To see the other types of publications on this topic, follow the link: Upper number.

Journal articles on the topic 'Upper number'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Upper number.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Tang, Huajun, and Yaojun Chen. "Upper signed domination number." Discrete Mathematics 308, no. 15 (August 2008): 3416–19. http://dx.doi.org/10.1016/j.disc.2007.06.031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Boyacı, Arman, and Jérôme Monnot. "Weighted upper domination number." Electronic Notes in Discrete Mathematics 62 (November 2017): 171–76. http://dx.doi.org/10.1016/j.endm.2017.10.030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Anantha, V., and B. Maheswari. "Upper Unidomination Number and Upper Total Unidomination Number of a 3-Regularized Wheel." International Journal of Computer Applications 180, no. 51 (June 15, 2018): 35–41. http://dx.doi.org/10.5120/ijca2018917359.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

YUAN, PINGZHI. "AN UPPER BOUND FOR THE NUMBER OF ODD MULTIPERFECT NUMBERS." Bulletin of the Australian Mathematical Society 89, no. 1 (January 28, 2013): 1–4. http://dx.doi.org/10.1017/s000497271200113x.

Full text
Abstract:
AbstractA natural number $n$ is called $k$-perfect if $\sigma (n)= kn$. In this paper, we show that for any integers $r\geq 2$ and $k\geq 2$, the number of odd $k$-perfect numbers $n$ with $\omega (n)\leq r$ is bounded by $\left({\lfloor {4}^{r} { \mathop{ \log } \nolimits }_{3} 2\rfloor + r\atop r} \right){ \mathop{ \sum } \nolimits }_{i= 1}^{r} \left({\lfloor kr/ 2\rfloor \atop i} \right)$, which is less than ${4}^{{r}^{2} } $ when $r$ is large enough.
APA, Harvard, Vancouver, ISO, and other styles
5

Choffrut, Antoine, Camilla Nobili, and Felix Otto. "Upper bounds on Nusselt number at finite Prandtl number." Journal of Differential Equations 260, no. 4 (February 2016): 3860–80. http://dx.doi.org/10.1016/j.jde.2015.10.051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Favaron, Odile. "Inflated graphs with equal independence number and upper irredundance number." Discrete Mathematics 236, no. 1-3 (June 2001): 81–94. http://dx.doi.org/10.1016/s0012-365x(00)00433-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Shan, Erfang, and T. C. E. Cheng. "Upper bounds on the upper signed total domination number of graphs." Discrete Applied Mathematics 157, no. 5 (March 2009): 1098–103. http://dx.doi.org/10.1016/j.dam.2008.04.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

YUAN, PINGZHI, and ZHONGFENG ZHANG. "ADDITION TO ‘AN UPPER BOUND FOR THE NUMBER OF ODD MULTIPERFECT NUMBERS’." Bulletin of the Australian Mathematical Society 89, no. 1 (June 7, 2013): 5–7. http://dx.doi.org/10.1017/s0004972713000452.

Full text
Abstract:
AbstractThe main result in the earlier paper (by the first author) is improved as follows. The number of odd multiperfect numbers with at most $r$ distinct prime factors is bounded by ${4}^{{r}^{2} } / {2}^{r+ 2} (r- 1)!$.
APA, Harvard, Vancouver, ISO, and other styles
9

Dzido, Tomasz, and Renata Zakrzewska. "The upper domination Ramsey number u(4,4)." Discussiones Mathematicae Graph Theory 26, no. 3 (2006): 419. http://dx.doi.org/10.7151/dmgt.1334.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Santhakumaran, A. P., and T. Venkata Raghu. "Upper double monophonic number of a graph." Proyecciones (Antofagasta) 37, no. 2 (June 2018): 295–304. http://dx.doi.org/10.4067/s0716-09172018000200295.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Khayyoom, M. Mohammed Abdul. "Characterization of Upper Detour Monophonic Domination Number." Cubo (Temuco) 22, no. 3 (December 2020): 315–24. http://dx.doi.org/10.4067/s0719-06462020000300315.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Divya Rashmi, S. V., A. Somasundaram, and S. Arumugam. "Upper Secure Domination Number of a Graph." Electronic Notes in Discrete Mathematics 53 (September 2016): 297–306. http://dx.doi.org/10.1016/j.endm.2016.05.025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Titus, P., and K. Ganesamoorthy. "Upper Detour Monophonic Number of a Graph." Electronic Notes in Discrete Mathematics 53 (September 2016): 331–42. http://dx.doi.org/10.1016/j.endm.2016.05.028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Vijaya Saradhi, P., and S. Vangipuram. "GRAPH WITH A GIVEN UPPER DOMINATION NUMBER." Advances in Mathematics: Scientific Journal 9, no. 12 (December 18, 2020): 10833–38. http://dx.doi.org/10.37418/amsj.9.12.67.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

MATTHIAS, ULRICH. "Constructive Upper Bounds for the Turán Number." Combinatorics, Probability and Computing 6, no. 4 (December 1997): 475–79. http://dx.doi.org/10.1017/s0963548397003039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Henning, Michael A., and Ortrud R. Oellermann. "The upper domination Ramsey number u(3,3,3)." Discrete Mathematics 242, no. 1-3 (January 2002): 103–13. http://dx.doi.org/10.1016/s0012-365x(00)00369-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Bacsó, Gábor, and Zsolt Tuza. "Upper chromatic number of finite projective planes." Journal of Combinatorial Designs 16, no. 3 (2008): 221–30. http://dx.doi.org/10.1002/jcd.20169.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Okamoto, Futaba, Ping Zhang, and Varaporn Saenpholphat. "The upper traceable number of a graph." Czechoslovak Mathematical Journal 58, no. 1 (March 2008): 271–87. http://dx.doi.org/10.1007/s10587-008-0016-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Chellathurai, S. Robinson, and S. Padma Vijaya. "Upper geodetic domination number of a graph." International Journal of Contemporary Mathematical Sciences 10 (2015): 23–36. http://dx.doi.org/10.12988/ijcms.2015.411117.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Gu, Zhao, Jixiang Meng, Zhao Zhang, and Jin E. Wan. "Some Upper Bounds Related with Domination Number." Journal of the Operations Research Society of China 1, no. 2 (April 25, 2013): 217–25. http://dx.doi.org/10.1007/s40305-013-0012-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Haynes, Teresa W., Jason T. Hedetniemi, Stephen T. Hedetniemi, Alice McRae, and Nicholas Phillips. "The upper domatic number of a graph." AKCE International Journal of Graphs and Combinatorics 17, no. 1 (January 2, 2020): 139–48. http://dx.doi.org/10.1016/j.akcej.2018.09.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Chen, Xue-gang, Wai Chee Shiu, and Wai Hong Chan. "Upper bounds on the paired-domination number." Applied Mathematics Letters 21, no. 11 (November 2008): 1194–98. http://dx.doi.org/10.1016/j.aml.2007.10.029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Ouyang, ZhangDong, Ling Tang, and YuanQiu Huang. "Upper embeddability, edge independence number and girth." Science in China Series A: Mathematics 52, no. 9 (July 9, 2009): 1939–46. http://dx.doi.org/10.1007/s11425-009-0002-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Voloshin, Vitaly, and Heinz-Jürgen Voss. "Circular mixed hypergraphs II:The upper chromatic number." Discrete Applied Mathematics 154, no. 8 (May 2006): 1157–72. http://dx.doi.org/10.1016/j.dam.2005.10.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Kim, Hyoungjun, Sungjong No, and Seungsang Oh. "Equilateral stick number of knots." Journal of Knot Theory and Its Ramifications 23, no. 07 (June 2014): 1460008. http://dx.doi.org/10.1142/s0218216514600086.

Full text
Abstract:
An equilateral stick number s=(K) of a knot K is defined to be the minimal number of sticks required to construct a polygonal knot of K which consists of equal length sticks. Rawdon and Scharein [Upper bounds for equilateral stick numbers, in Physical Knots: Knotting, Linking, and Folding Geometric Objects in ℝ3, Contemporary Mathematics, Vol. 304 (American Mathematical Society, Providence, RI, 2002), pp. 55–76] found upper bounds for the equilateral stick numbers of all prime knots through 10 crossings by using algorithms in the software KnotPlot. In this paper, we find an upper bound on the equilateral stick number of a non-trivial knot K in terms of the minimal crossing number c(K) which is s=(K) ≤ 2c(K) + 2. Moreover if K is a non-alternating prime knot, then s=(K) ≤ 2c(K) - 2. Furthermore we find another upper bound on the equilateral stick number for composite knots which is s=(K1♯K2) ≤ 2c(K1) + 2c(K2).
APA, Harvard, Vancouver, ISO, and other styles
26

Lee, Minjung, Sungjong No, and Seungsang Oh. "Stick number of spatial graphs." Journal of Knot Theory and Its Ramifications 26, no. 14 (December 2017): 1750100. http://dx.doi.org/10.1142/s0218216517501000.

Full text
Abstract:
For a nontrivial knot [Formula: see text], Negami found an upper bound on the stick number [Formula: see text] in terms of its crossing number [Formula: see text] which is [Formula: see text]. Later, Huh and Oh utilized the arc index [Formula: see text] to present a more precise upper bound [Formula: see text]. Furthermore, Kim, No and Oh found an upper bound on the equilateral stick number [Formula: see text] as follows; [Formula: see text]. As a sequel to this research program, we similarly define the stick number [Formula: see text] and the equilateral stick number [Formula: see text] of a spatial graph [Formula: see text], and present their upper bounds as follows; [Formula: see text] [Formula: see text] where [Formula: see text] and [Formula: see text] are the number of edges and vertices of [Formula: see text], respectively, [Formula: see text] is the number of bouquet cut-components, and [Formula: see text] is the number of non-splittable components.
APA, Harvard, Vancouver, ISO, and other styles
27

Larson, Eric, and Larry Rolen. "Upper bounds for the number of number fields with alternating Galois group." Proceedings of the American Mathematical Society 141, no. 2 (June 25, 2012): 499–503. http://dx.doi.org/10.1090/s0002-9939-2012-11543-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

John, J., and N. Arianayagam. "The Upper Detour Domination Number of a Graph." International Journal of Engineering Science, Advanced Computing and Bio-Technology 8, no. 1 (March 1, 2017): 24. http://dx.doi.org/10.26674/ijesacbt/2017/49171.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Santhakumaran, A. P., and T. Jebaraj. "THE UPPER DOUBLE GEODETIC NUMBER OF A GRAPH." Malaysian Journal of Science 30, no. 3 (December 30, 2011): 217–21. http://dx.doi.org/10.22452/mjs.vol30no3.7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Annalin Selcy, I., and P. Arul Paul Sudhahar. "THE UPPER PATH INDUCED MONOPHONIC NUMBER OF GRAPHS." Advances in Mathematics: Scientific Journal 9, no. 10 (October 10, 2020): 8629–34. http://dx.doi.org/10.37418/amsj.9.10.88.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Titus, P., and K. Ganesamoorthy. "Upper Edge Detour Monophonic Number of a Graph." Proyecciones (Antofagasta) 33, no. 2 (June 2014): 175–87. http://dx.doi.org/10.4067/s0716-09172014000200004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Santhakumaran, A. P., and M. Mahendran. "The upper open monophonic number of a graph." Proyecciones (Antofagasta) 33, no. 4 (December 2014): 389–403. http://dx.doi.org/10.4067/s0716-09172014000400003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Thakkar, D. K., and Ashish Amrutlal Prajapati. "Upper Vertex Covering Number and well Covered Semigraphs." International Journal of Mathematics and Soft Computing 6, no. 2 (July 24, 2016): 97. http://dx.doi.org/10.26708/ijmsc.2016.2.6.10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Chen, Beifang, and Sanming Zhou. "Upper bounds for ƒ-domination number of graphs." Discrete Mathematics 185, no. 1-3 (April 1998): 239–43. http://dx.doi.org/10.1016/s0012-365x(97)00204-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

HONG, KYUNGPYO, SUNGJONG NO, and SEUNGSANG OH. "Upper bound on lattice stick number of knots." Mathematical Proceedings of the Cambridge Philosophical Society 155, no. 1 (April 25, 2013): 173–79. http://dx.doi.org/10.1017/s0305004113000212.

Full text
Abstract:
AbstractThe lattice stick number sL(K) of a knot K is defined to be the minimal number of straight line segments required to construct a stick presentation of K in the cubic lattice. In this paper, we find an upper bound on the lattice stick number of a nontrivial knot K, except the trefoil knot, in terms of the minimal crossing number c(K) which is sL(K) ≤ 3c(K) + 2. Moreover if K is a non-alternating prime knot, then sL(K) ≤ 3c(K) − 4.
APA, Harvard, Vancouver, ISO, and other styles
36

Gleeta, V. Mary. "The Upper Monophonic Hull Number of a Graph." International Journal of Mathematics Trends and Technology 60, no. 5 (August 25, 2018): 294–98. http://dx.doi.org/10.14445/22315373/ijmtt-v60p543.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Sun, Liang, and Jianfang Wang. "An Upper Bound for the Independent Domination Number." Journal of Combinatorial Theory, Series B 76, no. 2 (July 1999): 240–46. http://dx.doi.org/10.1006/jctb.1999.1907.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

MARIMUTHU, G., M. SIVANANDHA SARASWATHY, and G. UMA MAHESHWARI. "THE UPPER AND LOWER INDEPENDENCE NUMBER OF GRAPHS." Discrete Mathematics, Algorithms and Applications 03, no. 01 (March 2011): 53–61. http://dx.doi.org/10.1142/s1793830911001012.

Full text
Abstract:
In this paper, we introduce the concept called upper and lower independence number of a graph. The amount of independenceness of a vertex is calculated first. With the help of independenceness of vertices, we find the independence number of a graph. The main focus of this paper is to extend the dominating chain ir (G) ≤ γ(G) ≤ i(G) ≤ β0(G) ≤ Γ(G) ≤ IR (G), mentioned in [Haynes, Hedetniemi and Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998)].
APA, Harvard, Vancouver, ISO, and other styles
39

John, J., and M. S. Malchijah Raj. "The upper restrained Steiner number of a graph." Discrete Mathematics, Algorithms and Applications 12, no. 01 (December 2, 2019): 2050004. http://dx.doi.org/10.1142/s1793830920500044.

Full text
Abstract:
A Steiner set [Formula: see text] of a connected graph [Formula: see text] of order [Formula: see text] is a restrained Steiner set if either [Formula: see text] or the subgraph [Formula: see text] has no isolated vertices. The minimum cardinality of a restrained Steiner set of [Formula: see text] is the restrained Steiner number of [Formula: see text], and is denoted by [Formula: see text]. A restrained Steiner set [Formula: see text] in a connected graph [Formula: see text] is called a minimal restrained Steiner set if no proper subset of [Formula: see text] is a restrained Steiner set of [Formula: see text]. The upper restrained Steiner number [Formula: see text] is the maximum cardinality of a minimal restrained Steiner set of [Formula: see text]. The upper restrained Steiner number of certain classes of graphs are determined. Connected graphs of order [Formula: see text] with upper restrained Steiner number [Formula: see text] or [Formula: see text] are characterized. It is shown that for every pair of integers [Formula: see text] and [Formula: see text], with [Formula: see text], there exists a connected graph [Formula: see text] such that [Formula: see text] and [Formula: see text]. Also, it is shown that for every pair of integers [Formula: see text] and [Formula: see text] with [Formula: see text] there exists a connected graph [Formula: see text] with [Formula: see text] and [Formula: see text], where [Formula: see text] is the upper restrained geodetic number of the graph [Formula: see text].
APA, Harvard, Vancouver, ISO, and other styles
40

Gionfriddo, Mario, and Vitaly Voloshin. "On the upper chromatic number of uniform hypergraphs." Applied Mathematical Sciences 8 (2014): 5015–25. http://dx.doi.org/10.12988/ams.2014.45386.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Littenberg, Laurence S., and Robert E. Shrock. "Upper bounds on lepton-number violating meson decays." Physical Review Letters 68, no. 4 (January 27, 1992): 443–46. http://dx.doi.org/10.1103/physrevlett.68.443.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

HUH, YOUNGSIK, and SEUNGSANG OH. "AN UPPER BOUND ON STICK NUMBER OF KNOTS." Journal of Knot Theory and Its Ramifications 20, no. 05 (May 2011): 741–47. http://dx.doi.org/10.1142/s0218216511008966.

Full text
Abstract:
In 1991, Negami found an upper bound on the stick number s(K) of a nontrivial knot K in terms of crossing number c(K) which is s(K) ≤ 2c(K). In this paper we give a new upper bound in terms of arc index, and improve Negami's upper bound to [Formula: see text]. Moreover if K is a nonalternating prime knot, then [Formula: see text].
APA, Harvard, Vancouver, ISO, and other styles
43

Henning, Michael A. "Essential upper bounds on the total domination number." Discrete Applied Mathematics 244 (July 2018): 103–15. http://dx.doi.org/10.1016/j.dam.2018.03.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Soto, María, André Rossi, and Marc Sevaux. "Three new upper bounds on the chromatic number." Discrete Applied Mathematics 159, no. 18 (December 2011): 2281–89. http://dx.doi.org/10.1016/j.dam.2011.08.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Bujtás, Csilla. "General upper bound on the game domination number." Discrete Applied Mathematics 285 (October 2020): 530–38. http://dx.doi.org/10.1016/j.dam.2020.06.018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Abrams, Aaron. "The kth upper chromatic number of the line." Discrete Mathematics 169, no. 1-3 (May 1997): 157–62. http://dx.doi.org/10.1016/0012-365x(95)00161-o.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Kovalenko, I. N. "Upper bound on the number of complete maps." Cybernetics and Systems Analysis 32, no. 1 (January 1996): 65–68. http://dx.doi.org/10.1007/bf02366583.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Dourado, Mitre C., Dieter Rautenbach, Vinícius Fernandes dos Santos, Philipp M. Schäfer, Jayme L. Szwarcfiter, and Alexandre Toman. "An upper bound on the P3-Radon number." Discrete Mathematics 312, no. 16 (August 2012): 2433–37. http://dx.doi.org/10.1016/j.disc.2012.05.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Bujtás, Csilla, and Zsolt Tuza. "Approximability of the upper chromatic number of hypergraphs." Discrete Mathematics 338, no. 10 (October 2015): 1714–21. http://dx.doi.org/10.1016/j.disc.2014.08.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Li, Zhen-lin, and Xin-zhong Lü. "Upper minus total domination number of regular graphs." Acta Mathematicae Applicatae Sinica, English Series 33, no. 1 (February 2017): 69–74. http://dx.doi.org/10.1007/s10255-017-0637-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography