren, C., S. Anthony-Cahill, M. Griffith, and P. Schultz. "A general method for site-specific incorporation of unnatural amino acids into proteins." Science 244, no. 4901 (1989): 182–88. http://dx.doi.org/10.1126/science.2649980.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Maza, Johnathan C., Jaclyn R. McKenna, Benjamin K. Raliski, Matthew T. Freedman, and Douglas D. Young. "Synthesis and Incorporation of Unnatural Amino Acids To Probe and Optimize Protein Bioconjugations." Bioconjugate Chemistry 26, no. 9 (2015): 1884–89. http://dx.doi.org/10.1021/acs.bioconjchem.5b00424.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Monahan, Sarah L., Henry A. Lester, and Dennis A. Dougherty. "Site-Specific Incorporation of Unnatural Amino Acids into Receptors Expressed in Mammalian Cells." Chemistry & Biology 10, no. 6 (2003): 573–80. http://dx.doi.org/10.1016/s1074-5521(03)00124-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Wang, Jinfan, and Anthony C. Forster. "Ribosomal incorporation of unnatural amino acids: lessons and improvements from fast kinetics studies." Current Opinion in Chemical Biology 46 (October 2018): 180–87. http://dx.doi.org/10.1016/j.cbpa.2018.07.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Hicks, Rickey P., Jayendra B. Bhonsle, Divakaramenon Venugopal, Brandon W. Koser, and Alan J. Magill. "De Novo Design of Selective Antibiotic Peptides by Incorporation of Unnatural Amino Acids." Journal of Medicinal Chemistry 50, no. 13 (2007): 3026–36. http://dx.doi.org/10.1021/jm061489v.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Chollet, Andre, and Gerardo Turcatti. "ChemInform Abstract: Biosynthetic Incorporation of Unnatural Amino Acids into G Protein-Coupled Receptors." ChemInform 30, no. 51 (2010): no. http://dx.doi.org/10.1002/chin.199951288.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Edan, Dawood Salim, Inkyung Choi, and Jungchan Park. "Establishment of a Selection System for the Site-Specific Incorporation of Unnatural Amino Acids into Protein." Korean Journal of Microbiology 50, no. 1 (2014): 1–7. http://dx.doi.org/10.7845/kjm.2014.4012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Hou, Jiaqi, Xinjie Chen, Nan Jiang, et al. "Toward efficient multiple-site incorporation of unnatural amino acids using cell-free translation system." Synthetic and Systems Biotechnology 7, no. 1 (2022): 522–32. http://dx.doi.org/10.1016/j.synbio.2021.12.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Pastrnak, M. "Phage selection for site-specific incorporation of unnatural amino acids into proteins in vivo." Bioorganic & Medicinal Chemistry 9, no. 9 (2001): 2373–79. http://dx.doi.org/10.1016/s0968-0896(01)00157-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Klarmann, George J., Brian M. Eisenhauer, Yi Zhang, et al. "Site- and subunit-specific incorporation of unnatural amino acids into HIV-1 reverse transcriptase." Protein Expression and Purification 38, no. 1 (2004): 37–44. http://dx.doi.org/10.1016/j.pep.2004.07.019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Katragadda, Madan, and John D. Lambris. "Expression of compstatin in Escherichia coli: Incorporation of unnatural amino acids enhances its activity." Protein Expression and Purification 47, no. 1 (2006): 289–95. http://dx.doi.org/10.1016/j.pep.2005.11.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Oh, Su-Jin, Kyung-Ho Lee, Ho-Cheol Kim, Christy Catherine, Hyungdon Yun, and Dong-Myung Kim. "Translational incorporation of multiple unnatural amino acids in a cell-free protein synthesis system." Biotechnology and Bioprocess Engineering 19, no. 3 (2014): 426–32. http://dx.doi.org/10.1007/s12257-013-0849-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Niu, Wei, and Jiantao Guo. "Expanding the chemistry of fluorescent protein biosensors through genetic incorporation of unnatural amino acids." Molecular BioSystems 9, no. 12 (2013): 2961. http://dx.doi.org/10.1039/c3mb70204a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Arthur, Isaac N., James E. Hennessy, Dharshana Padmakshan, et al. "In Situ Deprotection and Incorporation of Unnatural Amino Acids during Cell-Free Protein Synthesis." Chemistry - A European Journal 19, no. 21 (2013): 6824–30. http://dx.doi.org/10.1002/chem.201203923.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Jones, Chloe M., Itthipol Sungwienwong, and E. James Petersson. "The Development of Intrinsically Fluorescent Unnatural Amino Acids for In Vivo Incorporation into Proteins." Biophysical Journal 116, no. 3 (2019): 473a. http://dx.doi.org/10.1016/j.bpj.2018.11.2555.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Dippel, Andrew B., Gregory M. Olenginski, Nicole Maurici, Melanie T. Liskov, Scott H. Brewer, and Christine M. Phillips-Piro. "Probing the effectiveness of spectroscopic reporter unnatural amino acids: a structural study." Acta Crystallographica Section D Structural Biology 72, no. 1 (2016): 121–30. http://dx.doi.org/10.1107/s2059798315022858.

Full text
Abstract:
The X-ray crystal structures of superfolder green fluorescent protein (sfGFP) containing the spectroscopic reporter unnatural amino acids (UAAs) 4-cyano-L-phenylalanine (pCNF) or 4-ethynyl-L-phenylalanine (pCCF) at two unique sites in the protein have been determined. These UAAs were genetically incorporated into sfGFP in a solvent-exposed loop region and/or a partially buried site on the β-barrel of the protein. The crystal structures containing the UAAs at these two sites permit the structural implications of UAA incorporation for the native protein structure to be assessed with high resolut
APA, Harvard, Vancouver, ISO, and other styles
50

Reddington, Samuel, Peter Watson, Pierre Rizkallah, Eric Tippmann, and D. Dafydd Jones. "Genetically encoding phenyl azide chemistry: new uses and ideas for classical biochemistry." Biochemical Society Transactions 41, no. 5 (2013): 1177–82. http://dx.doi.org/10.1042/bst20130094.

Full text
Abstract:
Introducing new physicochemical properties into proteins through genetically encoded Uaa (unnatural amino acid) incorporation can lead to the generation of proteins with novel properties not normally accessible with the 20 natural amino acids. Phenyl azide chemistry represents one such useful addition to the protein repertoire. Classically used in biochemistry as a non-specific photochemical protein cross-linker, genetically encoding phenyl azide chemistry at selected residues provides more powerful routes to post-translationally modify protein function in situ. The two main routes are modulat
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!