Journal articles on the topic 'V2O5 Nanowires'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'V2O5 Nanowires.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Pan, Dengyu, Zhang Shuyuan, Yiqing Chen, and J. G. Hou. "Hydrothermal preparation of long nanowires of vanadium oxide." Journal of Materials Research 17, no. 8 (2002): 1981–84. http://dx.doi.org/10.1557/jmr.2002.0293.
Full textGao, Shaokang, Yuzhen Chen, Haiyan Luo, et al. "Single-Crystal Vanadium Pentoxide Nanowires." Journal of Nanoscience and Nanotechnology 8, no. 7 (2008): 3500–3503. http://dx.doi.org/10.1166/jnn.2008.137.
Full textChang, Yu Jin, Byung Hyun Kang, Gyu Tae Kim, Sung Joon Park, and Jeong Sook Ha. "Percolation network of growing V2O5 nanowires." Applied Physics Letters 84, no. 26 (2004): 5392–94. http://dx.doi.org/10.1063/1.1767284.
Full textFukui, Akito, Yuki Aoki, Keigo Matsuyama, et al. "Single-layered assembly of vanadium pentoxide nanowires on graphene for nanowire-based lithography technique." Nanotechnology 33, no. 7 (2021): 075602. http://dx.doi.org/10.1088/1361-6528/ac3615.
Full textHowari, H., and S. H. Mohamed. "Synthesis, structural and ellipsometric evaluation of V2O5 nanowires." Journal of Physics and Chemistry of Solids 74, no. 4 (2013): 630–34. http://dx.doi.org/10.1016/j.jpcs.2012.12.019.
Full textAndré, Rute, Filipe Natálio, Madalena Humanes, et al. "V2O5 Nanowires with an Intrinsic Peroxidase-Like Activity." Advanced Functional Materials 21, no. 3 (2010): 501–9. http://dx.doi.org/10.1002/adfm.201001302.
Full textLong, G., David Matatov, Acher Suissa, et al. "Hydrothermal Synthesis and Characterization of Mn-Doped VO2 Nanowires." MRS Advances 4, no. 14 (2019): 829–36. http://dx.doi.org/10.1557/adv.2019.60.
Full textWang, Qilang, Xing Liang, Bohai Liu, Yihui Song, Guohua Gao, and Xiangfan Xu. "Thermal conductivity of V2O5 nanowires and their contact thermal conductance." Nanoscale 12, no. 2 (2020): 1138–43. http://dx.doi.org/10.1039/c9nr08803b.
Full textOthonos, Andreas, Constantinos Christofides, and Matthew Zervos. "Ultrafast transient spectroscopy and photoluminescence properties of V2O5 nanowires." Applied Physics Letters 103, no. 13 (2013): 133112. http://dx.doi.org/10.1063/1.4823506.
Full textKim, Byung Hoon, Ansoon Kim, Soon-Young Oh, Sung-Soo Bae, Yong Ju Yun, and Han Young Yu. "Energy gap modulation in V2O5 nanowires by gas adsorption." Applied Physics Letters 93, no. 23 (2008): 233101. http://dx.doi.org/10.1063/1.3044403.
Full textCheng, Keng-Che, Fu-Rong Chen, and Ji-Jung Kai. "V2O5 nanowires as a functional material for electrochromic device." Solar Energy Materials and Solar Cells 90, no. 7-8 (2006): 1156–65. http://dx.doi.org/10.1016/j.solmat.2005.07.006.
Full textPan, Shanshan, Ling Chen, Yahao Li, Shuolin Han, Lin Wang, and Guangjie Shao. "Disodium citrate-assisted hydrothermal synthesis of V2O5 nanowires for high performance supercapacitors." RSC Advances 8, no. 6 (2018): 3213–17. http://dx.doi.org/10.1039/c7ra12607g.
Full textYeh, Bu-Yu, Bo-Sung Jian, Gou-Jen Wang, and Wenjea J. Tseng. "CuO/V2O5 hybrid nanowires for highly sensitive and selective H2S gas sensor." RSC Adv. 7, no. 78 (2017): 49605–12. http://dx.doi.org/10.1039/c7ra06657k.
Full textVarghese, Sunith, Charuksha Walgama, Mark Wilkins, Sadagopan Krishnan, and Kaan Kalkan. "SURFACE-CHARGE-ENABLED PHOTOLYTIC HYDROGEN GENERATION IN V2O5·H2O/Au NANOCONJUGATES." MRS Advances 1, no. 46 (2016): 3121–26. http://dx.doi.org/10.1557/adv.2016.273.
Full textMin, Mi Ra, Jae-Hoon Kim, Eun Kyu Kim, Yong-Kwan Kim, Jeong Sook Ha, and Gyu Tae Kim. "Fabrication and Characterization of a Nano-Device with V2O5 Nanowires." Journal of the Korean Physical Society 50, no. 6 (2007): 1819. http://dx.doi.org/10.3938/jkps.50.1819.
Full textXiong, Chunrong, Ali E. Aliev, Bruce Gnade, and Kenneth J. Balkus. "Fabrication of Silver Vanadium Oxide and V2O5 Nanowires for Electrochromics." ACS Nano 2, no. 2 (2008): 293–301. http://dx.doi.org/10.1021/nn700261c.
Full textHuang, Yuchun, Ahmed Mohamed Mahmoud Ibrahim, Xiaoliang Shi, et al. "Tribological Characterization of NiAl Self-Lubricating Composites Containing V2O5 Nanowires." Journal of Materials Engineering and Performance 25, no. 11 (2016): 4941–51. http://dx.doi.org/10.1007/s11665-016-2339-2.
Full textKim, Byung Hoon, Han Young Yu, Won G. Hong, et al. "Hydrogen Spillover in Pd-doped V2O5 Nanowires at Room Temperature." Chemistry - An Asian Journal 7, no. 4 (2012): 684–87. http://dx.doi.org/10.1002/asia.201100947.
Full textStrelcov, Evgheni, Joshua Cothren, Donovan Leonard, Albina Y. Borisevich, and Andrei Kolmakov. "In situ SEM study of lithium intercalation in individual V2O5 nanowires." Nanoscale 7, no. 7 (2015): 3022–27. http://dx.doi.org/10.1039/c4nr06767c.
Full textKoo, Jae Pil, Yong-Kwan Kim, and Jeong Sook Ha. "Adsorption behaviors of V2O5 nanowires on binary mixed self-assembled monolayers." Applied Surface Science 253, no. 3 (2006): 1528–33. http://dx.doi.org/10.1016/j.apsusc.2006.02.050.
Full textZhang, Kun, Na Li, Xiaoxuan Ma, et al. "Building ultrathin polyaniline encapsulated V2O5 heterogeneous nanowires and its electrochromic performance." Journal of Electroanalytical Chemistry 825 (September 2018): 16–21. http://dx.doi.org/10.1016/j.jelechem.2018.08.001.
Full textPan, Ko-Ying, and Da-Hua Wei. "Enhanced electronic and electrochemical properties of core-shelled V2O5-Pt nanowires." Applied Surface Science 427 (January 2018): 1064–70. http://dx.doi.org/10.1016/j.apsusc.2017.09.033.
Full textYan, Jian, Afriyanti Sumboja, Eugene Khoo, and Pooi See Lee. "V2O5 Loaded on SnO2 Nanowires for High-Rate Li Ion Batteries." Advanced Materials 23, no. 6 (2010): 746–50. http://dx.doi.org/10.1002/adma.201003805.
Full textDu, Bohao, Chengzhe Shen, Tianyuan Wang, and Chunwen Sun. "A flexible solid-state lithium battery with silver nanowire/lithium composite anode and V2O5 nanowires based cathode." Electrochimica Acta 439 (January 2023): 141690. http://dx.doi.org/10.1016/j.electacta.2022.141690.
Full textZhu, Hai, Xiaoling Ma, Ling Zan, and Youxiang Zhang. "Effects of V2O5 nanowires on the performances of Li2MnSiO4 as a cathode material for lithium-ion batteries." RSC Advances 5, no. 62 (2015): 50316–23. http://dx.doi.org/10.1039/c5ra07757e.
Full textHong, Won G., Jung Min Kim, Hae Jin Kim, and Byung Hoon Kim. "Exceptional electrochemical performance of two-year aged V2O5 nanowires for lithium storage." Current Applied Physics 15, no. 11 (2015): 1488–91. http://dx.doi.org/10.1016/j.cap.2015.08.018.
Full textGuo, Yi, Yin Zhang, Yun Zhang, et al. "Interwoven V2O5 nanowire/graphene nanoscroll hybrid assembled as efficient polysulfide-trapping-conversion interlayer for long-life lithium–sulfur batteries." Journal of Materials Chemistry A 6, no. 40 (2018): 19358–70. http://dx.doi.org/10.1039/c8ta06610h.
Full textDíaz-Guerra, C., and J. Piqueras. "Structural and cathodoluminescence assessment of V2O5 nanowires and nanotips grown by thermal deposition." Journal of Applied Physics 102, no. 8 (2007): 084307. http://dx.doi.org/10.1063/1.2799952.
Full textShahid, Muhammad, Imran Shakir, Seok-Jo Yang, and Dae Joon Kang. "Facile synthesis of core–shell SnO2/V2O5 nanowires and their efficient photocatalytic property." Materials Chemistry and Physics 124, no. 1 (2010): 619–22. http://dx.doi.org/10.1016/j.matchemphys.2010.07.023.
Full textWaseem, Aadil, Muhammad Ali Johar, Mostafa Afifi Hassan, et al. "Effect of crystal orientation of GaN/V2O5 core-shell nanowires on piezoelectric nanogenerators." Nano Energy 60 (June 2019): 413–23. http://dx.doi.org/10.1016/j.nanoen.2019.03.075.
Full textGuo, Chun Xian, Kuan Sun, Jianyong Ouyang, and Xianmao Lu. "Layered V2O5/PEDOT Nanowires and Ultrathin Nanobelts Fabricated with a Silk Reelinglike Process." Chemistry of Materials 27, no. 16 (2015): 5813–19. http://dx.doi.org/10.1021/acs.chemmater.5b02512.
Full textWang, Nannan, Yifu Zhang, Tao Hu, Yunfeng Zhao, and Changgong Meng. "Facile hydrothermal synthesis of ultrahigh-aspect-ratio V2O5 nanowires for high-performance supercapacitors." Current Applied Physics 15, no. 4 (2015): 493–98. http://dx.doi.org/10.1016/j.cap.2015.01.026.
Full textMai, Liqiang, Fei Dong, Xu Xu, et al. "Cucumber-Like V2O5/poly(3,4-ethylenedioxythiophene)&MnO2 Nanowires with Enhanced Electrochemical Cyclability." Nano Letters 13, no. 2 (2013): 740–45. http://dx.doi.org/10.1021/nl304434v.
Full textWang, Ruibing, Shuang Yang, Rong Deng, et al. "Enhanced gas sensing properties of V2O5 nanowires decorated with SnO2 nanoparticles to ethanol at room temperature." RSC Advances 5, no. 51 (2015): 41050–58. http://dx.doi.org/10.1039/c5ra00530b.
Full textYao, Minghai, Peng Wu, Shuang Cheng та ін. "Investigation into the energy storage behaviour of layered α-V2O5 as a pseudo-capacitive electrode using operando Raman spectroscopy and a quartz crystal microbalance". Physical Chemistry Chemical Physics 19, № 36 (2017): 24689–95. http://dx.doi.org/10.1039/c7cp04612j.
Full textSahatiya, Parikshit, Chandra Sekhar Reddy K, and Sushmee Badhulika. "Discretely distributed 1D V2O5 nanowires over 2D MoS2 nanoflakes for an enhanced broadband flexible photodetector covering the ultraviolet to near infrared region." Journal of Materials Chemistry C 5, no. 48 (2017): 12728–36. http://dx.doi.org/10.1039/c7tc05036d.
Full textRudra, Siddheswar, Arpan Kumar Nayak, Rishika Chakraborty, Pradip K. Maji, and Mukul Pradhan. "Synthesis of Au-V2O5 composite nanowires through the shape transformation of a vanadium(iii) metal complex for high-performance solid-state supercapacitors." Inorganic Chemistry Frontiers 5, no. 8 (2018): 1836–43. http://dx.doi.org/10.1039/c8qi00325d.
Full textPham-Cong, D., K. Ahn, S. W. Hong, et al. "Cathodic performance of V2O5 nanowires and reduced graphene oxide composites for lithium ion batteries." Current Applied Physics 14, no. 2 (2014): 215–21. http://dx.doi.org/10.1016/j.cap.2013.10.022.
Full textShen, Qiao, Xiaoliang Shi, Kang Yang, Jialiang Zou, Wenzheng Zhai, and Yuchun Huang. "Tribological performance of TiAl matrix composites containing silver and V2O5 nanowires at elevated temperatures." RSC Advances 6, no. 61 (2016): 56294–302. http://dx.doi.org/10.1039/c6ra06232f.
Full textKo, Woo Chul, Kang Min Kim, Yong Jung Kwon, Heechae Choi, Jin Kuen Park, and Young Kyu Jeong. "ALD-assisted synthesis of V2O5 nanoislands on SnO2 nanowires for improving NO2 sensing performance." Applied Surface Science 509 (April 2020): 144821. http://dx.doi.org/10.1016/j.apsusc.2019.144821.
Full textMathur, Sanjay, and Sven Barth. "Molecule-Based Chemical Vapor Growth of Aligned SnO2 Nanowires and Branched SnO2/V2O5 Heterostructures." Small 3, no. 12 (2007): 2070–75. http://dx.doi.org/10.1002/smll.200700213.
Full textReddy, I. Neelakanta, A. Bhargav, Sharanabasava V. Ganachari, Jaesool Shim, and Cheolho Bai. "Charge kinetics evaluation of Fe3O4/V2O5 nanowires under visible light for energy conversion applications." Materials Science in Semiconductor Processing 162 (August 2023): 107533. http://dx.doi.org/10.1016/j.mssp.2023.107533.
Full textCheng, Fangyi, and Jun Chen. "Storage of hydrogen and lithium in inorganic nanotubes and nanowires." Journal of Materials Research 21, no. 11 (2006): 2744–57. http://dx.doi.org/10.1557/jmr.2006.0337.
Full textXue, Zhigao, Kai Tao, and Lei Han. "Stringing metal–organic framework-derived hollow Co3S4 nanopolyhedra on V2O5 nanowires for high-performance supercapacitors." Applied Surface Science 600 (October 2022): 154076. http://dx.doi.org/10.1016/j.apsusc.2022.154076.
Full textJoseph, B., A. Iadecola, L. Maugeri, et al. "Distinct local structure of nanoparticles and nanowires of V2O5 probed by x-ray absorption spectroscopy." Applied Physics Letters 103, no. 25 (2013): 251910. http://dx.doi.org/10.1063/1.4856855.
Full textWu, Ming-Cheng, and Chi-Shen Lee. "Field emission of vertically aligned V2O5 nanowires on an ITO surface prepared with gaseous transport." Journal of Solid State Chemistry 182, no. 8 (2009): 2285–89. http://dx.doi.org/10.1016/j.jssc.2009.05.042.
Full textZhang, Ling, Qianqian Tian, Lei Lin, and Jinghong Li. "Construction of H2O2-responsive asymmetric 2D nanofluidic channels with graphene and peroxidase-mimetic V2O5 nanowires." Analytical and Bioanalytical Chemistry 411, no. 18 (2018): 4041–48. http://dx.doi.org/10.1007/s00216-018-1494-8.
Full textXie, Jianxin, Xiaodan Zhang, Huan Jiang, Sha Wang, Hong Liu, and Yuming Huang. "V2O5 nanowires as a robust and efficient peroxidase mimic at high temperature in aqueous media." RSC Advances 4, no. 50 (2014): 26046. http://dx.doi.org/10.1039/c4ra03118k.
Full textWaseem, Aadil, Muhammad Ali Johar, Mostafa Afifi Hassan, et al. "Enhanced stability of piezoelectric nanogenerator based on GaN/V2O5 core-shell nanowires with capacitive contact." Nanotechnology 31, no. 7 (2019): 075401. http://dx.doi.org/10.1088/1361-6528/ab53b8.
Full textZhai, Tianyou, Haimei Liu, Huiqiao Li, et al. "Centimeter-Long V2O5 Nanowires: From Synthesis to Field-Emission, Electrochemical, Electrical Transport, and Photoconductive Properties." Advanced Materials 22, no. 23 (2010): 2547–52. http://dx.doi.org/10.1002/adma.200903586.
Full text