Academic literature on the topic 'Vacancy defects'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Vacancy defects.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Vacancy defects"
Melikhova, Oksana, Jakub Čížek, Ivan Procházka, Tetyana E. Konstantinova, and Igor A. Yashchishyn. "Inhibition of Positronium Formation in Yttria Stabilized Zirconia Nanopowders Modified by Addition of Chromia." Materials Science Forum 733 (November 2012): 249–53. http://dx.doi.org/10.4028/www.scientific.net/msf.733.249.
Full textChoudhary, Sudhanshu, and Divya Kaushik. "Understanding the effect of vacancy defects on spin transport in CrO2–graphene–CrO2 magnetic tunnel junction." Modern Physics Letters B 30, no. 09 (April 10, 2016): 1650102. http://dx.doi.org/10.1142/s0217984916501025.
Full textZhan, Si-Qi, Hui Wan, Liang Xu, Wei-Qing Huang, Gui-Fang Huang, Jin-Ping Long, and P. Peng. "Native vacancy defects in bismuth sulfide." International Journal of Modern Physics B 28, no. 23 (July 13, 2014): 1450150. http://dx.doi.org/10.1142/s0217979214501501.
Full textUedono, Akira, Shoji Ishibashi, Nagayasu Oshima, and Ryoichi Suzuki. "Vacancy-Type Defects in GaN for Power Devices Probed by Positron Annihilation." Defect and Diffusion Forum 373 (March 2017): 183–88. http://dx.doi.org/10.4028/www.scientific.net/ddf.373.183.
Full textChu, Liu, Jiajia Shi, and Shujun Ben. "Buckling Analysis of Vacancy-Defected Graphene Sheets by the Stochastic Finite Element Method." Materials 11, no. 9 (August 27, 2018): 1545. http://dx.doi.org/10.3390/ma11091545.
Full textPRASAD, MATUKUMILLI V. D., and BAIDURYA BHATTACHARYA. "MOLECULAR DYNAMICS SIMULATIONS OF CARBON NANOTUBE-BASED OSCILLATORS HAVING TOPOLOGICAL DEFECTS." International Journal of Nanoscience 10, no. 01n02 (February 2011): 355–59. http://dx.doi.org/10.1142/s0219581x11008009.
Full textSozykin, Sergey Anatolevich, Valeriy Petrovich Beskachko, and G. P. Vyatkin. "Atomic Structure and Mechanical Properties of Defective Carbon Nanotube (7,7)." Materials Science Forum 843 (February 2016): 78–84. http://dx.doi.org/10.4028/www.scientific.net/msf.843.78.
Full textChu, Liu, Jiajia Shi, Eduardo Souza de Cursi, Xunqian Xu, Yazhou Qin, and Hongliang Xiang. "Monte Carlo-Based Finite Element Method for the Study of Randomly Distributed Vacancy Defects in Graphene Sheets." Journal of Nanomaterials 2018 (October 10, 2018): 1–12. http://dx.doi.org/10.1155/2018/3037063.
Full textNeupane, Hari Krishna, and Narayan Prasad Adhikari. "Tuning Structural, Electronic, and Magnetic Properties of C Sites Vacancy Defects in Graphene/MoS2 van der Waals Heterostructure Materials: A First-Principles Study." Advances in Condensed Matter Physics 2020 (November 28, 2020): 1–11. http://dx.doi.org/10.1155/2020/8850701.
Full textLi, Ke Jian, and Hong Xia Liu. "Electronic Structures of Vacancy Defective Chiral (6,2) SiC Nanotubes." Materials Science Forum 896 (March 2017): 3–8. http://dx.doi.org/10.4028/www.scientific.net/msf.896.3.
Full textDissertations / Theses on the topic "Vacancy defects"
Mui, Wing-ki, and 梅詠琪. "Studies of Ga vacancy related defects in GaSb." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2002. http://hub.hku.hk/bib/B31226541.
Full textMa, Shun-kit Martin. "The two gallium vacancy-related defects in undoped gallium antimonide." Click to view the E-thesis via HKUTO, 2004. http://sunzi.lib.hku.hk/hkuto/record/B31319658.
Full textMa, Shun-kit Martin, and 馬信傑. "The two gallium vacancy-related defects in undoped gallium antimonide." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2004. http://hub.hku.hk/bib/B31319658.
Full textAl-Abdulmalik, Dana A. "Evolution of vacancy-type defects in semiconductors : a positron annihilation study." Thesis, University of Bath, 2007. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.442881.
Full textCORONEL, SANCHEZ Edwin Danelli. "Optically detected magnetic resonance in nanodiamonds with single nitrogen-vacancy defects." Universidade Federal de Pernambuco, 2016. https://repositorio.ufpe.br/handle/123456789/24441.
Full textMade available in DSpace on 2018-04-23T23:42:59Z (GMT). No. of bitstreams: 1 DISSERTAÇÃO Edwin Danelle Coronel Sanches.pdf: 7893948 bytes, checksum: 06bf9f839c5aed283d85a7cffdc4f1a9 (MD5) Previous issue date: 2016-04-28
FACEPE
The control of the radiation-matter interaction, in our case of photons with quan- tum single emitters, as the nitrogen-vacancy (NV) defect in nanodiamonds, is crucial in the process of nano-devices fabrication. This is achieved taking advantage of the latest advances of the nano-optics to increase the interaction with single emitters for which ade-quate tools for precise interaction control has been developed. In this dissertation, we use a home-made inverted optical confocal microscope and coherent manipulation of spin states to study single NV defect in nanodiamonds. The NV defect in nanodiamonds presents optical properties that depend on the spin state of its optically active electrons, which makes them interesting for applications in nanomagnetometry, quantum informa- tion processing and nanobiothermometry. In particular, the negatively charged NV defect (NV-) exhibits single photon emission and long coherence times even at room tempera- ture. Furthermore, it has a paramagnetic ground state and can be optically polarized and read out, in an experimental technique known as Optically Detected Magnetic Resonance (ODMR). In this technique, the intensity of the fluorescence emitted by a nanodiamond depends on the spin configuration of the electronic ground state, from which an electronic transition is excited. In order to study these defects, nanodiamonds were deposited on a photolitographically structured antenna on a coverslip by spin coating and placed on the microscope. The microscope allows to both, the detection of the fluorescence and its exci- tation, by a CW laser emitting at 532 nm. The fluorescence emitted by the nanodiamond is centered around 650 nm with a zero phonon line at 637 nm. The collected fluores¬cence is sent to two avalanche photodiodes (APDs), that are in a configuration known as Hanbury-Brown and Twiss (HBT) interferometer. In it, we can verify whether the col- lected emission comes from an individual emitter, analyzing the second order correlation function g(2)(r): if g(2)(r) < 0.5 we have an emission from single photons generated by a single NV- defect in diamond. Working whit single emitter we could radiate a microwave field over the nanodiamond, which allows us to determine the resonance frequency for spin transitions in the ground state. At resonance one observes a drop in the fluorescence emitted by the nanodiamond. We explore the fact that the resonance frequency of the spin transition depends on the local magnetic field to measure the Zeeman effect gener- ated by the magnetic field of a permanent magnet (NdFeB). Finally, we realized coherent manipulation via an appropriate sequence of pulses of microwave and laser, observing Rabi oscillations. Thus, we can measure the inhomogeneous coherence time (T2*) given by the damping of Rabi oscillations.
O controle da interação radiação-matéria, em nosso caso de fotons com emissores quânticos individuais, como os defeitos de nitrogenio-vacancia (NV) em nanodiamantes, e crucial no processo da fabricacao de nano-dispositivos. Isto e conseguido aproveitando-se os ultimos avanços em nano-óptica para aumentar a interacao com emissores unicos, para os quais ferramentas adequadas para o controle preciso da interacao foi desenvolvido. Nesta dissertacao, descreveremos o uso de um microscopio confocal invertido e mani- pulacao coerente dos estados de spin de um defeito individual NV num nanodiamante. Os defeitos NV em nanodiamantes apresentam propriedades opticas que dependem do estado de spin dos seus eletrons opticamente ativos, o que os tornam interessantes para aplicacoes em nanomagnetometria, processamento de informaçao quantica e nanobioter- mometria. Em particular, defeitos NV negativamente carregados (NV-) exibem emissao de fótons unicos e longos tempos de coerência, mesmo a temperatura ambiente. Alem disso, tem um estado fundamental paramagnetico e o sistema pode ser opticamente pola¬rizado e lido, usando-se uma técnica experimental conhecida como Ressonância Magnetica Detectada Opticamente (ODMR). Nesta técnica, a intensidade de fluorescencia emitida pelo nanodiamante depende da configuracao de spin do estado eletrónico fundamental, a partir do qual a transicao eletrónica e excitada. Para estudar esses defeitos NV, nan- odiamantes foram depositados ao longo de uma antena, fotolitograficamente estruturada sobre um coverslip, usando spin coating e colocados sobre o microscopio. O microscopio permite a detecçao da fluorescencia do defeito e sua excitacao e feita por um laser CW emitindo em 532 nm. A fluorescencia emitida pelo nanodiamante ocorre em torno dos 650 nm com uma linha zero fonon em 637 nm. A fluo-rescencia coletada e enviada a dois foto-diodos de avalanche, que estao em configuraçao interferometrica do tipo Hanbury-Brown and Twiss (HBT). Nela, podemos garantir se a emissao coletada provem de um emissor individual, analisando a funcão de correlacão de segunda ordem (T): se g(2)(r) < 0, 5 comprovamos a emissão de fotons ónicos por um unico defeito NV- no nanodiamante. Trabalhamos entãao com um unico defeito NV- como emissor. Irradiando um campo de microondas sobre o nanodiamante, nos permite determinar a frequência de ressonância com a transicao de spin no estado fundamental, evidenciado por uma diminuto da flu- orescencia emitida pelo nanodiamante. Usamos o fato de que a frequencia de ressonancia da transiçao do spin depende do campo magnetico local para observar o efeito Zeeman gerado pelo campo magnetico de um ima (Nd-Fe-B). Finalmente, realizamos manipulacao coerente atraves de uma adequada sequencia de pulsos de microondas e laser, observando oscilações de Rabi. Assim, pudemos medir o tempo de coerência inhomogeneo (T2*) dado pelo amortecimento das oscilacões de Rabi.
Chen, Haiyan. "Probing Defects and Electronic Processes on Gadolinia-doped Ceria Surfaces Using Electron Stimulated Desorption." Diss., Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/10427.
Full textPersson, Gulda Maria Christina Margareta. "Defects in Hard-Sphere Colloidal Crystals." Thesis, Harvard University, 2012. http://dissertations.umi.com/gsas.harvard:10695.
Full textEngineering and Applied Sciences
Fuchs, Franziska [Verfasser], and Vladimir [Gutachter] Dyakonov. "Optical spectroscopy on silicon vacancy defects in silicon carbide / Franziska Fuchs. Gutachter: Vladimir Dyakonov." Würzburg : Universität Würzburg, 2016. http://d-nb.info/1112040560/34.
Full textLopez, Nicolas A. "All-optical method of nanoscale magnetometry for ensembles of nitrogen-vacancy defects in diamond." Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/103712.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 61-65).
The Nitrogen-Vacancy (NV) defect in diamond has shown considerable promise in the field of small scale magnetometry due to its high localization and retention of favorable optical properties at ambient conditions. Current methods of magnetometry with the NV center achieve high sensitivity to fields aligned with the defect axis; however, with most present methods transverse fields are not directly measurable. The all-optical method of NV magnetometry provides a means to detect transverse fields by monitoring changes in the overall fluorescence profile. In this work the all-optical method is extended to ensembles of non-interacting NV centers. By establishing an external bias field aligned with the (1, 1, 1) axis, the magnitude of an unknown transverse field can be unambiguously identified through the measurement of the signal curvature. The angular orientation can be determined up to a two-fold degeneracy by observing the change in signal curvature produced when the bias field is shifted off-axis. The magnetometry method explored in this thesis thus provides good sensitivity to transverse fields, while reducing to a minimum the experimental apparatus required to operate the magnetometer.
by Nicolas A. Lopez.
S.B.
Caulfield, John Christopher. "Transition-metal dichalcogenides and the scanning tunnelling microscope : the creation and imaging of vacancy defects." Thesis, University College London (University of London), 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.286294.
Full textBook chapters on the topic "Vacancy defects"
Tetlow, Holly Alexandra. "Removing Defects: Healing Single Vacancy Defects." In Theoretical Modeling of Epitaxial Graphene Growth on the Ir(111) Surface, 143–60. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65972-5_7.
Full textKawasuso, A., M. Weidner, F. Redmann, T. Frank, P. Sperr, G. Kögel, M. Yoshikawa, et al. "Vacancy Defects Detected by Positron Annihilation." In Silicon Carbide, 563–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-642-18870-1_23.
Full textVeblen, David R. "Extended Defects and Vacancy Non-Stoichiometry in Rock-Forming Minerals." In Point Defects in Minerals, 122–31. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm031p0122.
Full textCollins, Gary S., Hwa-Jae Jang, and Steven Shropshire. "Hydrogen Decoration of Vacancy Defects in Platinum." In Nuclear Physics Applications on Materials Science, 415–16. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-2800-8_28.
Full textFowler, W. Beall, Jayanta K. Rudra, Arthur H. Edwards, and Frank J. Feigl. "Theory of Oxygen-Vacancy Defects in Silicon Dioxide." In The Physics and Technology of Amorphous SiO2, 107–12. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4613-1031-0_12.
Full textPacchioni, Gianfranco. "Numerical Simulations of Defective Structures: The Nature of Oxygen Vacancy in Non-reducible (MgO, SiO2, ZrO2) and Reducible (TiO2, NiO, WO3) Oxides." In Defects at Oxide Surfaces, 1–28. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-14367-5_1.
Full textJanczarek, Marcin, Maya Endo-Kimura, Tharishinny Raja-Mogan, and Ewa Kowalska. "The Role of Oxygen Vacancy and Other Defects for Activity Enhancement." In Green Chemistry and Sustainable Technology, 337–55. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-77371-7_12.
Full textHENDERSON, T. M., J. C. GREER, G. BERSUKER, A. KORKIN, and R. J. BARTLETT. "EFFECT OF CHEMICAL ENVIRONMENT AND STRAIN ON OXYGEN VACANCY FORMATION ENERGIES AT SILICONSILICON OXIDE INTERFACES." In Defects in High-k Gate Dielectric Stacks, 373–83. Dordrecht: Springer Netherlands, 2006. http://dx.doi.org/10.1007/1-4020-4367-8_30.
Full textBarthe, Marie France, L. Henry, S. Arpiainen, and G. Blondiaux. "Electron Irradiation Induced Vacancy Defects Detected by Positron Annihilation in 6H-SiC." In Materials Science Forum, 473–76. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-963-6.473.
Full textBoonchun, Adisak, and Walter R. L. Lambrecht. "Critical Evaluation of the LDA + U Approach for Band Gap Corrections in Point Defect Calculations: The Oxygen Vacancy in ZnO Case Study." In Advanced Calculations for Defects in Materials, 165–81. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527638529.ch10.
Full textConference papers on the topic "Vacancy defects"
Lin, Pandong, Junfeng Nie, and Meidan Liu. "Point Defect Effects on Tensile Strength of BCC-Fe Studied by Molecular Dynamics." In 2020 International Conference on Nuclear Engineering collocated with the ASME 2020 Power Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/icone2020-16162.
Full textCai, Zhuangli, Zuolin Liu, Bin Yang, Min Yang, and Shangchao Lin. "Diffusion-Mediated Anharmonic Phonon Transport and Thermal Conductivity Reduction in Defective Hybrid Perovskites." In ASME 2021 Heat Transfer Summer Conference collocated with the ASME 2021 15th International Conference on Energy Sustainability. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/ht2021-62601.
Full textKorhonen, E., F. Tuomisto, O. Bierwagen, J. S. Speck, M. E. White, and Z. Galazka. "Vacancy complexes in Sb-doped SnO2." In INTERNATIONAL CONFERENCE ON DEFECTS IN SEMICONDUCTORS 2013: Proceedings of the 27th International Conference on Defects in Semiconductors, ICDS-2013. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4865672.
Full textBifano, Michael F. P., Jungkyu Park, and Vikas Prakash. "Sensitivity of Thermal Conductivity of Carbon Nanotubes to Defect Concentrations and Heat-Treatment." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-89625.
Full textAbiona, Adurafimihan A., Williams Kemp, and Heiko Timmers. "Pd-vacancy complex in Ge: TDPAC and ab initio study." In INTERNATIONAL CONFERENCE ON DEFECTS IN SEMICONDUCTORS 2013: Proceedings of the 27th International Conference on Defects in Semiconductors, ICDS-2013. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4865614.
Full textParashar, Madhur, Dasika Shishir, Alok Gokhale, Anuj Bathla, Sharba Bandyopadhyay, and Kasturi Saha. "Dynamic-Widefield-Magnetometry using Nitrogen-Vacancy Defects in Diamond." In CLEO: Applications and Technology. Washington, D.C.: OSA, 2021. http://dx.doi.org/10.1364/cleo_at.2021.jw1a.115.
Full textSon, N. T., J. Isoya, I. G. Ivanov, T. Ohshima, and E. Janzén. "Hydrogen at zinc vacancy of ZnO: An EPR and ESEEM study." In INTERNATIONAL CONFERENCE ON DEFECTS IN SEMICONDUCTORS 2013: Proceedings of the 27th International Conference on Defects in Semiconductors, ICDS-2013. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4865666.
Full textResnick, Alex, Katherine Mitchell, Jungkyu Park, Hannah Maier, Eduardo B. Farfán, Tien Yee, and Christian Velasquez. "Thermal Transport in Defective Actinide Oxides." In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-87605.
Full textYao, Hong, Ryan Katona, Jianren Zhou, Md I. Islam, Jonathan Raush, Fengyuan Lu, and Shengmin Guo. "Defects Evaluation of Selective Laser Melting Stainless Steel 316 Parts Using Positron Annihilation Lifetime Measurement." In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-86729.
Full textUlbricht, Ronald, Shuo Dong, Julian Schwartz, Hyeon-Deuk Kim, Yoshitaka Tanimura, Bala Murali Krishna Mariserla, Keshav M. Dani, and Zhi-Heng Loh. "Ultrafast Photo-Excitation Dynamics of Nitrogen-Vacancy Defects in Diamond." In CLEO: QELS_Fundamental Science. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/cleo_qels.2015.ftu4b.7.
Full textReports on the topic "Vacancy defects"
Krishnan, A., D. J. Keeble, R. Ramesh, W. L. Warren, B. A. Tuttle, R. L. Pfeffer, B. Nielsen, and K. G. Lynn. Vacancy related defects in thin film Pb(ZrTi)O{sub 3} materials. Office of Scientific and Technical Information (OSTI), December 1994. http://dx.doi.org/10.2172/10121170.
Full textChen, Y. (Prospect for wavelength tunable lasers based on vacancy defects in alkaline-earth oxides). Office of Scientific and Technical Information (OSTI), October 1989. http://dx.doi.org/10.2172/5418910.
Full text