Journal articles on the topic 'UV photolithography'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'UV photolithography.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Guijt, Rosanne M., and Michael C. Breadmore. "Maskless photolithography using UV LEDs." Lab on a Chip 8, no. 8 (2008): 1402. http://dx.doi.org/10.1039/b800465j.
Full textCasalboni, M., L. Dominici, V. Foglietti, F. Michelotti, E. Orsini, C. Palazzesi, F. Stella, and P. Prosposito. "Bragg Grating Optical Filters by UV Nanoimprinting." Journal of Nanomaterials 2012 (2012): 1–5. http://dx.doi.org/10.1155/2012/186429.
Full textSuwandi, Dedi, Yudan Whulanza, and Jos Istiyanto. "Visible Light Maskless Photolithography for Biomachining Application." Applied Mechanics and Materials 493 (January 2014): 552–57. http://dx.doi.org/10.4028/www.scientific.net/amm.493.552.
Full textWu, Chun-Ying, Heng Hsieh, and Yung-Chun Lee. "Contact Photolithography at Sub-Micrometer Scale Using a Soft Photomask." Micromachines 10, no. 8 (August 18, 2019): 547. http://dx.doi.org/10.3390/mi10080547.
Full textCritchley, Kevin, Lixin Zhang, Hitoshi Fukushima, Masaya Ishida, Tatsuya Shimoda, Richard J. Bushby, and Stephen D. Evans. "Soft-UV Photolithography using Self-Assembled Monolayers." Journal of Physical Chemistry B 110, no. 34 (August 2006): 17167–74. http://dx.doi.org/10.1021/jp0630370.
Full textHoriuchi, S., T. Fujita, T. Hayakawa, and Y. Nakao. "Micropatterning of Metal Nanoparticles via UV Photolithography." Advanced Materials 15, no. 17 (September 3, 2003): 1449–52. http://dx.doi.org/10.1002/adma.200305270.
Full textZaki, M., Uda Hashim, Mohd Khairuddin Md Arshad, M. Nurfaiz, M. F. M. Fathil, A. H. Azman, and R. M. Ayub. "Optimization on Conventional Photolithography Process of 0.98 μm Gap Design for Micro Gap Biosensor Application." Applied Mechanics and Materials 754-755 (April 2015): 524–29. http://dx.doi.org/10.4028/www.scientific.net/amm.754-755.524.
Full textLowe, Jimmy, Carl Bartels, and Steven Holdcroft. "Synthesis and properties of a sterically encumbered poly(thienylene vinylene): poly[E-1,2-(4,4prime-dihexyl-2,2prime-dithienyl)ethylene]." Canadian Journal of Chemistry 76, no. 11 (November 1, 1998): 1524–29. http://dx.doi.org/10.1139/v98-110.
Full textRoth, S., L. Dellmann, G.-A. Racine, and N. F. de Rooij. "High aspect ratio UV photolithography for electroplated structures." Journal of Micromechanics and Microengineering 9, no. 2 (January 1, 1999): 105–8. http://dx.doi.org/10.1088/0960-1317/9/2/001.
Full textMontague, Martha F., and Craig J. Hawker. "Secondary Patterning of UV Imprint Features by Photolithography." Chemistry of Materials 19, no. 3 (February 2007): 526–34. http://dx.doi.org/10.1021/cm0622102.
Full textLamprecht, B., E. Kraker, G. Weirum, H. Ditlbacher, G. Jakopic, G. Leising, and J. R. Krenn. "Organic optoelectronic device fabrication using standard UV photolithography." physica status solidi (RRL) – Rapid Research Letters 2, no. 1 (January 2008): 16–18. http://dx.doi.org/10.1002/pssr.200701250.
Full textTam, Joyce, and Ozlem Yasar. "Multi Material 3D Scaffold Printing with Maskless Photolithography." MRS Advances 2, no. 24 (2017): 1303–8. http://dx.doi.org/10.1557/adv.2017.21.
Full textTyagi, Pawan, Edward Friebe, Beachrhell Jacques, Tobias Goulet, Stanley Travers, and Francisco J. Garcia-Moreno. "Taguchi Design of Experiment Enabling the Reduction of Spikes on the Sides of Patterned Thin Films for Tunnel Junction Fabrication." MRS Advances 2, no. 52 (2017): 3025–30. http://dx.doi.org/10.1557/adv.2017.456.
Full textLin, Hung Yi, Yong Shan Sun, Shih Liang Chen, and Mao Kuo Wei. "Microlens Array Fabrication by 3D Diffuser Lithography for Light Enhancement of Organic Light-Emitting Devices." Key Engineering Materials 625 (August 2014): 430–36. http://dx.doi.org/10.4028/www.scientific.net/kem.625.430.
Full textKaltashov, Alexander, Prabu Karthick Parameshwar, Nicholas Lin, and Christopher Moraes. "Accessible, large-area, uniform dose photolithography using a moving light source." Journal of Micromechanics and Microengineering 32, no. 2 (December 20, 2021): 027001. http://dx.doi.org/10.1088/1361-6439/ac4005.
Full textReynolds, David Eun, Olivia Lewallen, George Galanis, and Jina Ko. "A Customizable and Low-Cost Ultraviolet Exposure System for Photolithography." Micromachines 13, no. 12 (December 1, 2022): 2129. http://dx.doi.org/10.3390/mi13122129.
Full textToyama, Yoshisuke, and Hirokazu Ikeda. "13‐2: Invited Paper: Advanced Patterning Method Exceeding a Limitation of Lithography with Resolution Enhancement Technology (RET)." SID Symposium Digest of Technical Papers 54, no. 1 (June 2023): 158–61. http://dx.doi.org/10.1002/sdtp.16513.
Full textPrashad, Ramesh, and Ozlem Yasar. "Three-Dimensional Scaffold Fabrication with Inverse Photolithography." MRS Advances 2, no. 19-20 (December 15, 2016): 1071–75. http://dx.doi.org/10.1557/adv.2016.620.
Full textSEKIGUCHI, Ten, Ryo ICHIGE, Hidetaka UENO, and Takaaki SUZUKI. "Shape Evaluation of UV-PDMS Microstructures Made by Using Photolithography." Proceedings of the Conference on Information, Intelligence and Precision Equipment : IIP 2022 (2022): IIP1R1—E06. http://dx.doi.org/10.1299/jsmeiip.2022.iip1r1-e06.
Full textLiu, Junbo, Shaolin Zhou, Song Hu, Hongtao Gao, Yu He, and Yiguang Cheng. "Spectrum-Integral Talbot Effect for UV Photolithography With Extended DOF." IEEE Photonics Technology Letters 27, no. 20 (October 15, 2015): 2201–4. http://dx.doi.org/10.1109/lpt.2015.2456184.
Full textHemanth, Suhith, Thomas A. Anhøj, Claudia Caviglia, and Stephan S. Keller. "Suspended microstructures of epoxy based photoresists fabricated with UV photolithography." Microelectronic Engineering 176 (May 2017): 40–44. http://dx.doi.org/10.1016/j.mee.2017.01.026.
Full textMagklaras, Aris, Panayiotis Alefragis, Christos Gogos, Christos Valouxis, and Alexios Birbas. "A Genetic Algorithm-Enhanced Sensor Marks Selection Algorithm for Wavefront Aberration Modeling in Extreme-UV (EUV) Photolithography." Information 14, no. 8 (July 28, 2023): 428. http://dx.doi.org/10.3390/info14080428.
Full textLu, Yang, Jinbao Guo, Hao Wang, and Jie Wei. "Flexible Bistable Smectic-A Liquid Crystal Device Using Photolithography and Photoinduced Phase Separation." Advances in Condensed Matter Physics 2012 (2012): 1–9. http://dx.doi.org/10.1155/2012/843264.
Full textNaggay, Benjamin K., Kerstin Frey, Markus Schneider, Kiriaki Athanasopulu, Günter Lorenz, and Ralf Kemkemer. "Low-cost photolithography system for cell biology labs." Current Directions in Biomedical Engineering 7, no. 2 (October 1, 2021): 550–53. http://dx.doi.org/10.1515/cdbme-2021-2140.
Full textSun, Ke, Gai Wu, Kang Liang, Bin Sun, and Jian Wang. "Investigation into Photolithography Process of FPCB with 18 µm Line Pitch." Micromachines 14, no. 5 (May 10, 2023): 1020. http://dx.doi.org/10.3390/mi14051020.
Full textKang, Myeongwoo, Jae Hwan Byun, Sangcheol Na, and Noo Li Jeon. "Fabrication of functional 3D multi-level microstructures on transparent substrates by one step back-side UV photolithography." RSC Advances 7, no. 22 (2017): 13353–61. http://dx.doi.org/10.1039/c6ra28812j.
Full textGupta, Ishi, Manika Choudhury, G. Harish Gnanasambanthan, and Debashis Maji. "Optimization of Microstructure Patterning for Flexible Bioelectronics Application." International Journal of Electrical and Electronics Research 11, no. 3 (September 20, 2023): 738–42. http://dx.doi.org/10.37391/ijeer.110315.
Full textHuang, Wenhai, Taige Liu, Zhe Wang, Xiangdong Yuan, Bo Zhang, Chai Hu, Kewei Liu, Jiashuo Shi, and Xinyu Zhang. "Flexible refractive and diffractive micro-optical films shaped by fitting aspherical microprofiles with featured aperture and depth and their spatial arrangement for imaging applications." Journal of Vacuum Science & Technology B 40, no. 2 (March 2022): 022804. http://dx.doi.org/10.1116/6.0001586.
Full textLi, Bo. "Low-stress ultra-thick SU-8 UV photolithography process for MEMS." Journal of Micro/Nanolithography, MEMS, and MOEMS 4, no. 4 (October 1, 2005): 043008. http://dx.doi.org/10.1117/1.2117108.
Full textKim, Pan Kyeom, Sung-Il Chung, Tae-Gyu Ha, and Myung Yung Jeong. "The Fabrication of a Cylindrical Nano Mold Based on UV Photolithography." Science of Advanced Materials 12, no. 3 (March 1, 2020): 407–11. http://dx.doi.org/10.1166/sam.2020.3652.
Full textWhitfield, Michael D., Stuart P. Lansley, Olivier Gaudin, Robert D. McKeag, Nadeem Rizvi, and Richard B. Jackman. "Diamond photodetectors for next generation 157-nm deep-UV photolithography tools." Diamond and Related Materials 10, no. 3-7 (March 2001): 693–97. http://dx.doi.org/10.1016/s0925-9635(00)00518-5.
Full textBing, Chu Yih, Ajay Achath Mohanan, Tridib Saha, Ramakrishnan Nagasundara Ramanan, R. Parthiban, and N. Ramakrishnan. "Microfabrication of surface acoustic wave device using UV LED photolithography technique." Microelectronic Engineering 122 (June 2014): 9–12. http://dx.doi.org/10.1016/j.mee.2014.03.011.
Full textShao, Dongbing, and Shaochen Chen. "Surface plasmon assisted contact scheme nanoscale photolithography using an UV lamp." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 26, no. 1 (2008): 227. http://dx.doi.org/10.1116/1.2834688.
Full textSekiguchi, Ten, Hidetaka Ueno, Vivek Anand Menon, Ryo Ichige, Yuya Tanaka, Hiroshi Toshiyoshi, and Takaaki Suzuki. "UV-curable Polydimethylsiloxane Photolithography and Its Application to Flexible Mechanical Metamaterials." Sensors and Materials 35, no. 6 (June 27, 2023): 1995. http://dx.doi.org/10.18494/sam4351.
Full textWu, Yu, and Zihao Xiao. "The Recent Progress of Lithography Machine and the State-of-art Facilities." Highlights in Science, Engineering and Technology 5 (July 7, 2022): 155–65. http://dx.doi.org/10.54097/hset.v5i.737.
Full textKasi, Dhanesh G., Mees N. S. de Graaf, Paul A. Motreuil-Ragot, Jean-Phillipe M. S. Frimat, Michel D. Ferrari, Pasqualina M. Sarro, Massimo Mastrangeli, Arn M. J. M. van den Maagdenberg, Christine L. Mummery, and Valeria V. Orlova. "Rapid Prototyping of Organ-on-a-Chip Devices Using Maskless Photolithography." Micromachines 13, no. 1 (December 29, 2021): 49. http://dx.doi.org/10.3390/mi13010049.
Full textLiang, Banglong, Zili Wang, Cheng Qian, Yi Ren, Bo Sun, Dezhen Yang, Zhou Jing, and Jiajie Fan. "Investigation of Step-Stress Accelerated Degradation Test Strategy for Ultraviolet Light Emitting Diodes." Materials 12, no. 19 (September 25, 2019): 3119. http://dx.doi.org/10.3390/ma12193119.
Full textZhao, Yong Qiang, Yu Song Zhi, Chao Rong Li, and Xiao Bo Zhang. "Fabrication of Artificial Periodic Defects in Colloidal Photonic Crystals by Photolithography." Applied Mechanics and Materials 665 (October 2014): 99–101. http://dx.doi.org/10.4028/www.scientific.net/amm.665.99.
Full textNiu, Xi-Zhi, Richard D. Pepel, Rodrigo Paniego, Jim A. Field, Jon Chorover, Leif Abrell, A. Eduardo Sáez, and Reyes Sierra-Alvarez. "Photochemical fate of sulfonium photoacid generator cations under photolithography relevant UV irradiation." Journal of Photochemistry and Photobiology A: Chemistry 416 (July 2021): 113324. http://dx.doi.org/10.1016/j.jphotochem.2021.113324.
Full textYasar, Ozlem, and Binil Starly. "Fabrication of Lindenmayer System-Based Designed Engineered Scaffolds Using UV-Maskless Photolithography." MRS Advances 1, no. 11 (2016): 749–54. http://dx.doi.org/10.1557/adv.2016.223.
Full textThackeray, James W., George W. Orsula, Dianne Canistro, and Amanda K. Berry. "Evaluation of deep UV ANR photoresists for 248.4 nm. excimer laser photolithography." Journal of Photopolymer Science and Technology 2, no. 3 (1989): 429–43. http://dx.doi.org/10.2494/photopolymer.2.429.
Full textWang, Jili, and Zhifu Yin. "SU-8 nano-nozzle fabrication for electrohydrodynamic jet printing using UV photolithography." Materials Science in Semiconductor Processing 84 (September 2018): 144–50. http://dx.doi.org/10.1016/j.mssp.2018.05.028.
Full textYu, C., A. N. Parikh, and J. T. Groves. "Direct Patterning of Membrane-Derivatized Colloids Using In-Situ UV-Ozone Photolithography." Advanced Materials 17, no. 12 (June 17, 2005): 1477–80. http://dx.doi.org/10.1002/adma.200401586.
Full textLiu, Ze, Jinkui Chu, Ran Zhang, Chuanlong Guan, and Yuanyi Fan. "Preparation of an Integrated Polarization Navigation Sensor via a Nanoimprint Photolithography Process." Photonics 9, no. 11 (October 27, 2022): 806. http://dx.doi.org/10.3390/photonics9110806.
Full textGauri, Samla, Zurina Zainal Abidin, Mohd Firdaus Kamuri, Mohd Adzir Mahdi, and Nurul Amziah Md Yunus. "Detection ofAeromonas hydrophilaUsing Fiber Optic Microchannel Sensor." Journal of Sensors 2017 (2017): 1–10. http://dx.doi.org/10.1155/2017/8365189.
Full textGorzolnik, B., P. Mela, and M. Moeller. "Nano-structured micropatterns by combination of block copolymer self-assembly and UV photolithography." Nanotechnology 17, no. 19 (September 19, 2006): 5027–32. http://dx.doi.org/10.1088/0957-4484/17/19/042.
Full textTrinque, Brian C., Charles R. Chambers, Brian P. Osborn, Ryan P. Callahan, Geun Su Lee, Shiro Kusumoto, Daniel P. Sanders, Robert H. Grubbs, Willard E. Conley, and C. Grant Willson. "Vacuum-UV influenced design of polymers and dissolution inhibitors for next generation photolithography." Journal of Fluorine Chemistry 122, no. 1 (July 2003): 17–26. http://dx.doi.org/10.1016/s0022-1139(03)00076-9.
Full textYin, Zhifu, Bolin Lu, and Helin Zou. "A novel SU-8 nanofluidic chip fabrication technique based on traditional UV photolithography." Microsystem Technologies 23, no. 12 (February 22, 2017): 5613–19. http://dx.doi.org/10.1007/s00542-017-3331-y.
Full textMa, Jingyun, Lei Jiang, Xiaoyan Pan, Huipeng Ma, Bingcheng Lin, and Jianhua Qin. "A simple photolithography method for microfluidic device fabrication using sunlight as UV source." Microfluidics and Nanofluidics 9, no. 6 (May 21, 2010): 1247–52. http://dx.doi.org/10.1007/s10404-010-0630-3.
Full textZheng, L., T. Birr, U. Zywietz, C. Reinhardt, and B. Roth. "Feature size below 100 nm realized by UV-LED-based microscope projection photolithography." Light: Advanced Manufacturing 4 (2023): 1. http://dx.doi.org/10.37188/lam.2023.033.
Full text