Contents
Academic literature on the topic 'Utfackningsvägg'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Utfackningsvägg.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Dissertations / Theses on the topic "Utfackningsvägg"
Sundemo, Sörensson Malin Frederic. "Utfackningsvägg av lättbetongblock i passivhus." Thesis, Jönköping University, JTH, Civil Engineering, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-12877.
Full textAbstract
This report intends through a case study to investigate if lightweight concrete is
appropriate as main material in the outer wall of a seven storey residential building.
A technical design is carried out in accordance with the definitions and requirements
for passive houses, given by FEBY’s1 “Demand specification for passive houses”.
A literature review is also carried out for a comparison between regular bolt wall and
light weight concrete wall, with a focus on the safety of moisture.
The lightweight concrete block used in the report is as a celblock produced by the
company H+H Sweden AB.
The methods used have resulted in compliance with requirements and
recommendations from authorities. Calculations of energy, noise and moisture risk
assessment has been carried out.
The work has resulted in the conclusion that the lightweight concrete itself is not
able to isolate in the extent necessary to obtain chosen U-value of 0,1 W/m2 ° C,
without getting to thick. Therefore additional insulation is needed. There are few
relevant reference objects built with only light weight concrete. A villa in Lomma,
Sweden, has been designed but is not yet built. The house has no additional
insulation and the climate screen consists only of light weight concrete and plaster.
The multi storey building designed within this report has generally large windows,
also to the north, which in passive house context is unusual. The large window areas
result in greater thermal bridges around the windows and greater losses of heat
through transmission.
As compensation a very low U- value of 0,1 W/m2 ° C was set as a prerequisite from
the start ensuring a positive energy balance. This action has proved necessary when
implemented energy balance calculation resulted in the heating demand of 42
kWh/m2 per year. Maximum allowable energy for a passive house is according to
FEBY under 50 kWh/m2 per year.
There are several advantages identified when using light weight concrete. All
problems related to moister are avoided with this completely mineral material. Light
weight concrete offers good thermal insulation by its porosity. It has heat storing
properties during the winters. The material is fireproof and free from chemicals.
Together with additional insulation a quiet and healthy indoor environment is
derived.
It has been difficult to find potential risks of using concrete in the climate screen of
a passive house. Passive house technology is relatively new, and passive house
technology with concrete is even newer. In fact, the villa in Lomma is said to be the
first in Sweden carried out in light weight concrete. A minor estimation upon the
costs of a the insulated light weight concrete wall, contra a wood bolt wall has proved
the light weight concrete wall to be twice as expensive. Perhaps the future will prove
risks that have not yet been revealed?
Larsson, Mattias. "Utfackningsvägg i fältfabrik : en studie av arbetsmiljö och enhetstider." Thesis, University of Gävle, University of Gävle, Department of Technology and Built Environment, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-4093.
Full textConstruction companies are frequently criticized for high prices and long construction time. At the same time, statistics shows that construction workers are on the sick-list for occupational injuries or casualties more than other groups at the labour market.
Skanska built a block of flats with tenant-ownerships in Gävle. The construction consists of concrete walls with in-fill walls in the front. The purpose with this degree project is to perform a risk analysis in work environment with focus on repetitive strain injuries and control the time report for in-fill walls manufactured in a field factory. The result of this project will help to make more realistic cost predictions in the future.
This degree project has been performed in cooperation with the construction company Skanska. It based on literature studies, interviews and field studies.
The result shows that the work environment is satisfactory with few exceptions and the time report is a lot higher than calculated
Strömberg, Patrik, and Marcus Pettersson. "UTFACKNINGSVÄGGAR : En jämförelse mellan platsbyggda och prefabriceradebyggmetoder." Thesis, Uppsala universitet, Byggteknik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-209947.
Full textI samband med dagens ökade konkurrens i byggbranschen sätts det press på byggentreprenörer. Effektiviseringar, material- och metodval blir allt mer viktiga för att kunna minska byggtid, reducera kostnader men även leverera en entreprenad med hög kvalitet samt med ergonomiska- och säkra utföranden. Idag används olika metoder och prefabriceringsgrader beroende på projekts olika förutsättningar. Detta examensarbete syftar till att redovisa vilka förutsättningar som är av vikt vid val av utfackningsmetod. Studien behandlar även för- och nackdelar med olika metodval samt när dessa bör användas eller undvikas. Rapporten är avgränsad till studier av platsbyggda, halvprefabricerade och helprefabricerade utfackningsväggar. Studien har gjorts i sammarbete med PEAB Bostad AB Uppsala, som tillämpar de här studerade metoderna inom företaget. Metoder för att få fram relevant och intressant information har främst gjorts i form av litteraturstudier, arbetsplatsbesök och intervjuer med nyckelpersoner i produktionen. Studien redovisar att halvprefabricerade utfackningsväggar är det bästa alternativet i dagsläget, för att kunna uppnå god kvalitet, minska kostnader och reducera byggtider. Metoden är snabb och minskar belastnings- och förslitningsskador jämfört med platsbyggnation samt att de ekonomiska riskerna är små vilket gör att en pricksäker budget kan göras före byggstart. Vid renoverings- och tilläggsarbeten samt vid mindre projekt kan platsbyggnation vara lönsamt men bör undvikas i allmänhet då arbetsmiljön och ergonomin försämras. Metoden tar även längre tid och bemanningskurvan blir ojämnare. Helprefabricerade utfackningsväggar är den snabbaste metoden men innefattar även de största riskerna. Metoden kommer att bli vanligare i framtiden i takt med säkrare utföranden och noggrannare hantering. I dagsläget är denna metod problematisk då eventuella problem kan vara omfattande.
Nilsson, Jonas, and Anton Forsberg. "UTFACKNINGSVÄGGAR : En studie i ekonomi och tid." Thesis, Uppsala universitet, Byggteknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-396004.
Full textJoneby, Annika, and Norling Sarah Jonsson. "Infästning och montering av fasadskivor : En utvärdering av lämpliga metoder." Thesis, Uppsala universitet, Byggteknik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-231197.
Full textExterior insulation finishing systems (EIFS) have been widely used in construction ofresidential buildings in recent decades. Since many of the buildings have been affectedby dampness, it is recommended to build ventilated facades instead. This type offacade is easy to create with great variety by using facade panels.This diploma work has been done at NCC in Uppsala. The aim of the work is to assistproject leaders, purchaser and site managers in the choice of attachment system forfuture projects with facade panels. The project being studied is Kvarntornen inUppsala, an eleven-storey building with a facade of aluminum panels. The project usesNCC’s standard outer wall, a curtain-wall with wooden studs. The diploma work consisted of interviews with people who work or have workedwith facade panels and their attachment, such as suppliers and people involved inprevious projects at NCC. The factors that have been in focus are material usage,work environment, and cost to find the attachment systems and working platformspossible to use at Kvarntornen. The result shows that it is most profitable to use a system that consists of horizontalprofiles attached to the studs in the walls and vertical spars attached to the profileswhere mounting of facade panels can be done. If an outer wall of concrete is usedthere are more options for attachment systems. The working platform recommendedfor the mounting of the panels is a mast climbing work platform. Where it is notpossible to use the climbing platform, a platform hanging from the roof is the onlyreasonable option to use. The conclusion of this study is a planning guide for future projects with facade panelsin combination with curtain-walls.
Granqvist, Andreas, and Jonas Hall. "Utfackningsväggar och trafikbuller - En förtätning av Albyberget." Thesis, KTH, Byggteknik och design, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-223326.
Full textAUCTORITAS Projektstyrning AB is working on obtaining contract documents for two new apartment buildings in an environment that is exposed to noise. One problem that has arisen is to find an infill wall that meets the requirements for noise and U-value, which at the same time is economically justifiable. The authors, on behalf of AUCTORITAS Projektstyrning AB, have examined 10 different infill walls with regard to noise reduction, U-value and price. The purpose of the work was to investigate the technical properties of the infill walls. The question that was addressed was the following: How does different materials affect the sound attenuation? Which infill walls can handle the noise requirements of a new construction on Albyberget? Can the problem be solved solely with the walls or does it require further action? Is it economically justifiable to choose a thicker wall with regard to u value instead of maximizing the living space? In order to answer these questions, the authors have carried out laboratory work, literature studies and also taken part in a reference object, acoustics reports, energy calculation reports and costing books/offers. An interview with a person with knowledge in the area of noise/acoustics have been completed and used as a complementary basis. The results led to a recommendation of a standard timber frame wall with a thickness of 395 mm, that met all of the project requirements and with a cost of 1 391 kr/m2 to be used in the buildings at Albyberget.
Johansson, Sofia, and Tilda Holst. "Klimatpåverkansanalys i byggskedet : Tre olika ytterväggskonstruktioner i tre olika städer." Thesis, Malmö universitet, Fakulteten för teknik och samhälle (TS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-44390.
Full textConstruction in Sweden is at a high level that has not been relevant since the Million Homes Programme in the 70s. Combining a high construction rate with Sweden's climate goal, which includes net zero greenhouse emissions by 2045, is a challenge which creates higher demands on sustainable solutions. One way to evaluate the climate impact of a building or building component is through a life cycle assessment. Therefore, the aim of this study is to, by using climate calculations in the construction phase, investigate which exterior wall construction should theoretically be used regarding climate impact and geography. The walls studied are curtain wall, and constructions including IsoTimber and hempcrete which are placed in Luleå, Stockholm and Malmö. The results show that the net emissions for the curtain wall are close to zero in all cities and varies between 4,9 and 15,7 CO2e per m2. For IsoTimber, the corresponding figures vary from -310,8 to -160,9 kg CO2e per m2, which shows an effect that could be considered positive. Climate-positive results were also shown for the construction with hempcrete: -96,1 to -58,2 kg CO2e per m2. For the curtain wall, the carbon dioxide emissions vary from 40,3 to 45,1 CO2e per m2. The construction with IsoTimber generates emissions that varies from 44,5 to 63,7 kg CO2e per m2. With hempcrete, emissions reached figures from 49,0 to 109,5 kg CO2e per m2. In summary, it was found that carbon dioxide emissions increase in all cities, between 10– 143%. The curtain wall has the lowest impact on the climate in all studied cities. However, if carbon storage is being accounted for, the construction with IsoTimber has the best figures. A conclusion that transports are important for the climate footprint can be drawn. However, it is above all the product phase that generates the highest carbon dioxide emissions.
Lönnbark, Emil. "Materialval i utfackningsväggar." Thesis, Jönköping University, JTH, Civil Engineering, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-805.
Full textThe aim of this report is to give a concise description of curtain walls, what it is and why they are used. It is also a description of six different but commonly used design technologies. By giving a detailed description of the different types and there special properties, the pros and cons will be clarified. The three most interesting alternatives were selected to be included in a test, to show the best alternative from a certain point of view.
The parameters are:
• Environment
• Cost
• Ergonomics
• Isolation against noise and fire
• Durability
These are important parameters in the planning and design phase. The report contains a summary about each parameter and what is important to pay attention to during construction work.
The test is based on these parameters and by allotting points to each wall according to properties, for each parameter a best choice can be pointed out.
The report ends up with a discussion about the result and what are the most important properties. The end result shows the points per parameter for each wall.
Barton, Jakob, and Gustav Rödjemyr. "En undersökning av prefabricerade och platsbyggda utfackningsväggar." Thesis, Örebro universitet, Institutionen för naturvetenskap och teknik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-44908.
Full textNCC – Nordic Construction Company – in Örebro has recently decided to use prefabricated infill-walls as a method of choice. This report aims to explore, compile and compare the method of prefabricating infill-walls with the method of building infill-walls on site. The comparison has been made through considering aspects such as work environment, time consummation, manufacturing and production costs. The report has been conducted upon request from NCC in order to provide an indication of which method of production that present the best alternative for future projects. Interviews and information from relevant and ongoing projects in the Örebro area constitutes the basis of this report. All references to costs and time are based upon actual time schemes and invoices collected from said projects. The work environment has been compared to the risk analysis made by responsible staff members on site, all in accordance with the Swedish Work Environment Authority’s (Arbetsmiljöverket) directives. According to this report the difference in financial terms between site build and infill-walls is not that big. By using prefabricated infill-walls the report shows that you can save a lot of time. The report has been
Skoglund, Erika, and Max Flemström. "Trä- och stålreglars påverkan av värmeflödet i utfackningsväggar." Thesis, Örebro universitet, Institutionen för naturvetenskap och teknik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-23708.
Full textConstruction of Swedish buildings today places higher demands on the heat-insulating capacity of the building envelope in the house built. This in turn places higher demands on the structures and also creates new problems. Standard solutions that previously worked well are being replaced by new, sometimes untested, solutions. The tougher demands on energy and moisture design means that the choice of substrate material is of greater importance than before when designing buildings.Here we have tried to give a realistic view of how the choice of studs can affect energy and humidity conditions of a building with curtain walls, focusing on studs in the field. The survey used reference objects projects in the form of drawings provided by the supervisor at Clarus Architects. Using these, three-dimensional calculations were made showing firstly that the choice of material can be of great importance both for the energy and moisture, and secondly, that the relationship is not necessarily simple. The importance of the choice of studs varies depending on how the wall is built. By a laboratory experiment, the correlation between slotted and unslotted outer wall studs was examined to provide greater understanding and verifying the accuracy of the calculations compared to a real wall. The last task proved difficult to achieve, but it was clear that the studs had great significance for the temperature distribution in a wall.