Journal articles on the topic 'UNSW-NB15 Dataset'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'UNSW-NB15 Dataset.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Amien, Januar Al, Yoze Rizki, and Mukhlis Ali Rahman Nasution. "Implementasi Adasyn Untuk Imbalance Data Pada Dataset UNSW-NB15 Adasyn Implementation For Data Imbalance on UNSW-NB15 Dataset." Jurnal CoSciTech (Computer Science and Information Technology) 3, no. 3 (2022): 242–48. http://dx.doi.org/10.37859/coscitech.v3i3.4339.
Full textSonule, Avinash R. "Detection of Network Attacks using Machine Learning: A New Approach." International Journal for Research in Applied Science and Engineering Technology 9, no. 12 (2021): 1881–90. http://dx.doi.org/10.22214/ijraset.2021.39640.
Full textAvinashR.Sonule, Kalla Mukesh, Jain Amit, and Chouhan D.S. "Unsw-Nb15 Dataset and Machine Learning Based Intrusion Detection Systems." International Journal of Engineering and Advanced Technology (IJEAT) 9, no. 3 (2020): 2638–48. https://doi.org/10.35940/ijeat.C5809.029320.
Full textSouhail et. al., Mefta. "Network Based Intrusion Detection Using the UNSW-NB15 Dataset." International Journal of Computing and Digital Systems 8, no. 5 (2019): 477–87. http://dx.doi.org/10.12785/ijcds/080505.
Full textSeo, Jae-Hyun. "Evolutionary Data Preprocessing to Alleviate Class Imbalance." Security and Communication Networks 2022 (October 11, 2022): 1–14. http://dx.doi.org/10.1155/2022/3761205.
Full textRehman, Abdul, Omar Alharbi, Yazeed Qasaymeh, and Amer Aljaedi. "DC-NFC: A Custom Deep Learning Framework for Security and Privacy in NFC-Enabled IoT." Sensors 25, no. 5 (2025): 1381. https://doi.org/10.3390/s25051381.
Full textKottilingal, Shahir. "Deep Learning Based Network Intrusion Detection System: A Deep Abstract Networks (DANets) Model Approach." International Research Journal of Computer Science 11, no. 07 (2024): 539–44. http://dx.doi.org/10.26562/irjcs.2024.v1107.01.
Full textBagui, Sikha, Mary Walauskis, Robert DeRush, Huyen Praviset, and Shaunda Boucugnani. "Spark Configurations to Optimize Decision Tree Classification on UNSW-NB15." Big Data and Cognitive Computing 6, no. 2 (2022): 38. http://dx.doi.org/10.3390/bdcc6020038.
Full textHacılar, Hilal, Bilge Kagan Dedeturk, Burcu Bakir-Gungor, and Vehbi Cagri Gungor. "Network anomaly detection using Deep Autoencoder and parallel Artificial Bee Colony algorithm-trained neural network." PeerJ Computer Science 10 (October 8, 2024): e2333. http://dx.doi.org/10.7717/peerj-cs.2333.
Full textThanh, Hoang Ngoc, and Tran Van Lang. "EVALUATING EFFECTIVENESS OF ENSEMBLE CLASSIFIERS WHEN DETECTING FUZZERS ATTACKS ON THE UNSW-NB15 DATASET." Journal of Computer Science and Cybernetics 36, no. 2 (2020): 173–85. http://dx.doi.org/10.15625/1813-9663/36/2/14786.
Full textYoon, Pil-Do, and Gyung-Ho Hwang. "Malicious Traffic Classification in a UNSW-NB15 Dataset by Using Tomeklinks and ClusBUS." Journal of Korean Institute of Communications and Information Sciences 46, no. 11 (2021): 1896–99. http://dx.doi.org/10.7840/kics.2021.46.11.1896.
Full textFiona Lawrence. "Enhancing Intrusion Detection Systems with Ensemble Models and Hybrid Feature Selection Techniques." Journal of Information Systems Engineering and Management 10, no. 23s (2025): 937–54. https://doi.org/10.52783/jisem.v10i23s.3816.
Full textToldinas, Jevgenijus, Algimantas Venčkauskas, Robertas Damaševičius, Šarūnas Grigaliūnas, Nerijus Morkevičius, and Edgaras Baranauskas. "A Novel Approach for Network Intrusion Detection Using Multistage Deep Learning Image Recognition." Electronics 10, no. 15 (2021): 1854. http://dx.doi.org/10.3390/electronics10151854.
Full textE, Thriveni, and Mahaveerakannan R. "Developing the Security for Cloud Information Via Alexnet Learning Model versus the accuracy of Artificial Neural Network." E3S Web of Conferences 399 (2023): 04023. http://dx.doi.org/10.1051/e3sconf/202339904023.
Full textE. L. Asry, Chadia, Ibtissam Benchaji, Samira Douzi, and Bouabid E. L. Ouahidi. "A robust intrusion detection system based on a shallow learning model and feature extraction techniques." PLOS ONE 19, no. 1 (2024): e0295801. http://dx.doi.org/10.1371/journal.pone.0295801.
Full textA, Sagaya Priya, and Britto Ramesh Kumar S. "Semi-Supervised Intrusion Detection Based on Stacking and Feature-Engineering to Handle Data Imbalance." Indian Journal of Science and Technology 15, no. 46 (2022): 2548–54. https://doi.org/10.17485/IJST/v15i46.1885.
Full textKocher, Geeta, and Gulshan Kumar. "Analysis of Machine Learning Algorithms with Feature Selection for Intrusion Detection using UNSW-NB15 Dataset." International Journal of Network Security & Its Applications 13, no. 1 (2021): 21–31. http://dx.doi.org/10.5121/ijnsa.2021.13102.
Full textGeeta, Kocher, and Kumar Gulshan. "ANALYSIS OF MACHINE LEARNING ALGORITHMS WITH FEATURE SELECTION FOR INTRUSION DETECTION USING UNSW-NB15 DATASET." International Journal of Network Security & Its Applications (IJNSA) 13, no. 1 (2021): 21–31. https://doi.org/10.5281/zenodo.4536793.
Full textFarooqi, Ashfaq Hussain, Shahzaib Akhtar, Hameedur Rahman, Touseef Sadiq, and Waseem Abbass. "Enhancing Network Intrusion Detection Using an Ensemble Voting Classifier for Internet of Things." Sensors 24, no. 1 (2023): 127. http://dx.doi.org/10.3390/s24010127.
Full textOmarov, Bauyrzhan S., O. А. Auelbekov, B. O. Kulambayev, and B. S. Omarov. "IOT NETWORK INTRUSION DETECTION USING MACHINE LEARNING ON UNSW-NB15 DATASET." Herald of the Kazakh-British technical university 21, no. 3 (2024): 48–57. http://dx.doi.org/10.55452/1998-6688-2024-21-3-48-57.
Full textBaidoo, Charity Yaa Mansa, Winfred Yaokumah, and Ebenezer Owusu. "Estimating Overhead Performance of Supervised Machine Learning Algorithms for Intrusion Detection." International Journal of Information Technologies and Systems Approach 16, no. 1 (2023): 1–19. http://dx.doi.org/10.4018/ijitsa.316889.
Full textHan, Hyojoon, Hyukho Kim, and Yangwoo Kim. "An Efficient Hyperparameter Control Method for a Network Intrusion Detection System Based on Proximal Policy Optimization." Symmetry 14, no. 1 (2022): 161. http://dx.doi.org/10.3390/sym14010161.
Full textAkintoye, Kayode Akinlekan. "Network Intrusion Detection and Classification System: A Supervised Machine Learning Approach." International Journal for Research in Applied Science and Engineering Technology 12, no. 7 (2024): 657–70. http://dx.doi.org/10.22214/ijraset.2024.63548.
Full textCui, Bo, Yachao Chai, Zhen Yang, and Keqin Li. "Intrusion Detection in IoT Using Deep Residual Networks with Attention Mechanisms." Future Internet 16, no. 7 (2024): 255. http://dx.doi.org/10.3390/fi16070255.
Full textShuxin, Shi, Han Bing, Wu Zhongdai, Han Dezhi, Wu Huafeng, and Mei Xiaojun. "BLSAE-SNIDS: A Bi-LSTM sparse autoencoder framework for satellite network intrusion detection." Computer Science and Information Systems, no. 00 (2024): 41. http://dx.doi.org/10.2298/csis240401041s.
Full textANOH, Nogbou Georges, Tiémoman KONE, Joel Christian ADEPO, Jean François M’MOH, and Michel BABRI. "IoT Intrusion Detection System based on Machine Learning Algorithms usingthe UNSW-NB15 dataset." International Journal of Advances in Scientific Research and Engineering 10, no. 01 (2024): 16–28. http://dx.doi.org/10.31695/ijasre.2024.1.3.
Full textVenkata Sai Rahul Trivedi Kothapalli. "LightGBM-Based Anomaly Detection System for Modern Network Traffic Using UNSW-NB15 Dataset." Journal of Information Systems Engineering and Management 10, no. 8s (2025): 197–209. https://doi.org/10.52783/jisem.v10i8s.1020.
Full textDuong, Lai Van. "Network anomaly detection technique based on LSTM network and UNSW-NB15 dataset." International Journal of Advanced Trends in Computer Science and Engineering 9, no. 4 (2020): 6527–32. http://dx.doi.org/10.30534/ijatcse/2020/340942020.
Full textSharma, Neha, Narendra Yadav, and Saurabh Sharma. "Classification of UNSW-NB15 dataset using Exploratory Data Analysis using Ensemble Learning." EAI Endorsed Transactions on Industrial Networks and Intelligent Systems 8, no. 29 (2021): 171319. http://dx.doi.org/10.4108/eai.13-10-2021.171319.
Full textJournal, IJSREM. "Review of High Performance Network Intrusion Detection Engine." INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 08, no. 01 (2024): 1–13. http://dx.doi.org/10.55041/ijsrem28002.
Full textPham-Quoc, Cuong, Tran Hoang Quoc Bao, and Tran Ngoc Thinh. "FPGA/AI-Powered Architecture for Anomaly Network Intrusion Detection Systems." Electronics 12, no. 3 (2023): 668. http://dx.doi.org/10.3390/electronics12030668.
Full textMaasaoui, Zineb, Mheni Merzouki, Abdella Battou, and Ahmed Lbath. "A Scalable Framework for Real-Time Network Security Traffic Analysis and Attack Detection Using Machine and Deep Learning." Platforms 3, no. 2 (2025): 7. https://doi.org/10.3390/platforms3020007.
Full textKumar Silivery, Arun, Kovvur Ram Mohan Rao, and L. K. Suresh Kumar. "An Effective Deep Learning Based Multi-Class Classification of DoS and DDoS Attack Detection." International journal of electrical and computer engineering systems 14, no. 4 (2023): 421–31. http://dx.doi.org/10.32985/ijeces.14.4.6.
Full textJegatheesan A., Anitha Govindaram,. "Enhancing Industrial IoT Security: Utilizing Blockchain-Assisted Deep Federated Learning for Collaborative Intrusion Detection." Journal of Electrical Systems 20, no. 2s (2024): 1345–63. http://dx.doi.org/10.52783/jes.1782.
Full textFarhad Gharehchopogh, Farhad Gharehchopogh, and Samir Bagirzada Samir Bagirzada. "ENHANCING NETWORK INTRUSION DETECTION WITH MOUNTAIN GAZELLE OPTIMIZER-BASED FEATURE SELECTION." PAHTEI-Procedings of Azerbaijan High Technical Educational Institutions 43, no. 08-01 (2024): 520–29. http://dx.doi.org/10.36962/pahtei4308012024-58.
Full textKilichev, Dusmurod, and Wooseong Kim. "Hyperparameter Optimization for 1D-CNN-Based Network Intrusion Detection Using GA and PSO." Mathematics 11, no. 17 (2023): 3724. http://dx.doi.org/10.3390/math11173724.
Full textMalik, Mubasher, Hamid Ghous, Mutahira Mubeen, Ansar Munir Munir, and Nazir Ahmad. "Intelligent Intrusion Detection System for Internet of Things using Machine Learning Techniques." International Journal of Information Systems and Computer Technologies 3, no. 1 (2024): 23–39. http://dx.doi.org/10.58325/ijisct.003.01.0073.
Full textJeyanthi, D. V., and B. Indrani. "An Efficient Intrusion Detection System with Custom Features using FPA-Gradient Boost Machine Learning Algorithm." International journal of Computer Networks & Communications 14, no. 1 (2022): 99–115. http://dx.doi.org/10.5121/ijcnc.2022.14107.
Full textMore, Shweta, Moad Idrissi, Haitham Mahmoud, and A. Taufiq Asyhari. "Enhanced Intrusion Detection Systems Performance with UNSW-NB15 Data Analysis." Algorithms 17, no. 2 (2024): 64. http://dx.doi.org/10.3390/a17020064.
Full textImran, Faisal Jamil, and Dohyeun Kim. "An Ensemble of a Prediction and Learning Mechanism for Improving Accuracy of Anomaly Detection in Network Intrusion Environments." Sustainability 13, no. 18 (2021): 10057. http://dx.doi.org/10.3390/su131810057.
Full textAlrayes, Fatma S., Syed Umar Amin, and Nada Hakami. "An Adaptive Framework for Intrusion Detection in IoT Security Using MAML (Model-Agnostic Meta-Learning)." Sensors 25, no. 8 (2025): 2487. https://doi.org/10.3390/s25082487.
Full textRincy N, Thomas, and Roopam Gupta. "Design and Development of an Efficient Network Intrusion Detection System Using Machine Learning Techniques." Wireless Communications and Mobile Computing 2021 (June 26, 2021): 1–35. http://dx.doi.org/10.1155/2021/9974270.
Full textTÜRK, Fuat. "Analysis of Intrusion Detection Systems in UNSW-NB15 and NSL-KDD Datasets with Machine Learning Algorithms." Bitlis Eren Üniversitesi Fen Bilimleri Dergisi 12, no. 2 (2023): 465–77. http://dx.doi.org/10.17798/bitlisfen.1240469.
Full textRakhi A. Kalantri. "Advancing Cyber Threat Detection with Ai: Cutting-Edge Techniques and Future Trends." Journal of Information Systems Engineering and Management 10, no. 14s (2025): 338–52. https://doi.org/10.52783/jisem.v10i14s.2301.
Full textAlsulami, Majid H. "Residual Dense Optimization-Based Multi-Attention Transformer to Detect Network Intrusion against Cyber Attacks." Applied Sciences 14, no. 17 (2024): 7763. http://dx.doi.org/10.3390/app14177763.
Full textVibhute, Amol D., Minhaj Khan, Chandrashekhar H. Patil, Sandeep V. Gaikwad, Arjun V. Mane, and Kanubhai K. Patel. "Network anomaly detection and performance evaluation of Convolutional Neural Networks on UNSW-NB15 dataset." Procedia Computer Science 235 (2024): 2227–36. http://dx.doi.org/10.1016/j.procs.2024.04.211.
Full textAl-Daweri, Muataz Salam, Khairul Akram Zainol Ariffin, Salwani Abdullah, and Mohamad Firham Efendy Md. Senan. "An Analysis of the KDD99 and UNSW-NB15 Datasets for the Intrusion Detection System." Symmetry 12, no. 10 (2020): 1666. http://dx.doi.org/10.3390/sym12101666.
Full textAhsan, Mostofa, Rahul Gomes, Md Minhaz Chowdhury, and Kendall E. Nygard. "Enhancing Machine Learning Prediction in Cybersecurity Using Dynamic Feature Selector." Journal of Cybersecurity and Privacy 1, no. 1 (2021): 199–218. http://dx.doi.org/10.3390/jcp1010011.
Full textKotecha, Ketan, Raghav Verma, Prahalad V. Rao, et al. "Enhanced Network Intrusion Detection System." Sensors 21, no. 23 (2021): 7835. http://dx.doi.org/10.3390/s21237835.
Full textDeshmukh, Amogh, Peplluis Esteva de la Rosa, Raul Villamarin Rodriguez, and Sandeep Dasari. "Enhancing Privacy in IoT-Enabled Digital Infrastructure: Evaluating Federated Learning for Intrusion and Fraud Detection." Sensors 25, no. 10 (2025): 3043. https://doi.org/10.3390/s25103043.
Full text