To see the other types of publications on this topic, follow the link: V(D)J recombinaison.

Journal articles on the topic 'V(D)J recombinaison'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'V(D)J recombinaison.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Sigaux, F. "Physiologie et pathologie de la recombinaison V(D)J." médecine/sciences 10, no. 10 (1994): 995. http://dx.doi.org/10.4267/10608/2506.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kahn, A. "Les translocations t(8;14) du lymphome de Burkitt : une recombinaison V-D-J aberrante." médecine/sciences 3, no. 2 (1987): 112. http://dx.doi.org/10.4267/10608/3635.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lescale, Chloé, Hélène Lenden Hasse, and Ludovic Deriano. "Paralogie et redondance : maintenir l’intégrité du génome au cours de la recombinaison V(D)J." médecine/sciences 33, no. 5 (May 2017): 474–77. http://dx.doi.org/10.1051/medsci/20173305005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Watrin, F., G. Bouvier, and P. Ferrier. "Contrôle de l'activité de recombinaison V(D)J dans les cellules lymphoïdes: un nouveau regard sur le rôle des éléments stimulateurs de la transcription." médecine/sciences 13, no. 4 (1997): 610. http://dx.doi.org/10.4267/10608/424.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sekiguchi, JoAnn, and Karen Frank. "V(D)J recombination." Current Biology 9, no. 22 (November 1999): R835. http://dx.doi.org/10.1016/s0960-9822(00)80038-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Schatz, David G. "V(D)J recombination." Immunological Reviews 200, no. 1 (August 2004): 5–11. http://dx.doi.org/10.1111/j.0105-2896.2004.00173.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Jung, David, and Frederick W. Alt. "Unraveling V(D)J Recombination." Cell 116, no. 2 (January 2004): 299–311. http://dx.doi.org/10.1016/s0092-8674(04)00039-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Tevelev, Anton, and David G. Schatz. "Intermolecular V(D)J Recombination." Journal of Biological Chemistry 275, no. 12 (March 17, 2000): 8341–48. http://dx.doi.org/10.1074/jbc.275.12.8341.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wu, Gillian E. "Introduction: V(D)J recombination." Seminars in Immunology 6, no. 3 (June 1994): 123–24. http://dx.doi.org/10.1006/smim.1994.1017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Swanson, Patrick C., and Stephen Desiderio. "V(D)J Recombination Signal Recognition." Immunity 9, no. 1 (July 1998): 115–25. http://dx.doi.org/10.1016/s1074-7613(00)80593-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Schatz, David G., and David Baltimore. "Uncovering the V(D)J recombinase." Cell 116 (January 2004): S103—S108. http://dx.doi.org/10.1016/s0092-8674(04)00042-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Oettinger, Marjorie A. "Cutting apart V(D)J recombination." Current Opinion in Genetics & Development 6, no. 2 (April 1996): 141–45. http://dx.doi.org/10.1016/s0959-437x(96)80042-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Bogue, Molly, and David B. Roth. "Mechanism of V(D)J recombination." Current Opinion in Immunology 8, no. 2 (April 1996): 175–80. http://dx.doi.org/10.1016/s0952-7915(96)80055-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Krangel, Michael S. "V(D)j Recombination Becomes Accessible." Journal of Experimental Medicine 193, no. 7 (April 2, 2001): F27—F30. http://dx.doi.org/10.1084/jem.193.7.f27.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Ramsden, Dale A., Tanya T. Paull, and Martin Gellert. "Cell-free V(D)J recombination." Nature 388, no. 6641 (July 1997): 488–91. http://dx.doi.org/10.1038/41351.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Roth, David B. "Restraining the V(D)J recombinase." Nature Reviews Immunology 3, no. 8 (August 2003): 656–66. http://dx.doi.org/10.1038/nri1152.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Spicuglia, Salvatore, Don Marc Franchini, and Pierre Ferrier. "Regulation of V(D)J recombination." Current Opinion in Immunology 18, no. 2 (April 2006): 158–63. http://dx.doi.org/10.1016/j.coi.2006.01.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Schatz, David G. "V(D)J recombination movesin vitro." Seminars in Immunology 9, no. 3 (June 1997): 149–59. http://dx.doi.org/10.1006/smim.1997.0068.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Feeney, Ann. "Epigenetic regulation of V(D)J recombination." Seminars in Immunology 22, no. 6 (December 2010): 311–12. http://dx.doi.org/10.1016/j.smim.2010.09.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Lewis, Susanna M., and Gillian E. Wu. "The Origins of V(D)J Recombination." Cell 88, no. 2 (January 1997): 159–62. http://dx.doi.org/10.1016/s0092-8674(00)81833-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Johnson, Kristen, Julie Chaumeil, and Jane A. Skok. "Epigenetic regulation of V(D)J recombination." Essays in Biochemistry 48 (September 20, 2010): 221–43. http://dx.doi.org/10.1042/bse0480221.

Full text
Abstract:
Chromosome breaks are dangerous business, carrying the risk of loss of genetic information or, even worse, misrepair of the break, leading to outcomes such as dicentric chromosomes or oncogenic translocations. Yet V(D)J recombination, a process that breaks, rearranges and repairs chromosomes, is crucial to the development of the adaptive immune system, for it gives B- and T-cells the capacity to generate a virtually unlimited repertoire of antigen receptor proteins to combat an equally vast array of antigens. To minimize the risks inherent in chromosomal breakage, V(D)J recombination is carefully orchestrated at multiple levels, ranging from DNA sequence requirements all the way up to chromatin conformation and nuclear architecture. In the present chapter we introduce various regulatory controls, with an emphasis on epigenetic mechanisms and recent work that has begun to elucidate their interdependence.
APA, Harvard, Vancouver, ISO, and other styles
22

de Villartay, J. P., F. Rieux-Laucat, and A. Fischer. "Around the V(D)J recombinase machinery." Research in Immunology 145, no. 2 (January 1994): 151–58. http://dx.doi.org/10.1016/s0923-2494(94)80030-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Gellert, Martin. "Molecular Analysis of V(D)J Recombination." Annual Review of Genetics 26, no. 1 (December 1992): 425–46. http://dx.doi.org/10.1146/annurev.ge.26.120192.002233.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

HUYE, L. E., J. O. HAN, and D. B. ROTH. "What Prevents Intermolecular V(D)J Recombination?" Cold Spring Harbor Symposia on Quantitative Biology 64 (January 1, 1999): 191–96. http://dx.doi.org/10.1101/sqb.1999.64.191.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

de Villartay, Jean-Pierre. "Congenital defects in V(D)J recombination." British Medical Bulletin 114, no. 1 (May 17, 2015): 157–67. http://dx.doi.org/10.1093/bmb/ldv020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

OKA, C. "V(D)J recombination of immunoglobulin genes." Advances in Biophysics 31 (1995): 163–80. http://dx.doi.org/10.1016/0065-227x(95)99390-b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Schatz, David G., and Patrick C. Swanson. "V(D)J Recombination: Mechanisms of Initiation." Annual Review of Genetics 45, no. 1 (December 15, 2011): 167–202. http://dx.doi.org/10.1146/annurev-genet-110410-132552.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Lieber, Michael R. "The Polymerases for V(D)J Recombination." Immunity 25, no. 1 (July 2006): 7–9. http://dx.doi.org/10.1016/j.immuni.2006.07.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Gellert, Martin. "V(D)J recombination gets a break." Trends in Genetics 8, no. 12 (December 1992): 408–12. http://dx.doi.org/10.1016/0168-9525(92)90322-u.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Shimazaki, Noriko, and Michael R. Lieber. "Histone methylation and V(D)J recombination." International Journal of Hematology 100, no. 3 (July 25, 2014): 230–37. http://dx.doi.org/10.1007/s12185-014-1637-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Bichlmeier, H. "Aspekte baltistischer Forschung. Hrsg. v. J. D. RANGE." Kratylos 49, no. 1 (2004): 204–7. http://dx.doi.org/10.29091/kratylos/2004/1/44.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Ciubotaru, Mihai, Leon M. Ptaszek, Gary A. Baker, Sheila N. Baker, Frank V. Bright, and David G. Schatz. "RAG1-DNA Binding in V(D)J Recombination." Journal of Biological Chemistry 278, no. 8 (December 17, 2002): 5584–96. http://dx.doi.org/10.1074/jbc.m209758200.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Agard, Emily A., and Susanna M. Lewis. "Postcleavage Sequence Specificity in V(D)J Recombination." Molecular and Cellular Biology 20, no. 14 (July 15, 2000): 5032–40. http://dx.doi.org/10.1128/mcb.20.14.5032-5040.2000.

Full text
Abstract:
ABSTRACT Unintended DNA rearrangements in a differentiating lymphocyte can have severe, oncogenic consequences, but the mechanisms for avoiding pathogenic outcomes in V(D)J recombination are not well understood. The first level at which fidelity is instituted is in discrimination by the recombination proteins between authentic and inauthentic recombination signal sequences. Nevertheless, this discrimination is not absolute and cannot fully eliminate targeting errors. To learn more about the basis of specificity during V(D)J recombination, we have investigated whether it is possible for the recombination machinery to detect an inaccurately targeted sequence subsequent to cleavage. These studies indicate that even postcleavage steps in V(D)J recombination are sequence specific and that noncanonical sequences will not efficiently support the resolution of recombination intermediates in vivo. Accordingly, interventions after a mistargeting event conceivably occur at a late stage in the joining process and the likelihood may well be crucial to enforcing fidelity during antigen receptor gene rearrangement.
APA, Harvard, Vancouver, ISO, and other styles
34

Lee, Gregory S., Matthew B. Neiditch, Richard R. Sinden, and David B. Roth. "Targeted Transposition by the V(D)J Recombinase." Molecular and Cellular Biology 22, no. 7 (April 1, 2002): 2068–77. http://dx.doi.org/10.1128/mcb.22.7.2068-2077.2002.

Full text
Abstract:
ABSTRACT Cleavage by the V(D)J recombinase at a pair of recombination signal sequences creates two coding ends and two signal ends. The RAG proteins can integrate these signal ends, without sequence specificity, into an unrelated target DNA molecule. Here we demonstrate that such transposition events are greatly stimulated by—and specifically targeted to—hairpins and other distorted DNA structures. The mechanism of target selection by the RAG proteins thus appears to involve recognition of distorted DNA. These data also suggest a novel mechanism for the formation of alternative recombination products termed hybrid joints, in which a signal end is joined to a hairpin coding end. We suggest that hybrid joints may arise by transposition in vivo and propose a new model to account for some recurrent chromosome translocations found in human lymphomas. According to this model, transposition can join antigen receptor loci to partner sites that lack recombination signal sequence elements but bear particular structural features. The RAG proteins are capable of mediating all necessary breakage and joining events on both partner chromosomes; thus, the V(D)J recombinase may be far more culpable for oncogenic translocations than has been suspected.
APA, Harvard, Vancouver, ISO, and other styles
35

Cherry, S. R., and D. Baltimore. "Chromatin remodeling directly activates V(D)J recombination." Proceedings of the National Academy of Sciences 96, no. 19 (September 14, 1999): 10788–93. http://dx.doi.org/10.1073/pnas.96.19.10788.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Yeo, Tiong Chia, Dong Xia, Samar Hassouneh, Xuexian O. Yang, Daniel E. Sabath, Karl Sperling, Richard A. Gatti, Patrick Concannon, and Dennis M. Willerford. "V(D)J rearrangement in Nijmegen breakage syndrome." Molecular Immunology 37, no. 18 (December 2000): 1131–39. http://dx.doi.org/10.1016/s0161-5890(01)00026-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Dyda, Fred, and Phoebe A. Rice. "A new twist on V(D)J recombination." Nature Structural & Molecular Biology 25, no. 8 (July 30, 2018): 648–49. http://dx.doi.org/10.1038/s41594-018-0107-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Bolland, Daniel J., Andrew L. Wood, Colette M. Johnston, Sam F. Bunting, Geoff Morgan, Lyubomira Chakalova, Peter J. Fraser, and Anne E. Corcoran. "Antisense intergenic transcription in V(D)J recombination." Nature Immunology 5, no. 6 (April 25, 2004): 630–37. http://dx.doi.org/10.1038/ni1068.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Oettinger, Marjorie A. "V(D)J recombination: on the cutting edge." Current Opinion in Cell Biology 11, no. 3 (June 1999): 325–29. http://dx.doi.org/10.1016/s0955-0674(99)80044-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Ramsden, Dale A., Brett D. Weed, and Yeturu V. R. Reddy. "V(D)J recombination: Born to be wild." Seminars in Cancer Biology 20, no. 4 (August 2010): 254–60. http://dx.doi.org/10.1016/j.semcancer.2010.06.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Schatz, D. G., M. A. Oettinger, and M. S. Schlissel. "V(D)J Recombination: Molecular Biology and Regulation." Annual Review of Immunology 10, no. 1 (April 1992): 359–83. http://dx.doi.org/10.1146/annurev.iy.10.040192.002043.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Gellert, Martin. "A new view of V(D)J recombination." Genes to Cells 1, no. 3 (March 1996): 269–75. http://dx.doi.org/10.1046/j.1365-2443.1996.22023.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Lewis, Susanna M., Joanne E. Hesse, Kiyoshi Mizuuchi, and Martin Gellert. "Novel strand exchanges in V(D)J recombination." Cell 55, no. 6 (December 1988): 1099–107. http://dx.doi.org/10.1016/0092-8674(88)90254-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Ferguson, Stacy E., and Craig B. Thompson. "A new break in V(D)J recombination." Current Biology 3, no. 1 (January 1993): 51–53. http://dx.doi.org/10.1016/0960-9822(93)90150-m.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Lin, Weei-Chin, and Stephen Desiderio. "V(D)J recombination and the cell cycle." Immunology Today 16, no. 6 (June 1995): 279–89. http://dx.doi.org/10.1016/0167-5699(95)80182-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Oltz, E. M., F. W. Alt, W. C. Lin, J. Chen, G. Taccioli, S. Desiderio, and G. Rathbun. "A V(D)J recombinase-inducible B-cell line: role of transcriptional enhancer elements in directing V(D)J recombination." Molecular and Cellular Biology 13, no. 10 (October 1993): 6223–30. http://dx.doi.org/10.1128/mcb.13.10.6223.

Full text
Abstract:
Rapid analysis of mechanisms that regulate V(D)J recombination has been hampered by the lack of appropriate cell systems that reproduce aspects of normal prelymphocyte physiology in which the recombinase is activated, accessible antigen receptor loci are rearranged, and rearrangement status is fixed by termination of recombinase expression. To generate such a system, we introduced heat shock-inducible V(D)J recombination-activating genes (RAG) 1 and 2 into a recombinationally inert B-cell line. Heat shock treatment of these cells rapidly induced high levels of RAG transcripts and RAG proteins that were accompanied by a parallel induction of V(D)J recombinase activity, strongly suggesting that RAG proteins have a primary role in V(D)J recombination. Within hours after induction, these cells began to rearrange chromosomally integrated V(D)J recombination substrates but only if the substrates contained an active transcriptional enhancer; substrates lacking an enhancer were not efficiently rearranged. Activities necessary to target integrated substrates for rearrangement were provided by two separate lymphoid-specific transcriptional enhancers, as well as an active nonlymphoid enhancer, unequivocally demonstrating that such elements enhance both transcription and V(D)J recombinational accessibility.
APA, Harvard, Vancouver, ISO, and other styles
47

Oltz, E. M., F. W. Alt, W. C. Lin, J. Chen, G. Taccioli, S. Desiderio, and G. Rathbun. "A V(D)J recombinase-inducible B-cell line: role of transcriptional enhancer elements in directing V(D)J recombination." Molecular and Cellular Biology 13, no. 10 (October 1993): 6223–30. http://dx.doi.org/10.1128/mcb.13.10.6223-6230.1993.

Full text
Abstract:
Rapid analysis of mechanisms that regulate V(D)J recombination has been hampered by the lack of appropriate cell systems that reproduce aspects of normal prelymphocyte physiology in which the recombinase is activated, accessible antigen receptor loci are rearranged, and rearrangement status is fixed by termination of recombinase expression. To generate such a system, we introduced heat shock-inducible V(D)J recombination-activating genes (RAG) 1 and 2 into a recombinationally inert B-cell line. Heat shock treatment of these cells rapidly induced high levels of RAG transcripts and RAG proteins that were accompanied by a parallel induction of V(D)J recombinase activity, strongly suggesting that RAG proteins have a primary role in V(D)J recombination. Within hours after induction, these cells began to rearrange chromosomally integrated V(D)J recombination substrates but only if the substrates contained an active transcriptional enhancer; substrates lacking an enhancer were not efficiently rearranged. Activities necessary to target integrated substrates for rearrangement were provided by two separate lymphoid-specific transcriptional enhancers, as well as an active nonlymphoid enhancer, unequivocally demonstrating that such elements enhance both transcription and V(D)J recombinational accessibility.
APA, Harvard, Vancouver, ISO, and other styles
48

Kienker, L. J. "Both V(D)J recombination and radioresistance require DNA-PK kinase activity, though minimal levels suffice for V(D)J recombination." Nucleic Acids Research 28, no. 14 (July 15, 2000): 2752–61. http://dx.doi.org/10.1093/nar/28.14.2752.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Sandor, Z. "Distinct requirements for Ku in N nucleotide addition at V(D)J- and non-V(D)J-generated double-strand breaks." Nucleic Acids Research 32, no. 6 (March 26, 2004): 1866–73. http://dx.doi.org/10.1093/nar/gkh502.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Aoiz, F. J., V. J. Herrero, and V. Sáez Rábanos. "Classical collision complexes in the D+H2(v=0, j=0)→HD(v’, j’)+H reaction." Journal of Chemical Physics 95, no. 10 (November 15, 1991): 7767–68. http://dx.doi.org/10.1063/1.461350.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography