Journal articles on the topic 'Upwind scheme'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Upwind scheme.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Сухинов, А. И., А. Е. Чистяков, and Е. А. Проценко. "Upwind and standard leapfrog difference schemes." Numerical Methods and Programming (Vychislitel'nye Metody i Programmirovanie), no. 2 (March 28, 2019): 170–81. http://dx.doi.org/10.26089/nummet.v20r216.
Full textBragin, M. D. "Upwind bicompact schemes for hyperbolic conservation laws." Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ 517, no. 1 (2024): 50–56. http://dx.doi.org/10.31857/s2686954324030097.
Full textStynes, Martin, and Hans-Görg Roos. "The Midpoint Upwind Scheme." Irish Mathematical Society Bulletin 0038 (1997): 68. http://dx.doi.org/10.33232/bims.0038.68.
Full textStynes, Martin, and Hans-Görg Roos. "The midpoint upwind scheme." Applied Numerical Mathematics 23, no. 3 (1997): 361–74. http://dx.doi.org/10.1016/s0168-9274(96)00071-2.
Full textTkalich, Pavel. "Derivation of high-order advection–diffusion schemes." Journal of Hydroinformatics 8, no. 3 (2006): 149–64. http://dx.doi.org/10.2166/hydro.2006.008.
Full textHussain, Arafat, Zhoushun Zheng, and Eyaya Fekadie Anley. "Numerical Analysis of Convection–Diffusion Using a Modified Upwind Approach in the Finite Volume Method." Mathematics 8, no. 11 (2020): 1869. http://dx.doi.org/10.3390/math8111869.
Full textDominguez, Hugo, Nicolas Riel, and Pierre Lanari. "Modelling chemical advection during magma ascent." Geoscientific Model Development 17, no. 16 (2024): 6105–22. http://dx.doi.org/10.5194/gmd-17-6105-2024.
Full textScanlon, T. J., C. Carey, and S. M. Fraser. "SUCCA3D—An Alternative Scheme to Reduce False Diffusion in Three-Dimensional Flows." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 207, no. 5 (1993): 307–13. http://dx.doi.org/10.1243/pime_proc_1993_207_135_02.
Full textvan Trier, J., and W. W. Symes. "Upwind finite‐difference calculation of traveltimes." GEOPHYSICS 56, no. 6 (1991): 812–21. http://dx.doi.org/10.1190/1.1443099.
Full textCastro Díaz, Manuel Jesús, Alexander Kurganov, and Tomás Morales de Luna. "Path-conservative central-upwind schemes for nonconservative hyperbolic systems." ESAIM: Mathematical Modelling and Numerical Analysis 53, no. 3 (2019): 959–85. http://dx.doi.org/10.1051/m2an/2018077.
Full textMiura, Hiroaki. "An Upwind-Biased Conservative Advection Scheme for Spherical Hexagonal–Pentagonal Grids." Monthly Weather Review 135, no. 12 (2007): 4038–44. http://dx.doi.org/10.1175/2007mwr2101.1.
Full textZhang, Lin, Shu Yang Wang, and Guo Ling Niu. "Upwind Finite Element Method for Solving Radiative Heat Transfer in Graded Index Media." Advanced Materials Research 430-432 (January 2012): 1655–58. http://dx.doi.org/10.4028/www.scientific.net/amr.430-432.1655.
Full textSukhinov, Alexander, Alexander Chistyakov, Elena Timofeeva, Alla Nikitina, and Yulia Belova. "The Construction and Research of the Modified “Upwind Leapfrog” Difference Scheme with Improved Dispersion Properties for the Korteweg–de Vries Equation." Mathematics 10, no. 16 (2022): 2922. http://dx.doi.org/10.3390/math10162922.
Full textBaysal, Oktay. "Supercomputing of Supersonic Flows Using Upwind Relaxation and MacCormack Schemes." Journal of Fluids Engineering 110, no. 1 (1988): 62–68. http://dx.doi.org/10.1115/1.3243512.
Full textSukhinov, Alexander, Alexander Chistyakov, Inna Kuznetsova, Elena Protsenko, and Yulia Belova. "Modified Upwind Leapfrog difference scheme." Computational Mathematics and Information Technologies 1, no. 1 (2020): 56–70. http://dx.doi.org/10.23947/2587-8999-2020-1-1-56-70.
Full textZha, Ge-Cheng. "Low Diffusion Efficient Upwind Scheme." AIAA Journal 43, no. 5 (2005): 1137–40. http://dx.doi.org/10.2514/1.7726.
Full textVuolo, Maria Raffaella, Laurent Menut, and Hélène Chepfer. "Impact of Transport Schemes on Modeled Dust Concentrations." Journal of Atmospheric and Oceanic Technology 26, no. 6 (2009): 1135–43. http://dx.doi.org/10.1175/2008jtecha1197.1.
Full textWu, Pan, Fei Chao, Dan Wu, Jianqiang Shan, and Junli Gou. "Implementation and Comparison of High-Resolution Spatial Discretization Schemes for Solving Two-Fluid Seven-Equation Two-Pressure Model." Science and Technology of Nuclear Installations 2017 (2017): 1–14. http://dx.doi.org/10.1155/2017/4252975.
Full textStarikovičius, V., and R. Čiegis. "ANALYSIS OF UPWIND AND HIGH‐RESOLUTION SCHEMES FOR SOLVING CONVECTION DOMINATED PROBLEMS IN POROUS MEDIA." Mathematical Modelling and Analysis 11, no. 4 (2006): 451–74. http://dx.doi.org/10.3846/13926292.2006.9637330.
Full textHe, Shao Hua, Dong Yue Liu, and Da Li Tan. "Comparison of Various Spatial Discretization Schemes in Numerical Simulation for Ship Airwakes." Applied Mechanics and Materials 627 (September 2014): 63–68. http://dx.doi.org/10.4028/www.scientific.net/amm.627.63.
Full textKim, Won, and Kun-Yeun Han. "Development of the Upwind McCormack Scheme." Journal of Korea Water Resources Association 38, no. 9 (2005): 727–36. http://dx.doi.org/10.3741/jkwra.2005.38.9.727.
Full textFalle, S. A. E. G., S. S. Komissarov, and P. Joarder. "A multidimensional upwind scheme for magnetohydrodynamics." Monthly Notices of the Royal Astronomical Society 297, no. 1 (1998): 265–77. http://dx.doi.org/10.1046/j.1365-8711.1998.01506.x.
Full textRoos, H. G. "A second order monotone upwind scheme." Computing 36, no. 1-2 (1986): 57–67. http://dx.doi.org/10.1007/bf02238192.
Full textHwang, Yao-Hsin. "Upwind scheme for non-hyperbolic systems." Journal of Computational Physics 192, no. 2 (2003): 643–76. http://dx.doi.org/10.1016/j.jcp.2003.07.014.
Full textSukhinov, Alexander, Alexander Chistyakov, Inna Kuznetsova, Yulia Belova, and Elena Rahimbaeva. "Development and Research of a Modified Upwind Leapfrog Scheme for Solving Transport Problems." Mathematics 10, no. 19 (2022): 3564. http://dx.doi.org/10.3390/math10193564.
Full textPereira, F. F., C. R. Fragoso Jr., C. B. Uvo, W. Collischonn, and D. M. L. Motta Marques. "Assessment of numerical schemes for solving the advection–diffusion equation on unstructured grids: case study of the Guaíba River, Brazil." Nonlinear Processes in Geophysics 20, no. 6 (2013): 1113–25. http://dx.doi.org/10.5194/npg-20-1113-2013.
Full textYang, Qing. "The Upwind Finite Volume Element Method for Two-Dimensional Burgers Equation." Abstract and Applied Analysis 2013 (2013): 1–11. http://dx.doi.org/10.1155/2013/351619.
Full textYounes, Anis, Hussein Hoteit, Rainer Helmig, and Marwan Fahs. "A robust upwind mixed hybrid finite element method for transport in variably saturated porous media." Hydrology and Earth System Sciences 26, no. 20 (2022): 5227–39. http://dx.doi.org/10.5194/hess-26-5227-2022.
Full textMoshiri, Mojtaba, and Mehrdad T. Manzari. "A comparative study of explicit high-resolution schemes for compositional simulations." International Journal of Numerical Methods for Heat & Fluid Flow 29, no. 1 (2019): 94–131. http://dx.doi.org/10.1108/hff-08-2017-0333.
Full textSharma, Deepika, and Kavita Goyal. "Wavelet optimized upwind conservative method for traffic flow problems." International Journal of Modern Physics C 31, no. 06 (2020): 2050086. http://dx.doi.org/10.1142/s0129183120500862.
Full textSharif, M. A. R., and A. A. Busnaina. "Evaluation and Comparison of Bounding Techniques for Convection-Diffusion Problems." Journal of Fluids Engineering 115, no. 1 (1993): 33–40. http://dx.doi.org/10.1115/1.2910109.
Full textMomoniat, E., M. M. Rashidi, and R. S. Herbst. "Numerical Investigation of Thin Film Spreading Driven by Surfactant Using Upwind Schemes." Mathematical Problems in Engineering 2013 (2013): 1–8. http://dx.doi.org/10.1155/2013/325132.
Full textBerthon, Christophe, Christian Klingenberg, and Markus Zenk. "An all Mach number relaxation upwind scheme." SMAI journal of computational mathematics 6 (April 24, 2020): 1–31. http://dx.doi.org/10.5802/smai-jcm.60.
Full textParpia, Ijaz H., and Donna J. Michalek. "Grid-independent upwind scheme for multidimensional flow." AIAA Journal 31, no. 4 (1993): 646–51. http://dx.doi.org/10.2514/3.11598.
Full textHolstad, Astrid. "The Koren upwind scheme for variable gridsize." Applied Numerical Mathematics 37, no. 4 (2001): 459–87. http://dx.doi.org/10.1016/s0168-9274(00)00056-8.
Full textBianchini, Stefano. "BV Solutions of the Semidiscrete Upwind Scheme." Archive for Rational Mechanics and Analysis 167, no. 1 (2003): 1–81. http://dx.doi.org/10.1007/s00205-002-0237-2.
Full textBarar, Farzad, and Seyed Esmail Razavi. "Pseudo-characteristic upwind scheme for incompressible flows." Advances in Mechanical Engineering 7, no. 12 (2015): 168781401561506. http://dx.doi.org/10.1177/1687814015615066.
Full textChertock, Alina, Shaoshuai Chu, Michael Herty, Alexander Kurganov, and Mária Lukáčová-Medvid'ová. "Local characteristic decomposition based central-upwind scheme." Journal of Computational Physics 473 (January 2023): 111718. http://dx.doi.org/10.1016/j.jcp.2022.111718.
Full textCastro Diaz, Manuel Jesús, Yuanzhen Cheng, Alina Chertock, and Alexander Kurganov. "Solving Two-Mode Shallow Water Equations Using Finite Volume Methods." Communications in Computational Physics 16, no. 5 (2014): 1323–54. http://dx.doi.org/10.4208/cicp.180513.230514a.
Full textKurganov, Alexander, Yongle Liu, and Vladimir Zeitlin. "Numerical dissipation switch for two-dimensional central-upwind schemes." ESAIM: Mathematical Modelling and Numerical Analysis 55, no. 3 (2021): 713–34. http://dx.doi.org/10.1051/m2an/2021009.
Full textZheng, Quan, Xue Zheng Li, and Yu Feng Liu. "Uniform Second-Order Hybrid Schemes on Bakhvalov-Shishkin Mesh for Quasi-Linear Convection-Diffusion Problems." Advanced Materials Research 871 (December 2013): 135–40. http://dx.doi.org/10.4028/www.scientific.net/amr.871.135.
Full textAbedian, Rooholah. "High-Order Semi-Discrete Central-Upwind Schemes with Lax–Wendroff-Type Time Discretizations for Hamilton–Jacobi Equations." Computational Methods in Applied Mathematics 18, no. 4 (2018): 559–80. http://dx.doi.org/10.1515/cmam-2017-0031.
Full textLin, San-Yin, Sheng-Chang Shih, and Jen-Jiun Hu. "Dissipation Improvement of MUSCL Scheme for Computational Aeroacoustics." Journal of Mechanics 17, no. 1 (2001): 39–47. http://dx.doi.org/10.1017/s1727719100002409.
Full textZijlema, Marcel. "Physics-Capturing Discretizations for Spectral Wind-Wave Models." Fluids 6, no. 2 (2021): 52. http://dx.doi.org/10.3390/fluids6020052.
Full textFei, Tan Jeff, and Puay How Tion. "The Performance of CIP Scheme in Solving Advection Equation." International Journal on Engineering Technology and Infrastructure Development 1, no. 1 (2024): 104–10. http://dx.doi.org/10.3126/injet-indev.v1i1.67941.
Full textWu, Conghai, Sujuan Yang, and Ning Zhao. "A Fifth-Order Low-Dissipative Conservative Upwind Compact Scheme Using Centered Stencil." Advances in Applied Mathematics and Mechanics 6, no. 06 (2014): 830–48. http://dx.doi.org/10.4208/aamm.2013.m-s3.
Full textMadaliev, Murodil, Jahongir Orzimatov, Zokhidjon Abdulkhaev, Olimjon Esonov, and Mirzohid Mirzaraximov. "Several different ways to increase the accuracy of the numerical solution of the first order wave equation." BIO Web of Conferences 84 (2024): 02032. http://dx.doi.org/10.1051/bioconf/20248402032.
Full textZhang, Guiyong, Da Hui, Da Li, Li Zou, Shengchao Jiang, and Zhi Zong. "A New TVD Scheme for Gradient Smoothing Method Using Unstructured Grids." International Journal of Computational Methods 17, no. 03 (2019): 1850132. http://dx.doi.org/10.1142/s0219876218501323.
Full textSerguini, Abdelhafid, Sanae Jelti, and Abdelmajid El Hajaji. "Well-Balanced conservative central upwind scheme for solving the dam-break flow problem over erodible bed." Boletim da Sociedade Paranaense de Matemática 42 (May 22, 2024): 1–16. http://dx.doi.org/10.5269/bspm.66942.
Full textGinting, Bobby, and Ralf-Peter Mundani. "Comparison of Shallow Water Solvers: Applications for Dam-Break and Tsunami Cases with Reordering Strategy for Efficient Vectorization on Modern Hardware." Water 11, no. 4 (2019): 639. http://dx.doi.org/10.3390/w11040639.
Full text