Academic literature on the topic 'UNSW-NB15 Dataset'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'UNSW-NB15 Dataset.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "UNSW-NB15 Dataset"
Amien, Januar Al, Yoze Rizki, and Mukhlis Ali Rahman Nasution. "Implementasi Adasyn Untuk Imbalance Data Pada Dataset UNSW-NB15 Adasyn Implementation For Data Imbalance on UNSW-NB15 Dataset." Jurnal CoSciTech (Computer Science and Information Technology) 3, no. 3 (2022): 242–48. http://dx.doi.org/10.37859/coscitech.v3i3.4339.
Full textSonule, Avinash R. "Detection of Network Attacks using Machine Learning: A New Approach." International Journal for Research in Applied Science and Engineering Technology 9, no. 12 (2021): 1881–90. http://dx.doi.org/10.22214/ijraset.2021.39640.
Full textAvinashR.Sonule, Kalla Mukesh, Jain Amit, and Chouhan D.S. "Unsw-Nb15 Dataset and Machine Learning Based Intrusion Detection Systems." International Journal of Engineering and Advanced Technology (IJEAT) 9, no. 3 (2020): 2638–48. https://doi.org/10.35940/ijeat.C5809.029320.
Full textSouhail et. al., Mefta. "Network Based Intrusion Detection Using the UNSW-NB15 Dataset." International Journal of Computing and Digital Systems 8, no. 5 (2019): 477–87. http://dx.doi.org/10.12785/ijcds/080505.
Full textSeo, Jae-Hyun. "Evolutionary Data Preprocessing to Alleviate Class Imbalance." Security and Communication Networks 2022 (October 11, 2022): 1–14. http://dx.doi.org/10.1155/2022/3761205.
Full textRehman, Abdul, Omar Alharbi, Yazeed Qasaymeh, and Amer Aljaedi. "DC-NFC: A Custom Deep Learning Framework for Security and Privacy in NFC-Enabled IoT." Sensors 25, no. 5 (2025): 1381. https://doi.org/10.3390/s25051381.
Full textKottilingal, Shahir. "Deep Learning Based Network Intrusion Detection System: A Deep Abstract Networks (DANets) Model Approach." International Research Journal of Computer Science 11, no. 07 (2024): 539–44. http://dx.doi.org/10.26562/irjcs.2024.v1107.01.
Full textBagui, Sikha, Mary Walauskis, Robert DeRush, Huyen Praviset, and Shaunda Boucugnani. "Spark Configurations to Optimize Decision Tree Classification on UNSW-NB15." Big Data and Cognitive Computing 6, no. 2 (2022): 38. http://dx.doi.org/10.3390/bdcc6020038.
Full textHacılar, Hilal, Bilge Kagan Dedeturk, Burcu Bakir-Gungor, and Vehbi Cagri Gungor. "Network anomaly detection using Deep Autoencoder and parallel Artificial Bee Colony algorithm-trained neural network." PeerJ Computer Science 10 (October 8, 2024): e2333. http://dx.doi.org/10.7717/peerj-cs.2333.
Full textThanh, Hoang Ngoc, and Tran Van Lang. "EVALUATING EFFECTIVENESS OF ENSEMBLE CLASSIFIERS WHEN DETECTING FUZZERS ATTACKS ON THE UNSW-NB15 DATASET." Journal of Computer Science and Cybernetics 36, no. 2 (2020): 173–85. http://dx.doi.org/10.15625/1813-9663/36/2/14786.
Full textDissertations / Theses on the topic "UNSW-NB15 Dataset"
Zoghi, Zeinab. "Ensemble Classifier Design and Performance Evaluation for Intrusion Detection Using UNSW-NB15 Dataset." University of Toledo / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1596756673292254.
Full textPacheco, Monasterios Yulexis D. "Adversarial Machine Learning: A Comparative Study on Contemporary Intrusion Detection Datasets." University of Toledo / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1596794840894376.
Full textBook chapters on the topic "UNSW-NB15 Dataset"
Dickson, Anne, and Ciza Thomas. "Analysis of UNSW-NB15 Dataset Using Machine Learning Classifiers." In Communications in Computer and Information Science. Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0419-5_16.
Full textKumar, Vikash, Ayan Kumar Das, and Ditipriya Sinha. "Statistical Analysis of the UNSW-NB15 Dataset for Intrusion Detection." In Computational Intelligence in Pattern Recognition. Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-9042-5_24.
Full textAlani, Mohammed M. "Implementation-Oriented Feature Selection in UNSW-NB15 Intrusion Detection Dataset." In Intelligent Systems Design and Applications. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-96308-8_51.
Full textSeong, ChangMin, YoungRok Song, Jiwung Hyun, and Yun-Gyung Cheong. "Towards Building Intrusion Detection Systems for Multivariate Time-Series Data." In Silicon Valley Cybersecurity Conference. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-96057-5_4.
Full textRoy, Aditi, and Khundrakpam Johnson Singh. "Multi-classification of UNSW-NB15 Dataset for Network Anomaly Detection System." In Algorithms for Intelligent Systems. Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5077-5_40.
Full textSingh, Yambem Ranjan, Chandam Chinglensana Singh, Linthoingambi Takhellambam, Khumukcham Robindro Singh, and Nazrul Hoque. "ML-Based Intrusion Detection with Feature Analysis on Unbalanced UNSW-NB15 Dataset." In Lecture Notes in Electrical Engineering. Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-6465-5_26.
Full textSambandam, Rakoth Kandan, D. Daniel, R. Gokulapriya, Divya Vetriveeran, J. Jenefa, and Anuneshwar. "Comparison of Machine Learning-Based Intrusion Detection Systems Using UNSW-NB15 Dataset." In Artificial Intelligence: Theory and Applications. Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-8479-4_23.
Full textManasa, Koppula, and L. M. I. Leo Joseph. "A Machine Learning-Based Vulnerability Detection Approach for the Imbalanced Dataset UNSW-NB15." In Communication and Intelligent Systems. Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-2100-3_23.
Full textManneh, Madlyn, Patrick Ansah, Sumit Kumar Tetarave, Manoj Ranjan Mishra, and Ezhil Kalaimannan. "A Comparative Analysis of Random Forest and Support Vector Machine Techniques on the UNSW-NB15 Dataset." In Lecture Notes in Networks and Systems. Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-65522-7_18.
Full textKumar, Avinash, Anita Soni, and Manmohan Singh. "Performing Multiclass Classification on UNSW-NB15 Dataset by Applying Machine Learning Approach on Intrusion Detection System." In Data-Intensive Research. Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-9179-2_36.
Full textConference papers on the topic "UNSW-NB15 Dataset"
Sharma, Rishabh, and Sakshi Sobti. "A Deep Neural Networks Model for Intrusion Detection in UNSW-NB15 Dataset." In 2024 4th Asian Conference on Innovation in Technology (ASIANCON). IEEE, 2024. https://doi.org/10.1109/asiancon62057.2024.10837906.
Full textKumar, Atul, Kalpna Guleria, Rahul Chauhan, and Deepak Upadhyay. "Advancing Intrusion Detection with Machine Learning: Insights from the UNSW-NB15 Dataset." In 2024 IEEE International Conference on Information Technology, Electronics and Intelligent Communication Systems (ICITEICS). IEEE, 2024. http://dx.doi.org/10.1109/iciteics61368.2024.10625148.
Full textV, Santhosh Kumar, Saiharish S, and Dinesh Kumar A. "Network Intrusion Detection Through Stacked Machine Learning Models on UNSW-NB15 Dataset." In 2024 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES). IEEE, 2024. https://doi.org/10.1109/icses63760.2024.10910677.
Full textJose, Anish Mathew, Avirup Mukherjee, Joydeep Saha, et al. "Multi-Class SVM & Random Forest Based Intrusion Detection Using UNSW-NB15 Dataset." In 2024 15th International Conference on Computing Communication and Networking Technologies (ICCCNT). IEEE, 2024. http://dx.doi.org/10.1109/icccnt61001.2024.10725989.
Full textPal, Kim Kristoffer, Aleksander Vanberg Eriksen, and Nga Dinh. "XGBoost Feature Selection for Multi-Class and Binary Classification on UNSW-NB15 Dataset." In 2025 IEEE International Conference on Consumer Electronics (ICCE). IEEE, 2025. https://doi.org/10.1109/icce63647.2025.10930023.
Full textPutrada, Aji Gautama, Nur Alamsyah, Mohamad Nurkamal Fauzan, and Ikke Dian Oktaviani. "Pearson Correlation for Efficient Network Anomaly Detection with Quantization on the UNSW-NB15 Dataset." In 2024 International Conference on ICT for Smart Society (ICISS). IEEE, 2024. http://dx.doi.org/10.1109/iciss62896.2024.10751550.
Full textG, Suchetha, and Pushpalatha K. "Optimizing Botnet Detection in IoT Networks: Feature Selection Analysis on the UNSW-NB15 Dataset." In 2024 IEEE International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER). IEEE, 2024. http://dx.doi.org/10.1109/discover62353.2024.10750583.
Full textZhuang, Licheng, Jun Hu, Qingqing Wang, Yanyan Wang, Kaikai Zhang, and Sheng Liu. "An Improved Lightweight CNN_BiLSTM Model for Network Intrusion Detection Using the UNSW-NB15 Dataset." In 2024 2nd International Conference on Computer, Vision and Intelligent Technology (ICCVIT). IEEE, 2024. https://doi.org/10.1109/iccvit63928.2024.10872444.
Full textRashid, Omar Fitian, Saba A. Tuama, and Mohammed Ahmed Subhi. "Anomaly Intrusion Detection System Based on RNA Encoding and YAKE Algorithm Using UNSW-NB15 Dataset." In 2024 1st International Conference on Cyber Security and Computing (CyberComp). IEEE, 2024. https://doi.org/10.1109/cybercomp60759.2024.10913877.
Full textPear, Zareen Tasnim, and Hafsa Binte Kibria. "Enhanced Network Intrusion Detection Using a Hybrid CNN-LSTM Approach on the UNSW-NB15 Dataset." In 2024 21st International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE). IEEE, 2024. https://doi.org/10.1109/cce62852.2024.10770969.
Full text