Academic literature on the topic 'V(D)J recombinaison'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'V(D)J recombinaison.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "V(D)J recombinaison"
Sigaux, F. "Physiologie et pathologie de la recombinaison V(D)J." médecine/sciences 10, no. 10 (1994): 995. http://dx.doi.org/10.4267/10608/2506.
Full textKahn, A. "Les translocations t(8;14) du lymphome de Burkitt : une recombinaison V-D-J aberrante." médecine/sciences 3, no. 2 (1987): 112. http://dx.doi.org/10.4267/10608/3635.
Full textLescale, Chloé, Hélène Lenden Hasse, and Ludovic Deriano. "Paralogie et redondance : maintenir l’intégrité du génome au cours de la recombinaison V(D)J." médecine/sciences 33, no. 5 (May 2017): 474–77. http://dx.doi.org/10.1051/medsci/20173305005.
Full textWatrin, F., G. Bouvier, and P. Ferrier. "Contrôle de l'activité de recombinaison V(D)J dans les cellules lymphoïdes: un nouveau regard sur le rôle des éléments stimulateurs de la transcription." médecine/sciences 13, no. 4 (1997): 610. http://dx.doi.org/10.4267/10608/424.
Full textSekiguchi, JoAnn, and Karen Frank. "V(D)J recombination." Current Biology 9, no. 22 (November 1999): R835. http://dx.doi.org/10.1016/s0960-9822(00)80038-x.
Full textSchatz, David G. "V(D)J recombination." Immunological Reviews 200, no. 1 (August 2004): 5–11. http://dx.doi.org/10.1111/j.0105-2896.2004.00173.x.
Full textJung, David, and Frederick W. Alt. "Unraveling V(D)J Recombination." Cell 116, no. 2 (January 2004): 299–311. http://dx.doi.org/10.1016/s0092-8674(04)00039-x.
Full textTevelev, Anton, and David G. Schatz. "Intermolecular V(D)J Recombination." Journal of Biological Chemistry 275, no. 12 (March 17, 2000): 8341–48. http://dx.doi.org/10.1074/jbc.275.12.8341.
Full textWu, Gillian E. "Introduction: V(D)J recombination." Seminars in Immunology 6, no. 3 (June 1994): 123–24. http://dx.doi.org/10.1006/smim.1994.1017.
Full textSwanson, Patrick C., and Stephen Desiderio. "V(D)J Recombination Signal Recognition." Immunity 9, no. 1 (July 1998): 115–25. http://dx.doi.org/10.1016/s1074-7613(00)80593-2.
Full textDissertations / Theses on the topic "V(D)J recombinaison"
Montpellier, Bertrand. "Recombinaison V(D)J illégitime et développement de leucémies aigues lymphoblastiques T." Aix-Marseille 2, 2008. http://theses.univ-amu.fr.lama.univ-amu.fr/2008AIX22086.pdf.
Full textT-ALL is a lymphoid neoplasia that accounts for 10-15% of pediatric ALL and 25% of adult ALL. Alarmingly, and despite indisputable success achieved in treatments its incidence is increasing and its prognostic remains pejorative. Survival rate outcome depend notably on a better understanding in pathogenic mechanisms. In this context, the thesis work has been the following: 1) Based on the observation that rare chromosomal SJ keep on recombining in cis using V(D)J recombination, we hypothesized that episomal SJ (ESJ) still remain reactives and can undergo genomic reintegration. We show that mechanistically, ESJ efficiently rearrange in trans and that the cRSS, the sequences targeted in oncogenic chromosomal translocations, are good ESJ integration sites. Moreover, we demonstrate the presence of ESJ reintegration events in vivo and estimate their frequency to ~1/104-6. In conclusion, ESJ reintegration is a potential mechanism of oncogenic deregulation. 2) Conventional and illegitimate V(D)J recombination events (e. G. Translocations) are ordered during lymphocyte development. Based on our knowledge on chromosomal translocation mechanisms, we determine the kinetics of a subset of oncogenic activations acquired during the transformation process in a T-ALL patient’s leukemic cells. Moreover, we identified up to 10 independent oncogenic events in this patient, illustrating the multi-hit characteristic of T-ALL. Finally, the oncogenic event’s functional impact suggests that cMyc play an important role in the particularly aggressive features of the T-ALL developed by this patient
Maës, Jérôme. "Régulation de la recombinaison V(D)J et structure chromatinienne des gènes des immunoglobulines." Paris 6, 2001. http://www.theses.fr/2001PA066455.
Full textCorneo, Barbara. "Physiopathologie de la recombinaison v(d)j : structure et fonction des proteines rag1 et rag2." Paris 5, 2001. http://www.theses.fr/2001PA05N025.
Full textBouvier, Gaëlle. "Contrôle des recombinaisons V(D)J et de l'expression du locus TCR (Béta) : rôle de l'enhancer E(Béta) : analyse par transgénèse et recombinaison homologue." Aix-Marseille 2, 1996. http://www.theses.fr/1996AIX22085.
Full textMarcou, Quentin. "Probabilistic approaches to the adaptive immune repertoire : a data-driven approach." Thesis, Sorbonne Paris Cité, 2017. http://www.theses.fr/2017USPCB029/document.
Full textAn individual’s adaptive immune system needs to face repeated challenges of a constantly evolving environment with a virtually infinite number of threats. To achieve this task, the adaptive immune system relies on large diversity of B-cells and T-cells, each carrying a unique receptor specific to a small number of pathogens. These receptors are initially randomly built through the process of V(D)J recombination. This initial generated diversity is then narrowed down by a step of functional selection based on the receptors' folding properties and their ability to recognize self antigens. Upon recognition of a pathogen the B-cell will divide and its offsprings will undergo several rounds of successive somatic hypermutations and selection in an evolutionary process called affinity maturation. This work presents principled probabilistic approaches to infer the probability distribution underlying the recombination and somatic hypermutation processes from high throughput sequencing data using IGoR - a flexible software developed throughout the course of this PhD. IGoR has been developed as a versatile research tool and can encode a variety of models of different biological complexity to allow researchers in the field to characterize evermore precisely immune receptor repertoires. To motivate this data-driven approach we demonstrate that IGoR outperforms existing tools in accuracy and estimate the sample sizes needed for reliable repertoire characterization. Finally, using obtained model predictions, we show potential applications of these methods by demonstrating that homozygous twins share T-cells through cord blood, that the public core of the T cell repertoire is formed in the pre-natal period and finally estimate naive T cell clone lifetimes in human
Ouled, Haddou Hakim. "Exploration du locus de la chaine légère kappa des immunoglobulines : caractérisation d'une nouvelle région régulatrice et identification de phénomène particulier de recombinaison." Amiens, 2014. http://www.theses.fr/2014AMIED008.
Full textCayuela, Jean-Michel. "La recombinaison V-(D)-J : étude de l'expression des gènes RAG1 et RAG2 dans les cellules lymphoi͏̈des malignes humaines." Paris 5, 1991. http://www.theses.fr/1991PA05P177.
Full textOudinet, Chloé. "Mécanismes transcriptionnels et épigénétiques dans la régulation de l'expression du locus IgH murin au cours du développement des lymphocytes B." Thesis, Toulouse 3, 2020. http://www.theses.fr/2020TOU30106.
Full textB lymphocytes have the unique ability to produce immunoglobulins (Ig). The vast Ig diversity and exquisite specificity of Igs result from various cellular and molecular mechanisms including recombinational and mutational processes within Ig heavy and light chain loci. These loci are subjected to multiple layers of regulation during B cell development involving epigenetic and transcriptional mechanisms that orchestrate the stepwise and ordered activation of these loci. During my thesis, I was interested in two recombinational processes that take place within the Ig heavy chain locus (IgH locus) : V(D)J recombination and class switch recombination (CSR). Both processes require transcription of target sequences. This transcription, called germline transcription, plays an important role in the regulation of target sequence accessibility to the enzymes that initiate these processes. Specifically, I studied three aspects of the murine IgH locus expression regulation during early and late B cell development: 1) The role of germline transcription in the regulation of V(D)J recombination. V(D)J recombination initiates within "recombination centres" that are highly enriched in transcriptional activity, but the causal relationship between transcription and recombination remains controversial. By using a mouse model and single-cell analyses of transcription and recombination, I showed that V(D)J recombination could occur in the absence of detectable transcription within recombination centres, strongly suggesting that the two processes involve distinct mechanisms. 2) The role of DNA methylation in CSR-associated germline transcription. The precise role of this epigenetic mark in the control of germline transcription is presently unknown. I determined the methylation patterns of various IgH cis-acting elements in primary cells of different mouse lines. I showed that in B cells, the methylation patterns of most cis-elements were established and maintained independently of B cell activation or germline transcription, and that specific promoters were hypomethylated early during embryonic development, before B cell commitment, pointing to a role of DNA methylation in the epigenetic pre-marking of the locus rather than in the regulation of its expression. Molecular basis of Sµ specificity. CSR involves recombination between Sµ region, the universal switch donor, and a downstream partner S region. Numerous studies suggest that Sµ displays specific features that distinghuish it from the other S regions, but the molecular basis of this specificity is unknown. By using a mouse model in which a downstream S region was placed under the control of elements that regulate Sµ region transcription, I showed that, among the different factors involved in Sµ specificity, the proximity of a particular enhancer was important and sufficient to confer the CSR donor site function to the downstream S region
Cayuela, Jean-Michel. "Inactivation du locus MTS dans les leucémies aigues lymphoblastiques de la lignée T : implication de la recombinaison V-(D)-J." Paris 7, 1999. http://www.theses.fr/1999PA077257.
Full textTouvrey, Cédric. "Analyse de la recombinaison des gènes TCRAD : réarrangements radio-induits et structure des jonctions signal." Phd thesis, Université Joseph Fourier (Grenoble), 2005. http://tel.archives-ouvertes.fr/tel-00175283.
Full textLa différenciation radio-induite des thymocytes immatures s'accompagne du réarrangement de novo des gènes TCRA. L'étude des jonctions signal (JS) formées lors du réarrangement des gènes TCRA ne montre pas de différences de structure entre les JS de souris sauvages ou les JS formées suite à l'irradiation. Le réarrangement TCRA radio-induit est donc probablement l'œuvre de la machinerie de recombinaison traditionnelle. Contrairement au modèles actuels de recombinaison V(D)J les JS de souris sauvages analysées présentent des modifications, quels que soient les gènes réarrangés. Nous avons pu montrer une influence de plusieurs protéines impliquées dans la réparation de l'ADN et le maintient de la stabilité du génome sur la structure des JS. Nous proposons que ces modifications ne sont pas le résultat d'un processus de recombinaison aberrant mais constituent une propriété intrinsèque de la recombinaison.
Nos travaux permettent donc une meilleure compréhension des mécanismes moléculaires de la recombinaison V(D)J.
Books on the topic "V(D)J recombinaison"
Ferrier, Pierre, ed. V(D)J Recombination. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-1-4419-0296-2.
Full textSollbach, Astrid Elisabeth. Inversions produced during V(D)J recombination at IgH, the immunoglobulin heavy chain locus. Ottawa: National Library of Canada, 1994.
Find full textCome tele di ragno sgualcite: D.-V. Denon e J.-F. Champollion nell'Officina dei papiri ercolanesi. Napoli: Eurocomp 2000, 2002.
Find full textVesprini, Danny. Illegitimate V(D)J rearrangement in gcs-irradiation induced T cell lymphoma in newborn scid mice. Ottawa: National Library of Canada = Bibliothèque nationale du Canada, 1999.
Find full textWebber, Travis David. Characterization of Ig loci and V(D)J recombination activity in a population of Abelson murine leukemia virus-transformed pre-B cells derived from embryonic stem cells in vitro. Ottawa: National Library of Canada, 2002.
Find full textRights, European Court of Human. Affaires/Cases of A-Macaluso, B-Manunza, c-Gilberti, D-Nonnis, E-Trotto, F-Cattivera, G-Seri, H-Gori, I-Casadio, J-Testa, K-Covitti, L-Zonetti, M-Simonetti, N-Dal Sasso: Italie/v. Italy : arrêts du 3 Décembre 1991/judgments of 3 December 1991. Strasbourg: Greffe de la Cour, Conseil de l'Europe, 1992.
Find full textNominations before the Senate Armed Services Committee, first session, 113th Congress: Hearings before the Committee on Armed Services, United States Senate, One Hundred Thirteenth Congress, first session, on nominations of Hon. Charles T. Hagel; Gen. Lloyd J. Austin III, USA; Gen. David M. Rodriguez, USA; Hon. Alan F. Estevez; Mr. Frederick E. Vollrath; Mr. Eric K. Fanning; Gen. Philip M. Breedlove, USAF; Gen. Martin E. Dempsey, USA; Adm James A Winnefeld, Jr., USN; Hon. Stephen W. Preston; Hon. Jon T. Rymer; Ms. Susan J. Rabern; Mr. Dennis V. McGinn; Adm Cecil E.D. Haney, USN; LTG Curtis M. Scaparrotti, USA; Hon. Deborah Lee James; Hon. Jessica Garfola Wright; Mr. Frank G. Klotz; Mr. Marcel J. Lettre II; Mr. Kevin A. Ohlson; Mr. Michael D. Lumpkin; Hon. Jamie M. Morin; and Hon. Jo Ann Rooney; January 31; February 12, 14, 28; April 11; July 18, 25, 30; September 19; October 10, 2013. Washington: U.S. Government Printing Office, 2014.
Find full text1951-, Ferrier Pierre, ed. V(D)J recombination. New York, N.Y: Springer Science+Business Media, 2009.
Find full textMurre, Cornelis. Long Range Regulation of V(d)J Recombination. Elsevier Science & Technology Books, 2015.
Find full textRamsden, Dale Andrew. Recombination and repertoire: the molecular biology of V(D)J rearrangement, and how V(D)J rearrangement affects B cell development and the B cell repertoire. 1993.
Find full textBook chapters on the topic "V(D)J recombinaison"
Parks, Adam R., and Joseph E. Peters. "V(D)J Recombination." In Molecular Life Sciences, 1243–45. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4614-1531-2_170.
Full textMüschen, Markus. "V(D)J Recombination." In Encyclopedia of Cancer, 4773–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-46875-3_6171.
Full textMüschen, Markus. "V(D)J Recombination." In Encyclopedia of Cancer, 3875–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-16483-5_6171.
Full textParks, Adam R., and Joseph E. Peters. "V(D)J Recombination." In Molecular Life Sciences, 1–4. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4614-6436-5_170-1.
Full textMüschen, Markus. "V(D)J Recombination." In Encyclopedia of Cancer, 1–5. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-27841-9_6171-2.
Full textde Villartay, Jean-Pierre. "V(D)J Recombination Deficiencies." In Advances in Experimental Medicine and Biology, 46–58. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-1-4419-0296-2_4.
Full textGellert, Martin. "V(D)J recombination: mechanism and consequences." In Molecular Genetics of Recombination, 469–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-71021-9_16.
Full textTaccioli, G. E., G. Rathbun, Y. Shinkai, E. M. Oltz, H. Cheng, G. Whitmore, T. Stamato, P. Jeggo, and F. W. Alt. "Activities Involved in V(D)J Recombination." In Current Topics in Microbiology and Immunology, 107–14. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-77633-5_13.
Full textHsu, Ellen. "V(D)J Recombination: Of Mice and Sharks." In Advances in Experimental Medicine and Biology, 166–79. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-1-4419-0296-2_14.
Full textSchlissel, M., and T. Morrow. "Broken-Ended DNA and V(D)J Recombination." In Current Topics in Microbiology and Immunology, 381–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-79275-5_44.
Full textConference papers on the topic "V(D)J recombinaison"
Ru, Heng, Melissa G. Chambers, Maofu Liao, and Hao Wu. "Abstract B073: Structural basis of the 12-23 rule in V(D)J recombination." In Abstracts: CRI-CIMT-EATI-AACR Inaugural International Cancer Immunotherapy Conference: Translating Science into Survival; September 16-19, 2015; New York, NY. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/2326-6074.cricimteatiaacr15-b073.
Full text"A Novel Pipeline for V(D)J Junction Identification using RNA-Seq Paired-end Reads." In International Conference on Bioinformatics Models, Methods and Algorithms. SciTePress - Science and and Technology Publications, 2013. http://dx.doi.org/10.5220/0004247601850189.
Full textRu, Heng, Melissa G. Chambers, Tian-Min Fu, Alexander B. Tong, Maofu Liao, and Hao Wu. "Abstract B122: Molecular mechanism of V(D)J recombination from synaptic RAG1-RAG2 complex structures." In Abstracts: Second CRI-CIMT-EATI-AACR International Cancer Immunotherapy Conference: Translating Science into Survival; September 25-28, 2016; New York, NY. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/2326-6066.imm2016-b122.
Full textLee, Cheng-Sheng, Jiazhi Hu, and Frederick W. Alt. "Abstract B171: Elucidating the mechanism of RAG tracking and its impacts on V(D)J recombination." In Abstracts: Fourth CRI-CIMT-EATI-AACR International Cancer Immunotherapy Conference: Translating Science into Survival; September 30 - October 3, 2018; New York, NY. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/2326-6074.cricimteatiaacr18-b171.
Full textBa, Zhaoqing, Jiazhi Hu, Zhou Du, Sherry G. Lin, Duane R. Wesemann, and Frederick W. Alt. "Abstract A033: Mechanisms that mediate intralocus and interlocus regulation of V(D)J recombination at immunoglobulin light chain loci." In Abstracts: Second CRI-CIMT-EATI-AACR International Cancer Immunotherapy Conference: Translating Science into Survival; September 25-28, 2016; New York, NY. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/2326-6066.imm2016-a033.
Full textBa, Zhaoqing, Suvi Jain, Jiazhi Hu, and Frederick Alt. "Abstract B099: Elucidating the mechanisms that underpin RAG chromatin scanning in V(D)J recombination at antigen receptor gene loci." In Abstracts: Fourth CRI-CIMT-EATI-AACR International Cancer Immunotherapy Conference: Translating Science into Survival; September 30 - October 3, 2018; New York, NY. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/2326-6074.cricimteatiaacr18-b099.
Full textPanta Pazos, Rube´n. "Finding the Minimun of the Quadratic Functional in Variational Approach in Transport Theory Problems." In 16th International Conference on Nuclear Engineering. ASMEDC, 2008. http://dx.doi.org/10.1115/icone16-48479.
Full textWang, Fei, Qing Zhou, and Cheng-chi Chao. "Abstract 1538: Analysis of the paired TCRα- and β-V(D)J full-length chains of single-cell sequence from human naïve and antigen-experienced T cells." In Proceedings: AACR Annual Meeting 2018; April 14-18, 2018; Chicago, IL. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.am2018-1538.
Full textOhmori, K., H. Chiba, T. Kurosawa, M. Okunishi, K. Ueda, and Y. Sato. "Line shapes in the far wings of Hg3P1-1S0 resonance line broadened due to the chemical reactions: Hg∗(3P1)+H2, D2→HgH(X2Σ+,v,j)+H, D." In Proceedings of the 12th International conference on spectral line shapes. AIP, 1995. http://dx.doi.org/10.1063/1.47466.
Full textEnglert, Berthold-Georg, and Kimball A. Milton. "Speeches by V. F. Weisskopf, J. H. Van Vleck, I. I. Rabi, M. Hamermesh, B. T. Feld, R. P. Feynman, and D. Saxon, given in honor of Julian Schwinger at his 60th birthday." In Julian Schwinger Centennial Conference. WORLD SCIENTIFIC, 2019. http://dx.doi.org/10.1142/9789811213144_0019.
Full textReports on the topic "V(D)J recombinaison"
Grant, Stephen G. Increased Illegitimate V(D)J Recombination as a Possible Marker for Breast Cancer Predisposition. Fort Belvoir, VA: Defense Technical Information Center, March 2003. http://dx.doi.org/10.21236/ada423210.
Full text