Academic literature on the topic 'Urine specific gravity'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Urine specific gravity.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Urine specific gravity"
Flasar, Cathy. "What is urine specific gravity?" Nursing Critical Care 3, no. 6 (November 2008): 9. http://dx.doi.org/10.1097/01.ccn.0000340988.20292.ba.
Full textWATOSON, ADJ. "Urine specific gravity in practice." Australian Veterinary Journal 76, no. 6 (June 1998): 392–98. http://dx.doi.org/10.1111/j.1751-0813.1998.tb12384.x.
Full textGiasson, Janice, and Yu Chen. "A Discrepant Urine Specific Gravity." Clinical Chemistry 58, no. 4 (April 1, 2012): 797. http://dx.doi.org/10.1373/clinchem.2011.174219.
Full textFlasar, Cathy. "What is urine specific gravity?" Nursing 38, no. 7 (July 2008): 14. http://dx.doi.org/10.1097/01.nurse.0000325315.41513.a0.
Full textPurwanto, Kalis Joko, Mohammad Juffrie, and Djauhar Ismail. "Urine specific gravity as a diagnostic tool for dehydration in children." Paediatrica Indonesiana 50, no. 5 (October 30, 2010): 269. http://dx.doi.org/10.14238/pi50.5.2010.269-73.
Full textSteiner, Michael J., Alan L. Nager, and Vincent J. Wang. "Urine Specific Gravity and Other Urinary Indices." Pediatric Emergency Care 23, no. 5 (May 2007): 298–303. http://dx.doi.org/10.1097/01.pec.0000270162.76453.fa.
Full textMahara Kala, Arigayota Darwin, Dian Rachma Wijayanti, and Mohamad Syafaat. "A URINE GLUCOSE LEVELS AND URINE SPECIFIC GRAVITY IN TYPE 2 DIABETES MELLITUS PATIENTS IN BUDHI ASIH HOSPITAL." Journal of Medical Laboratory and Science 2, no. 2 (October 31, 2022): 17–24. http://dx.doi.org/10.36086/medlabscience.v2i2.1338.
Full textHaddow, J. E., G. J. Knight, G. E. Palomaki, L. M. Neveux, and B. A. Chilmonczyk. "Replacing creatinine measurements with specific gravity values to adjust urine cotinine concentrations." Clinical Chemistry 40, no. 4 (April 1, 1994): 562–64. http://dx.doi.org/10.1093/clinchem/40.4.562.
Full textKamimura, Taro, Kento Fukumitsu, Seishi Aihara, Mika Kondo, Hideaki Oka, and Atsumi Harada. "MP153THE IMPORTANCE OF URINE SPECIFIC GRAVITY MEASUREMENT IN URINE DIPSTICK TESTING." Nephrology Dialysis Transplantation 32, suppl_3 (May 1, 2017): iii484—iii485. http://dx.doi.org/10.1093/ndt/gfx164.mp153.
Full textShaikh, Nader, Margaret F. Shope, and Marcia Kurs-Lasky. "Urine Specific Gravity and the Accuracy of Urinalysis." Pediatrics 144, no. 5 (October 2, 2019): e20190467. http://dx.doi.org/10.1542/peds.2019-0467.
Full textDissertations / Theses on the topic "Urine specific gravity"
Thorpe, Brittany Ryann. "Validation of Urinary Biomarkers of Hydration Status in College Athletes." Thesis, Virginia Tech, 2018. http://hdl.handle.net/10919/81999.
Full textMaster of Science
Borden, Emily C. "The Relationship and Seasonal Changes of Hydration Measures in Collegiate Wrestlers." The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1523430813791537.
Full textYam, Elodie. "Low molecular weight synthetic colloid fluids, 6% hydroxyethyl starch 130/0.4 and 4% succinylated gelatine, interfere with refractometric tests of total protein concentration and urine specific gravity." Thesis, Yam, Elodie (2018) Low molecular weight synthetic colloid fluids, 6% hydroxyethyl starch 130/0.4 and 4% succinylated gelatine, interfere with refractometric tests of total protein concentration and urine specific gravity. Masters by Research thesis, Murdoch University, 2018. https://researchrepository.murdoch.edu.au/id/eprint/46176/.
Full textHunt, Andrew Philip. "Heat strain, hydration status, and symptoms of heat illness in surface mine workers." Thesis, Queensland University of Technology, 2011. https://eprints.qut.edu.au/44039/1/Andrew_Hunt_Thesis.pdf.
Full textCheng-ChiehTsai and 蔡政杰. "Optofluidic Device for Urine Specific Gravity Measurement." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/06398658101720682559.
Full text國立成功大學
工程科學系碩博士班
101
Recently, optical methods have been widely used for biological and chemical detection in microfluidics or lab-on-a-chip systems. In this research, we use MEMS technology to fabricate the optofluidic chip. There are two major functions in this device: (1) the measurement of refractive index and concentration and (2) the detection of urine specific gravity. By using image analysis, we design an optofluidic device to measure refractive index, concentration and urine specific gravity without expensive instruments such as laser device, CCD camera, and oscilloscope. We only use camera and computer analysis software to complete the research. In this study, we design a line pattern which is 50μm wide and observe this pattern through the refractive index of different analytes. According to difference of refractive index, the position of line pattern which we observed will change. We set the position of air as a standard position. Then, we define the difference of position between air and analytes as departure distance. We can use departure distance to identify the refractive index or urine specific gravity of analytes. For refractive index measurement, we select three chemical solutions of NaCl, LiCl and CaCl2 that have different concentrations to demonstrate the proposed optofluidic device. For urine specific gravity measurement, we detect urine of testers to measure the urine specific gravity. Due to the glucose is the major factor which increases the urine specific gravity, we mix saturated solution of glucose into urine of tester to verify the relationship between the glucose and the urine specific gravity. Compare to traditional optic device, image analysis technology reduced the cost of expensive instrument and improved the limit of refractive index measuring range. The image analysis technology can be applied to optofluidic measurement on a chip by a simple, fast and user-friendly.
Mota, Andreia Fernanda Moreira da. "The relationship between specific gravity and refractive index for cats and dogs: an equivalence study." Master's thesis, 2020. http://hdl.handle.net/10348/10766.
Full textThe concentration of urine is a frequent clinical assessment in veterinary routine practice. This laboratorial parameter is estimated by measuring the refractive index of the urine on an instrument called a refractometer. For slightly esoteric historical reasons, rather than reporting this on a scale of refractive index (the measurement actually being made), it is reported on a specific gravity scale. Whether the relationship between the measured urine refractive index reported on this SG scale and the actual specific gravity of the urine is true is largely irrelevant as long as everyone uses the same specific gravity scale as a measure of refractivity. A claim has been made, however, that the relationship between the actual urine specific gravity and the urine refractive index differs whether it is urine of a cat or a dog, which led to development of a “urine specific gravity cat scale” and a correction formula to obtain specific gravity of feline urine from human-based specific gravity scale. This work aimed to assess the underpinning relationship rationale behind the published and widely used “specific gravity cat scale” by comparing the relationship between urine specific gravity and urine refractive index in cats with the relationship between urine specific gravity and urine refractive index in dogs. The present study has been carried out on clinical cases attended at the Gortlands Veterinary Clinic (Belfast, Northern Ireland) between October and December 2019. The urine was collected under the scope of routine investigations. Urine specific gravity and refractive index were determined in 47 dogs and 42 cats from different ages, genders and breeds, using a digital density meter and an optical hand-held refractometer, respectively. The relationship between urine specific gravity and urine refractive index in dogs and cats of this study was studied by equivalence testing (paired two one-sided tests) and the difference obtained between cats and dogs was visually compared with the difference suggested in the literature. The paired two one-sided tests showed equivalence between feline and canine urine regarding the relationship between its specific gravity and refractive index (p-value < 0.01). The results also indicate that, for the same urine refractive index value, a difference between feline urine specific gravity and canine urine specific gravity of much lesser magnitude than the one suggested in the published literature. This study showed that feline urine is not more refractive than canine urine, paving the way to abandon the use of the specific gravity scale for cats and the application of the correction formula.
A concentração urinária é uma avaliação frequentemente realizada na prática clínica veterinária. Este parâmetro laboratorial é, normalmente, obtido pela medição do índice de refração da urina num instrumento denominado de refratómetro. Por razões históricas desconhecidas, ao invés de se reportar numa escala de índice de refração, essa medida é reportada numa escala de densidade urinária. Se a relação entre o índice de refração e a densidade urinária real é verdadeira, é irrelevante, desde que todos usem a mesma escala de densidade urinaria como medida da refratividade. Dado considerar-se que a relação entre a densidade urinária e o índice de refração é diferente entre cães e gatos, existe uma escala de densidade urinária para gatos e uma fórmula de correção para obter esse valor a partir dos valores obtidos na escala da densidade urinária humana. Este trabalho teve como objetivo avaliar o fundamento subjacente à utilização da escala felina de densidade urinária publicada e amplamente utilizada, comparando a relação entre a densidade urinária e o índice de refração em gatos com a relação entre a densidade urinária e o índice de refração em cães. O presente estudo foi realizado na Clínica Veterinária Gortlands (Belfast, Irlanda do Norte) entre outubro e dezembro de 2019. As amostras de urina estudadas foram recolhidas no âmbito de análises urinárias de rotina. Em 47 cães e 42 gatos, de diferentes idades, géneros e raças, foi medida a densidade urinária utilizando um medidor de densidade digital e o índice de refração da urina com um refratómetro ótico manual. A relação entre densidade urinária e índice de refração da urina nos cães e nos gatos deste estudo foi estudada através de um teste de equivalência (teste de quivalencia com dados emparelhados) e a diferença obtida entre cães e gatos foi comparada com a diferença sugerida na literatura. A análise estatística dos dados obtidos demonstrou existir uma equivalência entre a urina felina e a urina canina, no que diz respeito à relação entre a sua densidade urinária e o seu índice de refração (p < 0,01) Os resultados indicam também que, para um mesmo valor de índice de refração, a diferença entre densidade urinária felina e densidade urinária canina é muito menor do que a diferença sugerida na literatura. Este estudo permitiu verificar que a urina felina não é mais refrativa do que a urina canina, preparando o caminho para o abandono da escala específica da densidade urinária felina e da aplicação da fórmula de correção.
Júdice, Pedro Alexandre Barracha da Guerra. "Determinant factors on hydration status assessed by urine specific gravity : accuracy of technical procedures and effect of caffeine ingestion." Master's thesis, 2011. http://hdl.handle.net/10400.5/8897.
Full textUrine Specific Gravity (USG) is a recognized technique for assessing hydration status accurately. However, a number of questions still need to be addressed when using this technique, specifically the collecting procedure and the effect of caffeine ingestion. This investigation aimed: 1) to verify whether there are differences in USG values obtained from the first stream (USG1) with the second stream of urine (reference); 2) to investigate the effect of caffeine on USG values. A total of 30 healthy men aged 20-39 (72.7 ± 8.8 Kg; 1.77 ± 0.07 m) participated in a randomized crossover double-blind trial. Body composition was assessed by dual energy X-Ray absortiometry and multi-frequency bioelectrical impedance. Physical activity was estimated using motion sensors. Daily fluid intake (DFI) was assessed by dietary record. Multiple linear regression, agreement between methods, and repeated measures ANOVA were used. No significant statistical differences were found (p = 0.712) between the two procedures. USG1 explained 71% of the reference procedure. The limits of agreement varied between -0.005 and 0.005g/cm3 and no significant trend was found (r = 0.15). Differences of the procedures were not dependent on the magnitude of co-variables (p > 0.05). Regarding the caffeine effect, there was no significant change in USG values across the trial (p = 0.580), and no interaction between the randomly assigned order of treatment condition and the time (p = 0.100). No main effects of the covariates on USG values were found (p > 0.05). In conclusion, the hydration status can be accurately assessed using the first stream of urine compared to the reference procedure. These findings indicate that a moderate dose of caffeine does not alter the hydration status in adult healthy men, independently of body composition, PA level or DFI.
RESUMO : A gravidade específica da urina (GEU) é uma técnica reconhecidamente válida para avaliar o estado de hidratação. Contudo, algumas questões relativas ao procedimento de colheita e aos efeitos da ingestão de cafeína precisam de ser esclarecidas. Com este estudo pretendeu-se: 1) Verificar se existem diferenças nos valores de GEU obtidos a partir do primeiro jato (GEU1) com o segundo jato de urina (referência), 2) Investigar o efeito da cafeína nos valores de GEU. Participaram neste estudo crossover randomizado e duplamente cego, 30 homens saudáveis entre os 20-39 anos (72,7 ± 8,8 kg; 1,77 ± 0,07 m). A composição corporal foi avaliada por densitometria radiológica de dupla energia e bioimpedância eléctrica de multifrequência. A actividade física (AF) foi avaliada por sensores de movimento. A ingestão de fluidos (IF) foi avaliada por registo alimentar. Na análise estatística utilizou-se a regressão múltipla, a análise de concordância e a ANOVA por medidas repetidas. Não existiram diferenças significativas (p = 0,712) entre os procedimentos. A GEU1 explicou 71% da variação dos valores de referência. Os limites de concordância variaram entre -0.005 e 0.005g/cm3 , não evidenciando uma tendência significativa (r = 0,15). As diferenças dos procedimentos são independentes da magnitude das co-variáveis usadas (p > 0,05). Relativamente ao efeito da cafeína, não se verificaram diferenças significativas nos valores de GEU entre momentos (p = 0,580), nem interação entre a ordem do tratamento e o tempo (p = 0,100). Nenhuma das covariáveis influenciou significativamente as diferenças apresentadas na GEU (p> 0,05). Em conclusão, através da GEU, podemos avaliar o estado de hidratação com validade utilizando o primeiro jato comparativamente com o procedimento de referência. Estes resultados indicam ainda que uma dose moderada de cafeína não altera o estado de hidratação em homens adultos saudáveis independentemente da composição corporal, nível de AF ou IF.
"Sun Radiation in Moderate Environmental Conditions Does Not Affect Fluid Balance in Female Collegiate Soccer Players." Master's thesis, 2019. http://hdl.handle.net/2286/R.I.53778.
Full textDissertation/Thesis
Masters Thesis Nutrition 2019
Kennedy, Matthew joseph. "Influence of varying levels of ammonium chloride on urine pH and specific gravity, overall feed conversion, and water consumption in mature wether goats." 2008. http://hdl.handle.net/1969.1/ETD-TAMU-2641.
Full textBook chapters on the topic "Urine specific gravity"
Pape, Puja T., Victoria J. A. Sharp, and Jessica Rockafellow. "Urine Dipstick: An Approach to Glucosuria, Ketonuria, pH, Specific Gravity, Bilirubin and Urobilinogen – Undeniable Chemistry." In Urine Tests, 117–41. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-29138-9_7.
Full text"Urine Specific Gravity." In Clinical Veterinary Advisor, 970. Elsevier, 2012. http://dx.doi.org/10.1016/b978-1-4160-9979-6.00452-9.
Full textFree, Alfred H., and Helen M. Free. "Urine Volume, Density or Specific Gravity, and Osmolality." In Urinalysis in Clinical Laboratory Practice, 35–38. CRC Press, 2018. http://dx.doi.org/10.1201/9781351077460-8.
Full textDavenport, A. "Clinical investigation of renal disease." In Oxford Textbook of Medicine, 3863–84. Oxford University Press, 2010. http://dx.doi.org/10.1093/med/9780199204854.003.2104_update_006.
Full textBijsmans, Esther, Vincent Biourge, and Yann Quéau. "The effect of increasing levels of potassium chloride on urine specific gravity, urine volume, and relative supersaturation in dogs and cats." In BSAVA Congress Proceedings 2020, 437. British Small Animal Veterinary Association, 2020. http://dx.doi.org/10.22233/9781910443774.60.3.
Full textConference papers on the topic "Urine specific gravity"
Paglinawan, Arnold C., Febus Reidj G. Cruz, Leonardo D. Valiente, Jesus Paolo T. Mendoza, Arnold M. Chanliongco, Jerome B. Torres, and Rachelle Geleen S. Tungol. "Measurement of Specific Gravity, Urobilinogen, Blood, Protein and pH Level of Urine Samples Using Raspberry Pi based Portable Urine Test Strip Analyzer." In ICBET 2020: 2020 10th International Conference on Biomedical Engineering and Technology. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3397391.3397414.
Full textReports on the topic "Urine specific gravity"
Doan, Brandon, Michael Brothers, Mary Terry, Rebecca McLean, Eric Kozlowski, and Al Wile. Comparison of Wired and Wireless Bio-Electrical Impedance Fluid Status Monitoring Devices and Validation to Body Mass and Urine Specific Gravity Changes Following Mild Dehydration. Fort Belvoir, VA: Defense Technical Information Center, January 2008. http://dx.doi.org/10.21236/ada477670.
Full text