Journal articles on the topic 'Unsupervised intrusion detection'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Unsupervised intrusion detection.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
ZHONG, SHI, TAGHI M. KHOSHGOFTAAR, and NAEEM SELIYA. "CLUSTERING-BASED NETWORK INTRUSION DETECTION." International Journal of Reliability, Quality and Safety Engineering 14, no. 02 (April 2007): 169–87. http://dx.doi.org/10.1142/s0218539307002568.
Full textHajamydeen, Asif Iqbal, and Nur Izura Udzir. "A Detailed Description on Unsupervised Heterogeneous Anomaly Based Intrusion Detection Framework." Scalable Computing: Practice and Experience 20, no. 1 (March 9, 2019): 113–60. http://dx.doi.org/10.12694/scpe.v20i1.1465.
Full textZoppi, Tommaso, Mohamad Gharib, Muhammad Atif, and Andrea Bondavalli. "Meta-Learning to Improve Unsupervised Intrusion Detection in Cyber-Physical Systems." ACM Transactions on Cyber-Physical Systems 5, no. 4 (October 31, 2021): 1–27. http://dx.doi.org/10.1145/3467470.
Full textMeira, Jorge. "Comparative Results with Unsupervised Techniques in Cyber Attack Novelty Detection." Proceedings 2, no. 18 (September 17, 2018): 1191. http://dx.doi.org/10.3390/proceedings2181191.
Full textCasas, Pedro, Johan Mazel, and Philippe Owezarski. "Unsupervised Network Intrusion Detection Systems: Detecting the Unknown without Knowledge." Computer Communications 35, no. 7 (April 2012): 772–83. http://dx.doi.org/10.1016/j.comcom.2012.01.016.
Full textZhao, Yi Lin, and Qing Lei Zhou. "Intrusion Detection Method Based on LEGClust Algorithm." Applied Mechanics and Materials 263-266 (December 2012): 3025–33. http://dx.doi.org/10.4028/www.scientific.net/amm.263-266.3025.
Full textAlmalawi, Abdulmohsen, Adil Fahad, Zahir Tari, Asif Irshad Khan, Nouf Alzahrani, Sheikh Tahir Bakhsh, Madini O. Alassafi, Abdulrahman Alshdadi, and Sana Qaiyum. "Add-On Anomaly Threshold Technique for Improving Unsupervised Intrusion Detection on SCADA Data." Electronics 9, no. 6 (June 18, 2020): 1017. http://dx.doi.org/10.3390/electronics9061017.
Full textLi, Longlong, Qin Chen, Shuiming Chi, and Xiaohang Liu. "Unsupervised Intrusion Detection based on FCM and Vote Mechanism." Information Technology Journal 13, no. 1 (December 15, 2013): 133–39. http://dx.doi.org/10.3923/itj.2014.133.139.
Full textIraqi, Omar, and Hanan El Bakkali. "Application-Level Unsupervised Outlier-Based Intrusion Detection and Prevention." Security and Communication Networks 2019 (July 28, 2019): 1–13. http://dx.doi.org/10.1155/2019/8368473.
Full textMin, Luo, Zhang Huan-guo, and Wang Li-na. "Research and implementation of unsupervised clustering-based intrusion detection." Wuhan University Journal of Natural Sciences 8, no. 3 (September 2003): 803–7. http://dx.doi.org/10.1007/bf02900819.
Full textSilaban, Andreas Jonathan, Satria Mandala, and Erwid Jadied Mustofa. "Wrapper-Based Feature Selection Analysis For Semi-Supervised Anomaly Based Intrusion Detection System." International Journal on Information and Communication Technology (IJoICT) 5, no. 2 (June 10, 2020): 32. http://dx.doi.org/10.21108/ijoict.2019.52.209.
Full textCai, Long-zheng, Jian Chen, Yun Ke, Tao Chen, and Zhi-gang Li. "A new data normalization method for unsupervised anomaly intrusion detection." Journal of Zhejiang University SCIENCE C 11, no. 10 (September 29, 2010): 778–84. http://dx.doi.org/10.1631/jzus.c0910625.
Full textTANG, Shao-xian. "Intrusion detection based on unsupervised clustering and hybrid genetic algorithm." Journal of Computer Applications 28, no. 2 (July 10, 2008): 409–11. http://dx.doi.org/10.3724/sp.j.1087.2008.00409.
Full textGhafir, Ibrahim, Konstantinos G. Kyriakopoulos, Francisco J. Aparicio-Navarro, Sangarapillai Lambotharan, Basil Assadhan, and Hamad Binsalleeh. "A Basic Probability Assignment Methodology for Unsupervised Wireless Intrusion Detection." IEEE Access 6 (2018): 40008–23. http://dx.doi.org/10.1109/access.2018.2855078.
Full textCarrasco, Rafael San Miguel, and Miguel-Angel Sicilia. "Unsupervised intrusion detection through skip-gram models of network behavior." Computers & Security 78 (September 2018): 187–97. http://dx.doi.org/10.1016/j.cose.2018.07.003.
Full textChoi, Hyunseung, Mintae Kim, Gyubok Lee, and Wooju Kim. "Unsupervised learning approach for network intrusion detection system using autoencoders." Journal of Supercomputing 75, no. 9 (March 9, 2019): 5597–621. http://dx.doi.org/10.1007/s11227-019-02805-w.
Full textSiddiqui, Abdul Jabbar, and Azzedine Boukerche. "Adaptive ensembles of autoencoders for unsupervised IoT network intrusion detection." Computing 103, no. 6 (February 20, 2021): 1209–32. http://dx.doi.org/10.1007/s00607-021-00912-2.
Full textZoppi, Tommaso, Andrea Ceccarelli, Tommaso Capecchi, and Andrea Bondavalli. "Unsupervised Anomaly Detectors to Detect Intrusions in the Current Threat Landscape." ACM/IMS Transactions on Data Science 2, no. 2 (April 2, 2021): 1–26. http://dx.doi.org/10.1145/3441140.
Full textQaddoura, Raneem, Ala’ M. Al-Zoubi, Iman Almomani, and Hossam Faris. "A Multi-Stage Classification Approach for IoT Intrusion Detection Based on Clustering with Oversampling." Applied Sciences 11, no. 7 (March 28, 2021): 3022. http://dx.doi.org/10.3390/app11073022.
Full textVaiyapuri, Thavavel, and Adel Binbusayyis. "Application of deep autoencoder as an one-class classifier for unsupervised network intrusion detection: a comparative evaluation." PeerJ Computer Science 6 (December 7, 2020): e327. http://dx.doi.org/10.7717/peerj-cs.327.
Full textHuang, Xiaolong. "Network Intrusion Detection Based on an Improved Long-Short-Term Memory Model in Combination with Multiple Spatiotemporal Structures." Wireless Communications and Mobile Computing 2021 (April 24, 2021): 1–10. http://dx.doi.org/10.1155/2021/6623554.
Full textGoernitz, N., M. Kloft, K. Rieck, and U. Brefeld. "Toward Supervised Anomaly Detection." Journal of Artificial Intelligence Research 46 (February 20, 2013): 235–62. http://dx.doi.org/10.1613/jair.3623.
Full textBarletta, Vita Santa, Danilo Caivano, Antonella Nannavecchia, and Michele Scalera. "Intrusion Detection for in-Vehicle Communication Networks: An Unsupervised Kohonen SOM Approach." Future Internet 12, no. 7 (July 14, 2020): 119. http://dx.doi.org/10.3390/fi12070119.
Full textSirisha, Aswadati, Kosaraju Chaitanya, Komanduri Venkata Sesha Sai Rama Krishna, and Satya Sandeep Kanumalli. "Intrusion Detection Models Using Supervised and Unsupervised Algorithms - A Comparative Estimation." International Journal of Safety and Security Engineering 11, no. 1 (February 28, 2021): 51–58. http://dx.doi.org/10.18280/ijsse.110106.
Full textDai, Yawen, Guanghui Yuan, Zhaoyuan Yang, and Bin Wang. "K-Modes Clustering Algorithm Based on Weighted Overlap Distance and Its Application in Intrusion Detection." Scientific Programming 2021 (May 25, 2021): 1–9. http://dx.doi.org/10.1155/2021/9972589.
Full textPrasanta Gogoi, B. Borah, and D. K. Bhattacharyya. "Anomaly Detection Analysis of Intrusion Data Ising Supervised & Unsupervised Approach." Journal of Convergence Information Technology 5, no. 1 (February 28, 2010): 95–110. http://dx.doi.org/10.4156/jcit.vol5.issue1.11.
Full textRamani Varanasi, Venkata. "A Comparative Evaluation of supervised and unsupervised algorithms for Intrusion Detection." International Journal of Advanced Trends in Computer Science and Engineering 9, no. 4 (August 25, 2020): 4834–43. http://dx.doi.org/10.30534/ijatcse/2020/9394202.
Full textWang, Xiao Bin, Yong Jun Wang, and Yong Lin Sun. "Abnormal File Access Behavior Detection Based on FPD: An Unsupervised Approach." Applied Mechanics and Materials 713-715 (January 2015): 2212–16. http://dx.doi.org/10.4028/www.scientific.net/amm.713-715.2212.
Full textDaneshpazhouh, Armin, and Ashkan Sami. "Semi-Supervised Outlier Detection with Only Positive and Unlabeled Data Based on Fuzzy Clustering." International Journal on Artificial Intelligence Tools 24, no. 03 (June 2015): 1550003. http://dx.doi.org/10.1142/s0218213015500037.
Full textSahu, Santosh Kumar, Akanksha Katiyar, Kanchan Mala Kumari, Govind Kumar, and Durga Prasad Mohapatra. "An SVM-Based Ensemble Approach for Intrusion Detection." International Journal of Information Technology and Web Engineering 14, no. 1 (January 2019): 66–84. http://dx.doi.org/10.4018/ijitwe.2019010104.
Full textJavidi, Mohammad Masoud. "Network Attacks Detection by Hierarchical Neural Network." Computer Engineering and Applications Journal 4, no. 2 (June 18, 2015): 119–32. http://dx.doi.org/10.18495/comengapp.v4i2.108.
Full textWang, Zu-Min, Ji-Yu Tian, Jing Qin, Hui Fang, and Li-Ming Chen. "A Few-Shot Learning-Based Siamese Capsule Network for Intrusion Detection with Imbalanced Training Data." Computational Intelligence and Neuroscience 2021 (September 13, 2021): 1–17. http://dx.doi.org/10.1155/2021/7126913.
Full textVega Vega, Rafael Alejandro, Pablo Chamoso-Santos, Alfonso González Briones, José-Luis Casteleiro-Roca, Esteban Jove, María del Carmen Meizoso-López, Benigno Antonio Rodríguez-Gómez, et al. "Intrusion Detection with Unsupervised Techniques for Network Management Protocols over Smart Grids." Applied Sciences 10, no. 7 (March 27, 2020): 2276. http://dx.doi.org/10.3390/app10072276.
Full textHanselmann, Markus, Thilo Strauss, Katharina Dormann, and Holger Ulmer. "CANet: An Unsupervised Intrusion Detection System for High Dimensional CAN Bus Data." IEEE Access 8 (2020): 58194–205. http://dx.doi.org/10.1109/access.2020.2982544.
Full textNisioti, Antonia, Alexios Mylonas, Paul D. Yoo, and Vasilios Katos. "From Intrusion Detection to Attacker Attribution: A Comprehensive Survey of Unsupervised Methods." IEEE Communications Surveys & Tutorials 20, no. 4 (2018): 3369–88. http://dx.doi.org/10.1109/comst.2018.2854724.
Full textKumar Mallick, Pradeep, Bibhu Prasad Mohanty, Sudan Jha, and Kuhoo . "A novel Approach Using “Supervised and Unsupervised learning” to prevent the Adequacy of Intrusion Detection Systems." International Journal of Engineering & Technology 7, no. 3.34 (September 1, 2018): 474. http://dx.doi.org/10.14419/ijet.v7i3.34.19362.
Full textYu, Zhenhao, Fang Liu, Yinquan Yuan, Sihan Li, and Zhengying Li. "Signal Processing for Time Domain Wavelengths of Ultra-Weak FBGs Array in Perimeter Security Monitoring Based on Spark Streaming." Sensors 18, no. 9 (September 4, 2018): 2937. http://dx.doi.org/10.3390/s18092937.
Full textOm Pal, Peeyush Jain, Sudhansu Goyal, Zia Saquib, and Bernard L. Menezes. "Intrusion Detection Using Graph Support: A Hybrid Approach of Supervised and Unsupervised Techniques." International Journal of Advancements in Computing Technology 2, no. 3 (August 31, 2010): 114–18. http://dx.doi.org/10.4156/ijact.vol2.issue3.12.
Full textRabbani, Mahdi, Yongli Wang, Reza Khoshkangini, Hamed Jelodar, Ruxin Zhao, Sajjad Bagheri Baba Ahmadi, and Seyedvalyallah Ayobi. "A Review on Machine Learning Approaches for Network Malicious Behavior Detection in Emerging Technologies." Entropy 23, no. 5 (April 25, 2021): 529. http://dx.doi.org/10.3390/e23050529.
Full textJing, Yong Wen, and Li Fen Li. "SOM and PSO Based Alerts Clustering in Intrusion Detection System." Applied Mechanics and Materials 401-403 (September 2013): 1453–57. http://dx.doi.org/10.4028/www.scientific.net/amm.401-403.1453.
Full textJabbar, Ayad. "Local and Global Outlier Detection Algorithms in Unsupervised Approach: A Review." Iraqi Journal for Electrical and Electronic Engineering 17, no. 1 (March 31, 2021): 1–12. http://dx.doi.org/10.37917/ijeee.17.1.9.
Full textAlmomani, Ammar, Mohammad Alauthman, Firas Albalas, O. Dorgham, and Atef Obeidat. "An Online Intrusion Detection System to Cloud Computing Based on Neucube Algorithms." International Journal of Cloud Applications and Computing 8, no. 2 (April 2018): 96–112. http://dx.doi.org/10.4018/ijcac.2018040105.
Full textRamaiah, CH, D. Adithya Charan, and R. Syam Akhil. "Secure automated threat detection and prevention (SATDP)." International Journal of Engineering & Technology 7, no. 2.20 (April 18, 2018): 86. http://dx.doi.org/10.14419/ijet.v7i2.20.11760.
Full textMohammadpour, Leila, T. C. Ling, C. S. Liew, and Alihossein Aryanfar. "A Mean Convolutional Layer for Intrusion Detection System." Security and Communication Networks 2020 (October 24, 2020): 1–16. http://dx.doi.org/10.1155/2020/8891185.
Full textDr.R.Venkatesh, Kavitha S, Dr Uma Maheswari N,. "Network Anomaly Detection for NSL-KDD Dataset Using Deep Learning." INFORMATION TECHNOLOGY IN INDUSTRY 9, no. 2 (March 31, 2021): 821–27. http://dx.doi.org/10.17762/itii.v9i2.419.
Full textLee, JooHwa, and KeeHyun Park. "AE-CGAN Model based High Performance Network Intrusion Detection System." Applied Sciences 9, no. 20 (October 10, 2019): 4221. http://dx.doi.org/10.3390/app9204221.
Full textKuwahara, Takuya, Yukino Baba, Hisashi Kashima, Takeshi Kishikawa, Junichi Tsurumi, Tomoyuki Haga, Yoshihiro Ujiie, Takamitsu Sasaki, and Hideki Matsushima. "Supervised and Unsupervised Intrusion Detection Based on CAN Message Frequencies for In-vehicle Network." Journal of Information Processing 26 (2018): 306–13. http://dx.doi.org/10.2197/ipsjjip.26.306.
Full textQu, Hongchun, Zeliang Qiu, Xiaoming Tang, Min Xiang, and Ping Wang. "Incorporating unsupervised learning into intrusion detection for wireless sensor networks with structural co-evolvability." Applied Soft Computing 71 (October 2018): 939–51. http://dx.doi.org/10.1016/j.asoc.2018.07.044.
Full textPrasad, Mahendra, Sachin Tripathi, and Keshav Dahal. "Unsupervised feature selection and cluster center initialization based arbitrary shaped clusters for intrusion detection." Computers & Security 99 (December 2020): 102062. http://dx.doi.org/10.1016/j.cose.2020.102062.
Full textSovilj, Dušan, Paul Budnarain, Scott Sanner, Geoff Salmon, and Mohan Rao. "A comparative evaluation of unsupervised deep architectures for intrusion detection in sequential data streams." Expert Systems with Applications 159 (November 2020): 113577. http://dx.doi.org/10.1016/j.eswa.2020.113577.
Full text