Journal articles on the topic 'Urea assisted combustion synthesis'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Urea assisted combustion synthesis.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Sahu, Ranjan K., A. K. Ray, S. K. Das, A. J. Kailath, and L. C. Pathak. "Microwave-assisted combustion synthesis of Ni powder using urea." Journal of Materials Research 21, no. 7 (2006): 1664–73. http://dx.doi.org/10.1557/jmr.2006.0211.
Full textD., Narsimulu, Nageswara Rao B., Venkateswarlu M., and Satyanarayana N. "Synthesis and characterization of spinel LiMn2O4 nanoparticles by urea assisted combustion synthesis." Journal of Indian Chemical Society Vol. 92, May 2015 (2015): 792–95. https://doi.org/10.5281/zenodo.5704127.
Full textRai, Alok Kumar, Sungjin Kim, Jihyeon Gim, Muhammad Hilmy Alfaruqi, Vinod Mathew, and Jaekook Kim. "Electrochemical lithium storage of a ZnFe2O4/graphene nanocomposite as an anode material for rechargeable lithium ion batteries." RSC Adv. 4, no. 87 (2014): 47087–95. http://dx.doi.org/10.1039/c4ra08414d.
Full textChandel, Sakshee, Seulgi Lee, Sungjin Kim, et al. "Structural and electrochemical behavior of a NiMnO3/Mn2O3 nanocomposite as an anode for high rate and long cycle lithium ion batteries." New Journal of Chemistry 43, no. 33 (2019): 12916–22. http://dx.doi.org/10.1039/c9nj02800e.
Full textJalota, Sahil, A. Cuneyt Tas, and Sarit B. Bhaduri. "Microwave-assisted synthesis of calcium phosphate nanowhiskers." Journal of Materials Research 19, no. 6 (2004): 1876–81. http://dx.doi.org/10.1557/jmr.2004.0230.
Full textKASAPOGLU, N., A. BAYKAL, Y. KOSEOGLU, and M. TOPRAK. "Microwave-assisted combustion synthesis of CoFe2O4 with urea, and its magnetic characterization." Scripta Materialia 57, no. 5 (2007): 441–44. http://dx.doi.org/10.1016/j.scriptamat.2007.04.042.
Full textLuiz, Thaís, Fabio Nakagomi, Reny Renzetti, and Guilherme Siqueira. "Nb2O5 nanoparticles obtained by microwave assisted combustion synthesis under different conditions." Processing and Application of Ceramics 15, no. 2 (2021): 128–35. http://dx.doi.org/10.2298/pac2102128l.
Full textMishra, Girish C., Kabita Ku Satapathy, Sanjay J. Dhoble, and Rajiv S. Kher. "Urea assisted self combustion synthesis of CaAl2O4:Eu phosphor and its mechanoluminescence characterization." New J. Chem. 41, no. 5 (2017): 2193–97. http://dx.doi.org/10.1039/c6nj02514e.
Full textWEN, FENGYU. "SYNTHESIS AND ROOM TEMPERATURE FERROMAGNETIC PROPERTY OF COBALT DOPED ZINC OXIDE." Modern Physics Letters B 23, no. 14 (2009): 1799–804. http://dx.doi.org/10.1142/s021798490901996x.
Full textLu, Yani, Xiangyu Ma, Jinping Ren, Jinke Kang, and Yatao Wang. "Exploration of the Reduction Diffusion Temperature for Different Phases of Samarium–Cobalt Magnetic Particles." Molecules 30, no. 9 (2025): 1975. https://doi.org/10.3390/molecules30091975.
Full textNehru, L. C., and C. Sanjeeviraja. "Microwave-Assisted Combustion Synthesis of Nanocrystalline ZnO Powders Using Zinc Nitrate and Various Amount of Organic Fuels as Reactants: Influence of Reactant Parameters - A Status Review." Nano Hybrids 6 (February 2014): 75–110. http://dx.doi.org/10.4028/www.scientific.net/nh.6.75.
Full textBaig, Nahida, N. S. Dhoble, N. S. Kokode, and S. J. Dhoble. "Photoluminescence Properties of Eu3+ and Ce3+ Activated Calcium Chlorophosphate Via Combustion Synthesis Method." Oriental Journal of Physical Sciences 1, no. 1-2 (2016): 10–15. http://dx.doi.org/10.13005/ojps01.0102.03.
Full textFrikha, Kawthar, Simona Bennici, Jamel Bouaziz, Kamel Chaari, and Lionel Limousy. "Influence of the Fuel/Oxidant Ratio on the Elaboration of Binary Oxide Catalyst by a Microwave-Assisted Solution Combustion Method." Energies 13, no. 12 (2020): 3126. http://dx.doi.org/10.3390/en13123126.
Full textHari Mohan, Erabhoina, Varma Siddhartha, Raghavan Gopalan, Tata Narasinga Rao, and Dinesh Rangappa. "Urea and sucrose assisted combustion synthesis of LiFePO4/C nano-powder for lithium-ion battery cathode application." AIMS Materials Science 1, no. 4 (2014): 191–201. http://dx.doi.org/10.3934/matersci.2014.4.191.
Full textVedala, Subhashini, and M. Sushama. "Urea Assisted Combustion Synthesis of LiFePO4/C Nano composite Cathode Material for Lithium Ion Battery Storage System." Materials Today: Proceedings 5, no. 1 (2018): 1649–56. http://dx.doi.org/10.1016/j.matpr.2017.11.259.
Full textWatras, Adam, Marta Wujczyk, Michael Roecken, Katarzyna Kucharczyk, Krzysztof Marycz, and Rafal J. Wiglusz. "Investigation of Pyrophosphates KYP2O7Co-Doped with Lanthanide Ions Useful for Theranostics." Nanomaterials 9, no. 11 (2019): 1597. http://dx.doi.org/10.3390/nano9111597.
Full textZhao, Chenhao, Zhibiao Hu, Zehai Qiu, and Kaiyu Liu. "Urea‐assisted combustion synthesis of porous Li 1.2 Ni 0.13 Co 0.13 Mn 0.54 O 2 microspheres as high‐performance lithium‐ion battery cathodes." Micro & Nano Letters 10, no. 11 (2015): 662–65. http://dx.doi.org/10.1049/mnl.2015.0306.
Full textDhaterwal, Deepika, Mahesh Matoria, Annu Dalal, Surender Kumar, and Sonika Singh. "Synthesis and Characterization of Color Tunable Europium(III) and Terbium(III) Co-Doped LaSrAl3O7 Nanocrystalline Phosphors: A Photoluminescent Synergy." Asian Journal of Chemistry 36, no. 8 (2024): 1933–45. http://dx.doi.org/10.14233/ajchem.2024.32115.
Full textDall'Antonia, Luiz Henrique, and Luan Pereira Camargo. "(Invited) Photoelectrochemical Properties of Binary Vanadate Oxides: A Comprehensive Synthesis/Application Relationship." ECS Meeting Abstracts MA2025-01, no. 56 (2025): 2725. https://doi.org/10.1149/ma2025-01562725mtgabs.
Full textGoryachko, Alexander Ivanovich, Sergey Nikolaevich Ivanin, and Vladimir Yurievich Buzko. "Synthesis, Microstructural and Electromagnetic Characteristics of Cobalt-Zinc Ferrite." Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases 22, no. 4 (2020): 446–52. http://dx.doi.org/10.17308/kcmf.2020.22/3115.
Full textQuino, Candell Grace Paredes, Juan Paolo Bermundo, Mutsunori Uenuma, and Yukiharu Uraoka. "Performance Enhancement of Solution-Processed SixSnyO TFTs using Solution Combustion Synthesis." ECS Meeting Abstracts MA2022-02, no. 35 (2022): 1280. http://dx.doi.org/10.1149/ma2022-02351280mtgabs.
Full textYoshito, Walter Kenji, Marcos A. Scapin, Valter Ussui, Dolores Ribeiro Ricci Lazar, and José Octavio Armani Paschoal. "Combustion Synthesis of NiO/YSZ Composite." Materials Science Forum 591-593 (August 2008): 777–83. http://dx.doi.org/10.4028/www.scientific.net/msf.591-593.777.
Full textBai, J. H., and J. C. Liu. "Solution combustion synthesis and sintering behavior of porous MgAl2O4 powders." Science of Sintering 42, no. 2 (2010): 133–41. http://dx.doi.org/10.2298/sos1002133b.
Full textZhuravlev, V. D., V. G. Bamburov, A. R. Beketov та ін. "Solution combustion synthesis of α-Al2O3 using urea". Ceramics International 39, № 2 (2013): 1379–84. http://dx.doi.org/10.1016/j.ceramint.2012.07.078.
Full textRamkumar, Ramya, and Manickam Minakshi. "Fabrication of ultrathin CoMoO4 nanosheets modified with chitosan and their improved performance in energy storage device." Dalton Transactions 44, no. 13 (2015): 6158–68. http://dx.doi.org/10.1039/c5dt00622h.
Full textSadeghzade, Sorour, Rahmatollah Emadi, and Fariborz Tavangarian. "Combustion assisted synthesis of hardystonite nanopowder." Ceramics International 42, no. 13 (2016): 14656–60. http://dx.doi.org/10.1016/j.ceramint.2016.06.088.
Full textIanoş, Robert. "An efficient solution for the single-step synthesis of 4CaO·Al2O3·Fe2O3 powders." Journal of Materials Research 24, no. 1 (2009): 245–52. http://dx.doi.org/10.1557/jmr.2009.0019.
Full textNascimento, Imarally V. de S. R., Willams T. Barbosa, Raúl G. Carrodeguas, Marcus V. L. Fook, and Miguel A. Rodríguez. "Synthesis of Wollastonite Powders by Combustion Method: Role of Amount of Fuel." International Journal of Chemical Engineering 2018 (September 9, 2018): 1–8. http://dx.doi.org/10.1155/2018/6213568.
Full textZhu, Chunyu, Cheng-gong Han, and Tomohiro Akiyama. "Controlled synthesis of LiNi0.5Mn1.5O4 cathode materials with superior electrochemical performance through urea-based solution combustion synthesis." RSC Advances 5, no. 62 (2015): 49831–37. http://dx.doi.org/10.1039/c5ra06109a.
Full textAhn, Jong Bin, Dong Soo Kim, Young Kook Kim, and Jung Goo Lee. "Synthesis of AlN Particles by Microwave-Assisted Urea Route." Applied Mechanics and Materials 851 (August 2016): 191–95. http://dx.doi.org/10.4028/www.scientific.net/amm.851.191.
Full textKumar, Pawan, Devender Singh, and Harish Kumar. "A green light emissive LaSr2AlO5:Er3+ nanocrystalline material for solid state lighting: crystal phase refinement and down-conversion photoluminescence with high thermal stability." RSC Advances 14, no. 2 (2024): 755–70. http://dx.doi.org/10.1039/d3ra07175h.
Full textMonticeli, Samuel Lamarão Alves, Judes Gonçalves Dos Santos, Luciene Batista Da Silveira, Antonio Alonso, and Fernando Fabris. "Synthesis Of Mn1.3FeTi2Ow Nanocomposite By Urea Catalyzed Thermal Combustion." IOSR Journal of Applied Physics 17, no. 3 (2025): 01–10. https://doi.org/10.9790/4861-1703020110.
Full textSimmi, Dr. Verjesh Kumar Magotra, and Dr. Shaveta Thakur. "Thermochemical Analysis of Urea and Citric Acid-Fuelled Solution Combustion for Zinc-Based Nano Oxide Synthesis." International Journal of Scientific Research in Science, Engineering and Technology 12, no. 3 (2025): 1315–26. https://doi.org/10.32628/ijsrset2512177.
Full textChu, Aimin, Longqing Zhang, Rafi Ud-din, and Yuping Zhao. "Reaction Model and Mechanism of Preparing (Al2O3 + C) Precursor for Carbothermal Synthesis of AlN by a Modified Low Temperature Combustion Synthesis Method." Materials 15, no. 18 (2022): 6216. http://dx.doi.org/10.3390/ma15186216.
Full textBalakrishnan, E., M. I. Nelson, and X. D. Chen. "Microwave assisted ignition to achieve combustion synthesis." Journal of Applied Mathematics and Decision Sciences 5, no. 3 (2001): 151–64. http://dx.doi.org/10.1155/s1173912601000128.
Full textKooti, M., and A. Naghdi Sedeh. "Microwave-Assisted Combustion Synthesis of ZnO Nanoparticles." Journal of Chemistry 2013 (2013): 1–4. http://dx.doi.org/10.1155/2013/562028.
Full textYang, Yun, Kun Yang, Zhi-Ming Lin, and Jiang-Tao Li. "Mechanical-activation-assisted combustion synthesis of SiC." Materials Letters 61, no. 3 (2007): 671–76. http://dx.doi.org/10.1016/j.matlet.2006.05.032.
Full textLi, Rui, Shengyue Gu, Yimin Guo, et al. "Microstructure and Thermal Analysis Kinetics of Y2Hf2O7/Y3Al5O12 Composites Prepared by Solution Combustion Synthesis." Coatings 15, no. 4 (2025): 470. https://doi.org/10.3390/coatings15040470.
Full textDe Luca, Lidia, Andrea Porcheddu, Giampaolo Giacomelli, and Irene Murgia. "Microwave-Assisted Synthesis of N-Monosubstituted Urea Derivatives." Synlett 2010, no. 16 (2010): 2439–42. http://dx.doi.org/10.1055/s-0030-1258553.
Full textXu, Yan Qin, Sheng Wu Du, Jun Gao, Yuan Cao, Chang Guo Chen, and Xiao Hong Xian. "Flash Synthesis of Tetragonal-ZrO2 Nanostructures by Microwave-Induced Combustion Process." Advanced Materials Research 750-752 (August 2013): 228–31. http://dx.doi.org/10.4028/www.scientific.net/amr.750-752.228.
Full textLau, Khai Shenn, Zainuriah Hassan, Way Foong Lim, Hock Jin Quah, Naser Mahmoud Ahmed, and Husnen R. Abd. "Synthesis and Characterization of YAG:Ce Phosphor by Microwave Induced Combustion Synthesis with Different Fuel Sources." Solid State Phenomena 301 (March 2020): 69–76. http://dx.doi.org/10.4028/www.scientific.net/ssp.301.69.
Full textde Freitas, Normanda Lino, Elias Fagury-Neto, Hélio Lucena Lira, Lucianna Gama, Ruth Herta Goldsmith Aliaga Kiminami та Ana Cristina Figueiredo de Melo Costa. "Combustion Synthesis of α-Al2O3 Powders". Materials Science Forum 530-531 (листопад 2006): 631–36. http://dx.doi.org/10.4028/www.scientific.net/msf.530-531.631.
Full textDyartanti, Endah Retno, Tika Paramitha, Hendri Widiyandari, et al. "One-Pot Combustion Synthesis of Lithium Nickel Cobalt Aluminium Oxide Cathode Material for Lithium-Ion Battery." Materials Science Forum 1111 (December 22, 2023): 45–55. http://dx.doi.org/10.4028/p-oi1q1x.
Full textZhang, Ying, Ai Chen, Hai Rong Wang, Ze Song Li, and Ying Ping Shen. "Influence of Salt Aid on Combustion Synthesis of Nanocrystalline CeO2 Powders." Advanced Materials Research 412 (November 2011): 5–8. http://dx.doi.org/10.4028/www.scientific.net/amr.412.5.
Full textZhang, Lujun, Zhaofu Zhang, Congyi Wu, et al. "Microwave assisted synthesis of glycerol carbonate from glycerol and urea." Pure and Applied Chemistry 90, no. 1 (2018): 1–6. http://dx.doi.org/10.1515/pac-2017-0303.
Full textJiang, Guojian, Hanrui Zhuang, and Wenlan Li. "Combustion synthesis of tungsten carbides under electric fieldII. Field-activated pressure-assisted combustion synthesis." Ceramics International 30, no. 2 (2004): 191–97. http://dx.doi.org/10.1016/s0272-8842(03)00088-9.
Full textZhang, Lin, Ye Liu, Xiaowei Chen, et al. "Solution Synthesis of Co-Ni-W-Based ODS Alloy Powder." Materials 12, no. 8 (2019): 1231. http://dx.doi.org/10.3390/ma12081231.
Full textZhang, Cheng, Yi Kun Liao, and Dan Yu Jiang. "Synthesis of Ultrafine GSAG:Ce Phosphor by Solution Combustion." Key Engineering Materials 368-372 (February 2008): 386–87. http://dx.doi.org/10.4028/www.scientific.net/kem.368-372.386.
Full textLin, Chun-Nan, and Shyan-Lung Chung. "Combustion synthesis method for synthesis of aluminum nitride powder using aluminum containers (II)." Journal of Materials Research 19, no. 10 (2004): 3037–45. http://dx.doi.org/10.1557/jmr.2004.0400.
Full textGolja, Desta R., Francis B. Dejene, Megersa K. Hussen, and Jung Yong Kim. "Combustion Synthesis of Nanocrystalline Ba1.3Ca0.7SiO4 Semiconductors Using Urea as an Energy Efficient Fuel." Inorganics 11, no. 2 (2023): 48. http://dx.doi.org/10.3390/inorganics11020048.
Full text