Academic literature on the topic 'Vaccins antiviraux'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Vaccins antiviraux.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Vaccins antiviraux"

1

Hannoun, Cl. "Vaccins antiviraux." Médecine et Maladies Infectieuses 18 (November 1988): 603–10. http://dx.doi.org/10.1016/s0399-077x(88)80169-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sacoun, Esther. "Actualités sur les nouveaux vaccins antiviraux : grippe, papillomavirus, zona." Actualités Pharmaceutiques 50, no. 505 (April 2011): 38–39. http://dx.doi.org/10.1016/s0515-3700(11)70939-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sacoun, Esther. "Actualités sur les nouveaux vaccins antiviraux : grippe, papillomavirus, zona." Option/Bio 22, no. 450 (March 2011): 4–5. http://dx.doi.org/10.1016/s0992-5945(11)70680-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bertholom, Chantal. "Traitement et prévention des infections herpétiques : nouveaux antiviraux et vaccins." Option/Bio 26, no. 530 (July 2015): 16–17. http://dx.doi.org/10.1016/s0992-5945(15)30238-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wang, Yi, Yu-yuan Li, and Wen Guo. "Original Article .The Optimal Allocation of Investment between Antivirals and Vaccines for Influenza Pandemic Preparedness Planning." Infection International 1, no. 1 (March 1, 2012): 25–33. http://dx.doi.org/10.1515/ii-2017-0004.

Full text
Abstract:
Abstract Objectives To investigate that given a fixed amount of financial resources, what is the optimal combination of vaccine and antiviral stockpiles in terms of minimizing the attack rate. Methods Mathematic modeling was used to simulate the dynamics that with fixed influenza pandemic budget. Different budget conditions were observed if the combination changed. Framework between vaccines and antivirals was introduced by taking into account the uncertainty in vaccine and antiviral efficacy. Results Given a fixed budget, different budget allocations between vaccines and antivirals stockpile gave different attack rates. When the price of vaccine was lower than or similar with the antivirals, the attack rate increased with increasing investment in antiviral. But if the price of the vaccine was higher than the antivirals, the attack rate may not decrease with increasing investment in vaccine. Fixed the vaccine effectiveness, higher effectiveness of antiviral got a lower attack rate.When both antiviral and vaccine were with 50% probability of effectiveness, the attack rate changed by antiviral stockpile with a same pattern as they were with 100% efficacy probability, even it has a higher attack rate. Conclusions Assume the antivirals have 100% probability to be effective, budget was limited to a fix number, then in any event, population should stockpile a small amount of antivirals such that if the post-vaccination reproductive number turns out to be near 1, the additional intervention may further reduce the reproductive number to <1 and prevent the epidemic. Under the fixed budget, the price of the vaccines and antivirals will strongly affect the strategy of the stockpile allocation. When the price of vaccine is comparative lower, more investment of vaccine is better for the pandemic control, but if the vaccine price is too high then more investment in antiviral may be better. We found that attack rates and the optimal budget allocation depend on the probability to be effective of vaccine and antivirals.
APA, Harvard, Vancouver, ISO, and other styles
6

Gervelmeyer, A., H. Abu Ajarnijeh, E. Bani Younis, O. Anasweh, N. Bzour, R. Akasheh, Peter-Henning Clausen, C. Staak, and G. Monreal. "Production d'anticorps de jaune d'oeuf antiviraux spécifiques pour le diagnostic de la maladie de Newcastle, de la bronchite infectieuse et de la maladie de Gumboro par le test d'immunofluorescence directe." Revue d’élevage et de médecine vétérinaire des pays tropicaux 51, no. 1 (January 1, 1998): 5–9. http://dx.doi.org/10.19182/remvt.9652.

Full text
Abstract:
Les possibilités d'utilisation d'anticorps de jaune d'oeuf (IgY) pour la détection des virus de la maladie de Newcastle (NDV), de la bronchite infectieuse (IBDV) et de la maladie de Gumboro (IBDV) par le test d'immunofluorescence directe ont été examinées. Des poules pondeuses ont été immunisées avec différents vaccins commerciaux à NDV, IBV et IBDV inactivés. L'immunisation a donné des titres élevés d'anticorps spécifiques dans le jaune d'oeuf à partir de 4 à 8 semaines après l'immunisation initiale, et ce durant une période d'environ 20 semaines. Les IgY ont été extraites du jaune d'oeuf par précipitation au sulfate d'ammonium, puis purifiées par la méthode de chromatographie d'affinité, donnant 1,46 mg d'IgY spécifique par jaune d'oeuf en moyenne. Après marquage avec l'isothiocyanate de fluorescéine (FITC) la sensibilité et la spécificité des conjugués ont été évaluées sur des cultures cellulaires sur des lamelles couvre-objets. Dans le test d'immunofluorescence directe, les conjugués dilués au 1 : 8 ou au 1 : 4 avec du PBS réagissaient spécifiquement avec l'antigène homologue dans des calques d'organes de poussins infectés expérimentalement et dans des cultures cellulaires sur des lamelles couvre-objets. Aucune réaction n'a été observée avec des antigènes hétérologues. La fluorescence non spécifique était facilement éliminée par une absorption avec de la poudre de foie. En conclusion, ces résultats montrent que les IgY marquées avec FITC peuvent être produites en grandes quantités de manière facile et économique. Pour le diagnostic de NDV, IBV et IBDV, les anticorps de jaune d'oeuf constituent donc une excellente alternative à la production d'anticorps fluorescents à partir du sang de lapins ou de poules, notamment pour les laboratoires ayant des moyens financiers limités.
APA, Harvard, Vancouver, ISO, and other styles
7

KRAMER, S. C., and S. BANSAL. "Assessing the use of antiviral treatment to control influenza." Epidemiology and Infection 143, no. 8 (October 2, 2014): 1621–31. http://dx.doi.org/10.1017/s0950268814002520.

Full text
Abstract:
SUMMARYVaccines are the cornerstone of influenza control policy, but can suffer from several drawbacks. Seasonal influenza vaccines are prone to production problems and low efficacies, while pandemic vaccines are unlikely to be available in time to slow a rapidly spreading global outbreak. Antiviral therapy was found to be beneficial during the influenza A(H1N1)pdm09 pandemic even with limited use; however, antiviral use has decreased further since then. We sought to determine the role antiviral therapy can play in pandemic and seasonal influenza control using conservative estimates of antiviral efficacy, and to assess if conservative but targeted strategies could be employed to optimize the use of antivirals. Using an age-structured contact network model for an urban population, we compared the transmission-blocking ability of a conservative antiviral therapy strategy to the susceptibility-reducing effects of a robust influenza vaccine. Our results show that while antiviral therapy cannot replace a robust influenza vaccine, it can play a role in reducing attack rates and eliminating outbreaks, and could significantly reduce public health burden when vaccine is either unavailable or ineffective. We also found that antiviral therapy, by treating those who are infected, is naturally a highly optimized strategy, and need not be improved upon with expensive targeted campaigns.
APA, Harvard, Vancouver, ISO, and other styles
8

Nuwarda, Rina Fajri, Abdulsalam Abdullah Alharbi, and Veysel Kayser. "An Overview of Influenza Viruses and Vaccines." Vaccines 9, no. 9 (September 17, 2021): 1032. http://dx.doi.org/10.3390/vaccines9091032.

Full text
Abstract:
Influenza remains one of the major public health concerns because it causes annual epidemics and can potentially instigate a global pandemic. Numerous countermeasures, including vaccines and antiviral treatments, are in use against seasonal influenza infection; however, their effectiveness has always been discussed due to the ongoing resistance to antivirals and relatively low and unpredictable efficiency of influenza vaccines compared to other vaccines. The growing interest in vaccines as a promising approach to prevent and control influenza may provide alternative vaccine development options with potentially increased efficiency. In addition to currently available inactivated, live-attenuated, and recombinant influenza vaccines on the market, novel platforms such as virus-like particles (VLPs) and nanoparticles, and new vaccine formulations are presently being explored. These platforms provide the opportunity to design influenza vaccines with improved properties to maximize quality, efficacy, and safety. The influenza vaccine manufacturing process is also moving forward with advancements relating to egg- and cell-based production, purification processes, and studies into the physicochemical attributes and vaccine degradation pathways. These will contribute to the design of more stable, optimized vaccine formulations guided by contemporary analytical testing methods and via the implementation of the latest advances in the field.
APA, Harvard, Vancouver, ISO, and other styles
9

Norshidah, Harun, Ramachandran Vignesh, and Ngit Shin Lai. "Updates on Dengue Vaccine and Antiviral: Where Are We Heading?" Molecules 26, no. 22 (November 9, 2021): 6768. http://dx.doi.org/10.3390/molecules26226768.

Full text
Abstract:
Approximately 100–400 million people from more than 100 countries in the tropical and subtropical world are affected by dengue infections. Recent scientific breakthroughs have brought new insights into novel strategies for the production of dengue antivirals and vaccines. The search for specific dengue inhibitors is expanding, and the mechanisms for evaluating the efficacy of novel drugs are currently established, allowing for expedited translation into human trials. Furthermore, in the aftermath of the only FDA-approved vaccine, Dengvaxia, a safer and more effective dengue vaccine candidate is making its way through the clinical trials. Until an effective antiviral therapy and licensed vaccine are available, disease monitoring and vector population control will be the mainstays of dengue prevention. In this article, we highlighted recent advances made in the perspectives of efforts made recently, in dengue vaccine development and dengue antiviral drug.
APA, Harvard, Vancouver, ISO, and other styles
10

Murray, Jackelyn, David E. Martin, Fred D. Sancilio, and Ralph A. Tripp. "Antiviral Activity of Probenecid and Oseltamivir on Influenza Virus Replication." Viruses 15, no. 12 (November 30, 2023): 2366. http://dx.doi.org/10.3390/v15122366.

Full text
Abstract:
Influenza can cause respiratory infections, leading to significant morbidity and mortality in humans. While current influenza vaccines offer varying levels of protection, there remains a pressing need for effective antiviral drugs to supplement vaccine efforts. Currently, the FDA-approved antiviral drugs for influenza include oseltamivir, zanamivir, peramivir, and baloxavir marboxil. These antivirals primarily target the virus, making them vulnerable to drug resistance. In this study, we evaluated the efficacy of the neuraminidase inhibitor, oseltamivir, against probenecid, which targets the host cells and is less likely to engender resistance. Our results show that probenecid has superior antiviral efficacy compared to oseltamivir in both in vitro replication assays and in vivo mouse models of influenza infection.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Vaccins antiviraux"

1

Piquart, François. "Les vaccins recombinants : données actuelles." Paris 5, 1989. http://www.theses.fr/1989PA05P110.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hilleriteau, Caroline Imbert-Marcille Berthe Marie. "Le vaccin contre la varicelle état des connaissances en 2005 /." [S.l.] : [s.n.], 2005. http://theses.univ-nantes.fr/thesemed/PHhilleriteau.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Delame, Lelièvre Pierre Emmanuel. "Nouvelles voies de développement des vaccins grâce à la biologie moléculaire : application à l'hépatite B." Paris 5, 1988. http://www.theses.fr/1988PA05P237.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pilaev, Martin. "Développement de vaccins sous-unitaires contre le métapneumovirus humain." Master's thesis, Université Laval, 2018. http://hdl.handle.net/20.500.11794/32639.

Full text
Abstract:
Le métapneumovirus humain (hMPV) est un virus qui circule dans la population humaine depuis plus de70 ans et a été isolé pour la première fois en 2001. Il est la troisième cause mondiale en lien avec les hospitalisations d’enfants pour maladies aigües des voies respiratoires supérieures et inférieures. Il est responsable d’une multitude de complications chez les jeunes enfants, les personnes âgées ainsi que les personnes immunosupprimées. À ce jour, il n’existe aucun vaccin commercial contre le hMPV. Dans les récentes années, la protéine de fusion F, qui est le principal antigène viral, a fait l’objet d’une multitude d’essais principalement pré-cliniques en vaccination. La découverte que, chez le virus respiratoire syncytial (VRS), la protéine F stabilisée en forme pré-fusion est plus immunogène a fourni de nouvelles pistes pour le développement vaccinal. Pour ces raisons, l’objectif de ma maîtrise est le développement d’un vaccin sous-unitaire à base de protéine F-hMPV stabilisée en pré-fusion et son test chez le modèle de la souris BALB/C pour vérifier son potentiel protecteur. Nos études ont démontré qu’il n’y a pas de différence significative, en termes d’immunogénicité, entre la forme pré- et post-fusion de la protéine F chez le hMPV. Les essais d’immunogénicité ont également démontré la nécessité de l’ajout de l’adjuvant alum pour élucider une réponse immunitaire chez la souris BALB/C. Les immunisations par les protéines adjuvantées ont démontré le développement d’anticorps neutralisants. Suite à l’infection, la réplication virale pulmonaire a été diminuée sous le seuil de détection des techniques utilisées, mais l’inflammation pulmonaire a persisté. Les vaccins adjuvantés n’ont pas influencé la perte de poids chez la souris, mais ont amélioré les autres symptômes cliniques tels l’activité physique et le poil ébouriffé. Les vaccins F-hMPV sans alum présentent certaines caractéristiques de réponse immune exagérée (titres en anticorps neutralisants nuls; état physique détérioré) et devront être analysés davantage. Les vaccins F-hMPV avec alum n’ont pas démontré des signes de réponse immune exagérée, suite à l’infection par le hMPV, malgré une réponse immune de type Th2 plus forte. Globalement, malgré une réduction des titres viraux à un seuil indétectable, aucun des vaccins n’a protégé complètement le modèle murin contre l’infection par le hMPV. Les vaccins développés au cours de ces études ouvrent la voie à de nouvelles stratégies d’immunisation, de nouveaux essais de vaccination en combinaison avec d’autres adjuvants et peuvent servir de base pour le développement d’un vaccin efficace contre le hMPV
The human metapneumovirus has been first isolated in 2001 despite its circulation in the human population for more than 70 years. HMPV is the third leading cause of children hospitalisations associated with acute respiratory tract infections. Complications occur commonly in young children, the elderly and the immunocompromised. To this day, no vaccine has been licensed for use against hMPV. In recent years, the F protein, considered the most immunodominant antigen, has been the target of many pre-clinical vaccine trials. The discovery, for RSV, that a prefusion bound F protein is more immunogenic than post-fusion has encouraged new vaccination approaches. Based on this discovery, the aim of this project is the development of a prefusion bound F-hMPV subunit vaccine and testing its potency to protect the BALB/C model. Following challenge, no significant difference between potentially prefusion bound proteins and wild type protein was observed. Immunisation trials revealed the necessity of adding an adjuvant, alum in this case, to elicit an immune response in mice. Neutralizing antibodies were observed with F-hMPV vaccines containing the alum adjuvant. Post-immunisation challenge trials revealed reduction of lung viral replication below detection levels and persisting inflammation. Weight loss was not affected by vaccination, but animals immunised with adjuvanted F-hMPV proteins exhibited better physical condition and no signs of disease such as diminished activity and ruffed fur. F-hMPV vaccines without alum exhibited some characteristics of enhanced disease (no neutralizing antibodies; affected physical condition) and require further analysis. Enhanced disease was not observed in the F-hMPV adjuvanted groups despite higher Th2/Th1 ratios with adjuvanted proteins . None of the vaccines tested were able to fully protect the mouse model upon challenge. Vaccines developed in this study will be useful in future trials and could be tested with other adjuvants or vaccination strategies.
APA, Harvard, Vancouver, ISO, and other styles
5

Tu, Véronique. "Évaluation in vitro de l'efficacité du peramivir contre des variants du virus de l'influenza A(H1N1), A(H3N2) et B contenant différentes mutations dans le gène de la neuraminidase." Master's thesis, Université Laval, 2017. http://hdl.handle.net/20.500.11794/27820.

Full text
Abstract:
Les virus influenza sont des pathogènes respiratoires responsables d’épidémies saisonnières touchant 10 à 20% de la population mondiale chaque année, constituant donc un problème majeur de santé publique. La vaccination annuelle réduit l’impact des épidémies grippales; cependant, un mésappariement entre les souches vaccinales et circulantes peut parfois survenir et résulter en un échec de protection de la population. Dans ces cas, il est important d’avoir un traitement adéquat afin de traiter l’infection virale. Les inhibiteurs de la neuraminidase (INAs) constituent la principale classe d’antiviraux recommandée pour la prévention et le traitement des infections grippales. Les INAs lient de façon compétitive le site actif de la neuraminidase (NA), ce qui bloque la libération des virions des cellules hôtes inhibant de la sorte la dissémination du virus dans le tractus respiratoire. L’émergence sporadique de virus résistants à l’oseltamivir et/ou au zanamivir avec de faibles taux de transmission a été identifiée lors de traitements des souches saisonnières de l’influenza. Le développement de nouveaux antiviraux devient donc un sujet important d’investigation. Le peramivir, un nouvel INA disponible depuis peu en Amérique du Nord, exerce une activité sur des virus influenza A et B et son efficacité contre des mutants résistants à l’oseltamivir ou au zanamivir n’a pas encore été complètement caractérisée. À cause des différences dans la liaison des INAs avec l’enzyme cible, la nature des mutations de résistance peut varier d’un INA à l’autre bien que certaines mutations pourraient engendrer une résistance croisée à plusieurs INAs. Nous avons démontré que le peramivir s’avère très actif contre les différents sous-types de grippe saisonnière, quoique certains variants aient présentés des phénotypes de multi-résistance à l’oseltamivir, au zanamivir ainsi qu’au peramivir. À cet égard, un nouveau mécanisme de résistance d’un variant menant à la résistance croisée aux INAs a été décrit (I427T/Q313R) dans le cadre de ce mémoire et a permis de comprendre comment des substitutions retrouvées hors du site actif de la NA peuvent affecter la capacité de réplication du virus et sa résistance aux antiviraux.
Influenza viruses are respiratory pathogens responsible for seasonal epidemics affecting 10 to 20% of the world's population every year, thus constituting a major public health impact. Annual vaccination reduces the impact of influenza epidemics; however, a mismatch between the vaccine strain and the circulating strain can sometimes occur and result in an unsuccessful attempt in protecting the population. In such cases, it is important to have adequate treatment to treat influenza infections. Neuraminidase inhibitors (NAIs) are the primary class of antiviral agents recommended for the prevention and treatment of influenza infections. NAIs competitively bind the neuraminidase (NA) active site, blocking the release of virions from host cells and thereby inhibiting the spread of the virus into the respiratory tract. The sporadic emergence of oseltamivir- and/or zanamivir-resistant viruses with low transmission rates was identified in seasonal influenza strains. The development of new antivirals thus became an important subject of investigation. Peramivir, a new NAI recently available in North America, exerts its activity against influenza A and B viruses, but its effectiveness against mutations conferring resistance to oseltamivir or zanamivir has not yet been fully characterized. Due to differences in the binding of NAIs to the target enzyme, the nature of the resistance mutations may vary from one NAI to another, although some mutations could induce global NAI cross-resistance. We have demonstrated that peramivir is highly active against the different seasonal influenza subtypes, although some variants have shown multi-resistance phenotypes to oseltamivir, zanamivir as well as peramivir. In this regard, a new resistance mechanism by which a NA variant leads to NAI cross-resistance (I427T/Q313R) has been described in this thesis and has helped to understand how substitutions found outside the NA active site can affect the replication kinetics of the virus and its resistance to antivirals.
APA, Harvard, Vancouver, ISO, and other styles
6

Peyrache, Jérôme. "Vaccination contre le virus de l'immunodéficience féline." Institut national agronomique Paris-Grignon, 2005. http://www.theses.fr/2005INAP0005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mabboux, Bruno. "Infection grippale chez la souris par différentes souches prototypes : contribution à la mise au point d'un modèle pour études de protection." Paris 5, 1990. http://www.theses.fr/1990PA05P093.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Touzé, Antoine. "Intérêt des pseudo-particules virales obtenues par recombinaison génétique pour le développement de vaccins et pour la vectorisation d'antigènes et de gènes : application aux papillomavirus et au virus de l'hépatite b." Tours, 1997. http://www.theses.fr/1997TOUR3801.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Téoulé, François. "Etude des interactions entre les facteurs viraux et cellulaires impliqués dans la réplication virale et les voies de signalisation au cours de l’infection par le poliovirus." Versailles-St Quentin en Yvelines, 2013. http://www.theses.fr/2013VERS0023.

Full text
Abstract:
Le poliovirus (PV), un Enterovirus de la famille des Picornaviridae, est l’agent étiologique de la Poliomyélite Paralytique Aiguë (PPA). La PPA se caractérise par des paralysies flasques dues à la destruction des neurones moteurs par apoptose suite à la réplication du PV. Nous avons montré notamment qu’un transfert de calcium du réticulum endoplasmique vers les mitochondries contribue à l’apoptose induite par le PV (Brisac C. Et al. , 2010). De plus, l’exécution du processus apoptotique complet implique la réplication et la synthèse des protéines virales non-structurales (NS). Nous avons identifié deux interacteurs cellulaires de la protéine NS 3A du PV : ACBD3 (Acyl-Coenzyme A binding domain containing 3) et CREB3 (cyclic AMP response element-binding protein). Nous avons montré qu’ACBD3 pouvait moduler la réplication du PV (Téoulé F. Et al. , en révision) tandis que CREB3 pourrait être impliquée dans la régulation de la signalisation calcique et l’apoptose au cours de l’infection
Poliovirus (PV), an Enterovirus of the Picornaviridae family, is the causal agent of acute paralytic poliomyelitis (APP). APP is characterised by flaccid paralysis due to the destruction of motor neurons by apoptosis following PV replication. We have shown, in particular, that the transfer of calcium from the endoplasmic reticulum to the mitochondria contributes to the apoptosis induced by PV (Brisac et al. , 2010). This apoptotic process also involves the replication and synthesis of viral non-structural (NS) proteins. We have identified two cellular proteins interacting with the NS 3A protein of PV: ACBD3 (acyl-coenzyme A binding domain-containing 3) and CREB3 (cyclic AMP response element-binding protein). We have shown that ACBD3 modulates the rate of PV replication (Téoulé et al. , in revision), whereas CREB3 may be involved in regulating cell signalling and apoptosis during infection
APA, Harvard, Vancouver, ISO, and other styles
10

Vaillant, Caroline. "Activité cytotoxique des lymphocytes induites par des vaccins préventifs contre l'infection à VIH-1, administrés chez le volontaire sain." Paris 5, 1996. http://www.theses.fr/1996PA05P199.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Vaccins antiviraux"

1

1925-, Brown Fred, and Cold Spring Harbor Laboratory, eds. Vaccines 90: Modern approaches to new vaccines including prevention of AIDS. Cold Spring Harbor, N.Y: Cold Spring Harbor Laboratory Press, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Organisation for Economic Co-operation and Development. Group of National Experts on Safety and Biotechnology. Working Group III, Safety Assessment, Micro-organisms Subgroup., ed. Non-target effects of live vaccines: Langen, Germany, November 3-5, 1993 : proceedings of a workshop / organized by the Organisation for Economic Co-operation and Development (OCDE), Group of National Experts on Safety in Biotechnology, Working Group III, Safety Assessment, Micro-organisms Subgroup. Basel: Karger, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Development ofEpstein-Barr virus vaccines. New York: Springer, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Morgan, Andrew J. Development of Epstein-Barr virus vaccines. New York: Springer-Verlag, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Antiviral agents, vaccines, and immunotherapies. New York: Marcel Dekker, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

(Firm), Find/SVP, ed. The market for antiviral therapeutics and vaccines. New York: FIND/SVP, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

St, Georgiev Vassil, McGowan John J. 1951-, New York Academy of Sciences., National Institutes of Health (U.S.), and International Conference on Drug Research in Immunologic and Infectious Diseases (2nd : 1989 : Arlington, Va.), eds. AIDS: Anti-HIV agents, therapies, and vaccines. New York, N.Y: New York Academy of Sciences, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

1919-, Fukai Kōnosuke, and Japan Intractable Diseases Research Foundation., eds. Virus vaccines in Asian countries. [Tokyo]: University of Tokyo Press, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Rotheim, Philip. Antiviral drugs & vaccines: A commercial perspective of opportunities & new developments. Stamford, Ct., USA: Business Communications Co., 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Frost & Sullivan., ed. European antiviral drug and vaccine markets: New products brighten market outlook. Mountain View, Calif: Frost & Sullivan, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Vaccins antiviraux"

1

Kende, M., D. J. Gangemi, W. Lange, D. A. Eppstein, J. Kreuter, and P. G. Canonico. "Carrier-Mediated Antiviral Therapy." In New Vaccines and Chemotherapy, 241–64. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4757-9268-3_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bahr, George M. "Immune and Antiviral Effects of the Synthetic Immunomodulator Murabutide." In Vaccine Adjuvants, 193–219. Totowa, NJ: Humana Press, 2006. http://dx.doi.org/10.1007/978-1-59259-970-7_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Martin, Stephen, and Barry T. Rouse. "Antiviral Cytotoxic T-Lymphocytes and Vaccines." In Medical Virology 8, 239–66. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4899-0891-9_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Chaudhari, Aparna, Gireesh-Babu Pathakota, and Pavan-Kumar Annam. "Design and Construction of Shrimp Antiviral DNA Vaccines Expressing Long and Short Hairpins for Protection by RNA Interference." In Vaccine Design, 225–40. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-3389-1_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Virelizier, J. L., A. Amara, E. Oberlin, D. Rousset, M. Rodriguez, and M. Kroll. "Control of HIV Entry and Transcription, as a Possible Mechanism of the Antiviral Effects of T Lymphocytes in HIV Infection." In Vaccine Design, 25–31. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4899-0062-3_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

ISMAIL, Bachar. "The Use of Probiotics as Vaccine Vectors to Prevent Viral Infections." In New Insights on Antiviral Probiotics, 47–60. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-49688-7_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kong, Wei. "Development of Antiviral Vaccine Utilizing Self-Destructing for Antigen and DNA Vaccine Delivery." In Methods in Molecular Biology, 39–61. New York, NY: Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-1012-1_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Epstein, M. A. "Studies on the Prevention of EBV-induced Malignancies by a Sub-unit Antiviral Vaccine." In Vaccine Intervention Against Virus-Induced Tumours, 33–46. London: Palgrave Macmillan UK, 1986. http://dx.doi.org/10.1007/978-1-349-08243-8_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Satterfield, Benjamin A., Chad E. Mire, and Thomas W. Geisbert. "Overview of Experimental Vaccines and Antiviral Therapeutics for Henipavirus Infection." In Methods in Molecular Biology, 1–22. New York, NY: Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-3283-3_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kieny, M. P., and R. Lathe. "Vaccinia Recombinants Expressing Foreign Antigens: Antiviral and Antitumor Immunity." In Progress in Vaccinology, 423–28. New York, NY: Springer New York, 1989. http://dx.doi.org/10.1007/978-1-4612-3508-8_40.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Vaccins antiviraux"

1

Tynyo, Yaroslav Yaroslavovich, Elena Igorevna Yarygina, Varvara Andreevna Ustinova, Magdalena Trofimovna Vidrashko, and Galina Vadimovna Morozova. "ANTIVIRAL ACTIVITY OF ALLOKIN-ALPHA AGAINST BIRDS HERPESVIRUS." In Themed collection of papers from Foreign intemational scientific conference «Joint innovation - joint development». Medical sciences . Part 2. Ьу НNRI «National development» in cooperation with PS of UA. June 2023. Crossref, 2023. http://dx.doi.org/10.37539/230629.2023.95.55.023.

Full text
Abstract:
Studies have been conducted to assess the effectiveness of the drug "Allokin-alpha" in the simulation of experimental viral infection in vivo at an agricultural poultry (day-old chickens) including: vaccination vaccine strain of HTV, monitoring of vaccinated poultry, the taking the study material from the vaccinated poultry, obtaining test material (an extract of feather follicles) from vaccinated birds. Specific antigen was detected in the epithelium of feather follicles by the diffusion precipitation in a gel). The results of the dynamics of antigen detection in the material obtained from the chickens to confirm the effectiveness of the "Allokin-alpha" as an antiviral in the simulation of experimental viral infection of birds by the introducing of the vaccine strain of HTV. There was an increase in the number of positive results of DPR for the indication of HTV antigen depending on the time of application of the "Allokin-alpha". With the introduction of Allokin on the 10th day after the vaccination of the HTV (group No. 7), the number of positive results of the DPR was 33% versus 50% for the study of samples from birds administered on days 5 and 15 (groups Nos. 6 and 8) (samples were taken on the 28th day). The dynamics of antigen detection in the extract from the feather follicles of vaccinated chickens in the diffusion precipitation reaction revealed that the drug "Allokin-alpha" is not species-specific, it is effective as an antiviral in the simulation of experimental viral infection of birds by introducing the vaccine strain of HTV. In order to clarify the possibilities of the drug when working with other animal species, it is necessary to conduct experiments on cattle, pigs, cats and dogs, and also in fur farming.
APA, Harvard, Vancouver, ISO, and other styles
2

Elbashir, Israa, Aisha Aisha Nasser J. M. Al-Saei, Paul Thornalley, and Naila Rabbani. "Evaluation of antiviral activity of Manuka honey against SARS-CoV-2." In Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2021. http://dx.doi.org/10.29117/quarfe.2021.0113.

Full text
Abstract:
Background and aims: In 2020 a global pandemic was declared caused by the severe acute respiratory syndrome coronavirus (SARS-CoV-2). The pandemic is still ongoing and continues to cause considerable mortality and morbidity world-wide and new variants of the virus are emerging. Rapid development and rollout of vaccines for SARS-CoV-2 is in progress to counter the pandemic but has been tempered by the emergence of new SARS-CoV-2 variants, many of which exhibit reduced vaccine effectiveness. To date there is no approved antiviral treatment for coronavirus disease 2019 (COVID-19). Several studies have shown that Manuka honey has virucidal/antiviral effect. Methylglyoxal (MG), a bioactive component in Manuka honey, has antiviral activity in vitro. MG may modify arginine residues in the functional domains of viral spike and nucleocapsid proteins, resulting in loss of charge, protein misfolding and inactivation. The aim of this study was to characterize the antiviral activity of Manuka honey against SARS-CoV-2 in vitro Materials and methods: Wild-type SARS-CoV-2 with titers of multiplicities of infection (MOI) 0.1 and 0.05 were incubated with 2-fold serial dilutions of 250+ Manuka honey (equivalent to 250 to 31 µM) in infection medium (Dulbecco's Modified Eagle Medium + 2% fetal bovine serum + 100 units/ml penicillin + 100 µg/ml streptomycin) for 3 h. Manuka honey treated and untreated control SARS-CoV-2 was incubated with confluent cultures of Vero cells in vitro for 1 h, cultures washed with phosphate-buffered saline and incubated in fresh infection medium at 37°C for 4 - 5 days until 70% of virus control cells displayed cytopathic effect. We also studied the effect of scavenging MG in Manuka Honey with aminoguanidine (AG; 500 µM) on virucidal activity. The antiviral activity of MG was judged by median tissue culture infectious dose (TCID50) assays. Data analysis was by logistic regression. TCID50 (mean ± SD) was deduced by interpolation. Results: Diluted Manuka honey inhibited SARS-CoV-2 replication in Vero cells. SARS-CoV-2 was incubated in diluted Manuka honey in medium at 37°C for 3 h before adding to Vero cells. Manuka honey dilutions down to 125 µM MG equivalents completely inhibited cytopathic effect of SARS-CoV-2 whereas 31.25 µM and 62.5 µM MG equivalents had limited effect. Logistic regression and interpolation of the cytopathic effect indicated that the TCID50 = 72 ± 2 µM MG equivalents for MOI of 0.1. Prior scavenging of MG by addition of AG resulted in virus replication levels equivalent to those seen in the virus control without AG. Conclusion: Manuka honey has antiviral activity against SARS-CoV-2 when incubated with the virus in cell-free media at no greater than ca. 40-fold dilutions of 250+ grade. Anti-viral activity was inhibited by AG, consistent with the anti-viral effect being mediated by MG. Manuka honey dilutions in MG equivalents had similar antiviral effect compared to authentic MG, also consistent with MG content of Manuka honey mediating the antiviral effect. Whilst Manuka honey may inactivate SARS-CoV-2 in cell-free culture medium, its antiviral activity in vivo for other than topical application may be limited because of the rapid metabolism of MG by the glyoxalase system and limited bioavailability of oral MG.
APA, Harvard, Vancouver, ISO, and other styles
3

Protsenko, M. A., E. I. Filippova, E. V. Makarevich, I. A. Gorbunova, T. V. Teplyakova, and N. A. Mazurkova. "ANTIVIRAL PROPERTIES OF EXTRACTS OF BASIDIOMYCETES OF THE NOVOSIBIRSK REGION." In X Международная конференция молодых ученых: биоинформатиков, биотехнологов, биофизиков, вирусологов и молекулярных биологов — 2023. Novosibirsk State University, 2023. http://dx.doi.org/10.25205/978-5-4437-1526-1-259.

Full text
Abstract:
Dry ethanolic and aqueous extracts from fruiting bodies and cultivated mycelium of basidiomycetes were obtained and investigated for chemical composition. In vitro extracts are active against influenza virus A, herpes simplex virus type 2, vaccinia virus and mouse poxvirus. The in vivo antiviral activity of Fomes fomentarius mycelium extract against influenza virus subtype H3N2 was studied.
APA, Harvard, Vancouver, ISO, and other styles
4

Aurisicchio, Luigi, Antonella Conforti, Mirco Compagnone, Erika Salvatori, Lucia Lione, Eleonora Pinto, Clay Shorrock, et al. "820 Linear DNA amplicons as a novel antiviral and cancer vaccine strategy." In SITC 37th Annual Meeting (SITC 2022) Abstracts. BMJ Publishing Group Ltd, 2022. http://dx.doi.org/10.1136/jitc-2022-sitc2022.0820.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kranz, Lena M., Mustafa Diken, Heinrich Haas, Sebastian Kreiter, Carmen Loquai, Kerstin C. Reuter, Martin Meng, et al. "Abstract A004: Systemic RNA vaccines: Connecting effective cancer immunotherapy with antiviral defense mechanisms." In Abstracts: Second CRI-CIMT-EATI-AACR International Cancer Immunotherapy Conference: Translating Science into Survival; September 25-28, 2016; New York, NY. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/2326-6066.imm2016-a004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Pathak, Parag A., Tayfun Sönmez, M. Utku Ünver, and M. Bumin Yenmez. "Fair Allocation of Vaccines, Ventilators and Antiviral Treatments: Leaving No Ethical Value Behind in Health Care Rationing." In EC '21: The 22nd ACM Conference on Economics and Computation. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3465456.3467604.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Frank, B., C. Conzelmann, T. Weil, R. Groß, P. Jungke, M. Eggers, JA Müller, J. Münch, and U. Kessler. "Antivirale Aktivität von Grüntee und Fruchtsäften gegen SARS-CoV-2, Influenza-, Vaccinia- und Adenoviren in vitro." In Jubiläumskongress Phytotherapie 2021 Leib und Magen – Arzneipflanzen in der Gastroenterologie 50 Jahre Gesellschaft für Phytotherapie. Georg Thieme Verlag KG, 2021. http://dx.doi.org/10.1055/s-0041-1731496.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Rabbani, Naila, Paul John Thornalley, Maryam Al-Motawa, and Mingzhan Xue. "Vulnerabilities of the SARS-Cov-2 Virus to Proteotoxicity – Opportunity for Repurposed Chemotherapy of COVID-19 Infection." In Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2020. http://dx.doi.org/10.29117/quarfe.2020.0291.

Full text
Abstract:
The global pandemic of COVID-19 disease caused by infection with the SARS-CoV-2 Coronavirus, has produced an urgent requirement and search for improved treatments whilst effective vaccines are developed. A strategy for improved drug therapy is to increase levels of endogenous reactive metabolites for selective toxicity to SARS-CoV-2 by preferential damage to the viral proteome. Key reactive metabolites producing major quantitative damage to the proteome in physiological systems are: Reactive oxygen species (ROS) and the reactive glycating agent methylglyoxal (MG); cysteine residues and arginine residues are their most susceptible targets, respectively. From sequenced-based prediction of the SARS-CoV-2 proteome, we found 0.8-fold enrichment or depletion of cysteine residues in functional domains of the viral proteome; whereas there was a 4.6-fold enrichment of arginine residues, suggesting SARS-CoV-2 is resistant to oxidative agents and sensitive to MG. We examined activated arginine residues in functional domain with predicted low pKa by neighboring group interaction in the SARS-CoV-2. We found 25 such arginine residues, including 2 in the spike protein and 10 in the nucleoprotein. These sites were partially conserved in related coronaviridae: SARS-COV and MERS. We also screened and identified drugs, which increase cellular MG concentration to virucidal levels and found two antitumor drugs with historical antiviral activity, doxorubicin and paclitaxel were the best candidate for repurposing. Our findings provide evidence of potential vulnerability of SARS-CoV2 to inactivation by MG and a scientific rationale for repurposing of doxorubicin and paclitaxel for treatment of COVID-19 disease, providing efficacy and adequate therapeutic index may be established.
APA, Harvard, Vancouver, ISO, and other styles
9

Sipila, Patrick, Satbir Thakur, Mehr Malhotra, Chunfen Zhang, Lian Willetts, Luis Murguia-Favela, and Aru Narendran. "1118 The iodinated fluorescein derivative PV-10 enhances the antiviral activity of CD8+ T-Cells by inducing STING dimerization: implications for enhanced vaccine applications." In SITC 38th Annual Meeting (SITC 2023) Abstracts. BMJ Publishing Group Ltd, 2023. http://dx.doi.org/10.1136/jitc-2023-sitc2023.1118.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Desmyter, J. "AIDS 1987." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644751.

Full text
Abstract:
AIDS virus (HIV) transmission by transfusions and blood products has been essentially halted in industrialized countries which haye introduced systematic anti-HIV screening of donations in 1985. New anti-HIV screening assays, based in part on the replacement of disrupted HIV virions by defined DNA recombinant HIV antigens, have improved specificity; sensitivity has been improved as to dectect seroconversion at an earlier stage. Confirmatory assays and (self-)exclusion of risk groups from blood donation do remain mandatory. HIVAg can be detected in some infections before antibody conversion, and HIVAg is more likely to be found in those anti-HIV positives who proceed to disease. However, there is no justification so far for routine parallel HIVAg and anti-HIV screening. There is continued uncertainty how many HIV carriers have not (yet) developed antibody, but their numbers may have been overestimated. Studies to determine how many HIV transmitters have escaped blood bank detection, and why, need to be undertaken in spite of formidable logistic difficulties.The risk of developing AIDS is now estimated at 25-50 % within 10 years after the infectious contact. It is not clear whether the risk should be estimated differently in different groups or persons. In cities in Central Africa, 5-20 % of men and women are confirmed anti-HIV positives. At least 75 % of this HIV carrier rate is due to heterosexual transmission. Heterosexual transmission has been slower in Western countries, but factors precluding slow evolution to high figures by the same route outside Africa have not been identified. Therefore, countries have no choice in advocating behaviour changes in the general population, and not only in the classical risk groups. Initial hesitations toward extended voluntary and confidential screening are dwindling. Well-conceived confidential screening may be the only way to avoid strong-armed government intervention. The latter is certain to be divisive, and is likely to be counterproductive on balance.An efficacious vaccine remains remote, but an antiviral which prolongs life by at least several months in AIDS patients, but not all of them, is now available. Zidovudine (AZT), however, is toxic and mere prolongation of life without cure will impose an additional burden on AIDS economics.A novel virus (HIV-2) has been identified and is already widespread in West-Africans. It causes AIDS, but the present ratio of AIDS cases in those infected seems lower than with HIV(-l); this feature may be transient. HIV-2 antibodies are either detected or missed by anti-HIV-1 screens; if found, they can be distinguished from anti-HIV-1 only by special confirmatory technique. New screening assays showing equal sensitivity for HIV-1 and HIV-2 in a single test should be devised. At present, HIV-2 is very rare in Western countries compared to HIV-1.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Vaccins antiviraux"

1

Library, Spring. How Close are We Really to the HIV Cure? Spring Library, January 2020. http://dx.doi.org/10.47496/sl.blog.20.

Full text
Abstract:
The virus’ tricky, constantly mutating nature has so far made it impossible to develop an effective vaccine, even as the constantly improving antiviral drug classes have made HIV infection a manageable chronic health condition.
APA, Harvard, Vancouver, ISO, and other styles
2

Şeker, Muzaffer, Ali Özer, Zekeriya Tosun, Cem Korkut, and Mürsel Doğrul, eds. The Assessment Report on COVID-19 Global Outbreak. Türkiye Bilimler Akademisi, June 2020. http://dx.doi.org/10.53478/tuba.2020.119.

Full text
Abstract:
"In late December 2019, a large number of patients with unknown causes of pneumonia were reported by press from a seafood market in Wuhan, Hubei province, China. This coronavirus was originally named the 2019 new coronavirus (2019-nCoV) by the World Health Organization (WHO) on January 12, 2020. The Coronavirus Working Group (CSG) of the WHO and International Committee proposed to call the new virus SARS-CoV-2 on February 11, 2020. As a result of the samples taken from the patient, the whole genome sequence of the SARS-CoV-2 was isolated on January 7, 2020, by Chinese scientists in a short time. WHO announced on February 11, 2020; that “COVID-19” will become the official name of the disease. Tedros Adhanom Ghebreyesus, director of the WHO, said the epidemic meant “ko”, “corona”, “vi” for “virus” and “d” for “disease” as first described on December 31, 2019. Such a name has been preferred to avoid stigmatizing a particular region, animal species or human. The infection, which started to spread first in China and then in nearby countries, spread to most countries later on. The epidemic soon reached an international dimension, affecting the whole world. As a result, the WHO considered COVID-19 as an international public health problem and declared it as a pandemic on January 30, 2020. In humans, coronaviruses cause some cases of colds and respiratory infections that can be fatal, such as Severe Acute Respiratory Syndrome (SARS), Middle East Respiratory Syndrome (MERS), and Coronavirus disease 2019 (COVID-19). In recent years, new viral infections have been detected periodically in various countries. The first epidemic; was observed in 2002-2003 as a result of the crossing of a new coronavirus from bat origin to humans through palm civet cats in Guangdong Province, China. This virus, called SARS, affected a total of 8422 people in China and caused 916 deaths (11% mortality, however different rates are given in different literatures). The second epidemic event occurred approximately 10 years later. In 2012, the MERS coronavirus (MERS-CoV) emerged from bat origin through a dromedary camel in Saudi Arabia. It affected a total of 2494 people and caused 858 deaths (mortality rate of 34%). WHO has declared it as a pandemic after the outbreak and scientists are doing great efforts to identify the characterization of the new coronavirus and to develop antiviral therapies and vaccines. Clinical studies and vaccination studies are still ongoing fastly. Also, the pathogenesis of the virus is still not fully known, and new studies are needed in this regard. Currently, effective infection control intervention is the only way to prevent the spread of SARS-CoV-2. The most appropriate prophylactic regimen for patients under observation due to COVID-19 related disease is unknown. For this reason, treatment protocols should be planned by following the current guidelines. This study consists of evaluating the opinions about the history of pandemics associated with COVID-19, related definitions and the projects being carried out with the compilation of available resources, the development stages of the pandemic and the projection of postpandemic interaction so far."
APA, Harvard, Vancouver, ISO, and other styles
3

Şeker, Muzaffer, Ali Özer, Zekeriya Tosun, Cem Korkut, and Mürsel Doğrul, eds. COVID-19 Küresel Salgın Değerlendirme Raporu. Türkiye Bilimler Akademisi, June 2020. http://dx.doi.org/10.53478/tuba.2020.118.

Full text
Abstract:
"In late December 2019, a large number of patients with unknown causes of pneumonia were reported by press from a seafood market in Wuhan, Hubei province, China. This coronavirus was originally named the 2019 new coronavirus (2019-nCoV) by the World Health Organization (WHO) on January 12, 2020. The Coronavirus Working Group (CSG) of the WHO and Internati- onal Committee proposed to call the new virus SARS-CoV-2 on February 11, 2020. As a result of the samples taken from the patient, the whole genome sequence of the SARS-CoV-2 was isolated on January 7, 2020, by Chinese scientists in a short time. WHO announced on Febru- ary 11, 2020; that “COVID-19” will become the official name of the disease. Tedros Adhanom Ghebreyesus, director of the WHO, said the epidemic meant “ko”, “corona”, “vi” for “virus” and “d” for “disease” as first described on December 31, 2019. Such a name has been preferred to avoid stigmatizing a particular region, animal species or human. The infection, which started to spread first in China and then in nearby countries, spread to most countries later on. The epidemic soon reached an international dimension, affecting the whole world. As a result, the WHO considered COVID-19 as an international public health problem and declared it as a pandemic on January 30, 2020. In humans, coronaviruses cause some cases of colds and respiratory infections that can be fatal, such as Severe Acute Respiratory Syndrome (SARS), Middle East Respiratory Syndrome (MERS), and Coronavirus disease 2019 (COVID-19). In recent years, new viral infections have been detected periodically in various countries. The first epidemic; was observed in 2002-2003 as a result of the crossing of a new coronavirus from bat origin to humans through palm civet cats in Guangdong Province, China. This virus, called SARS, affected a total of 8422 people in China and caused 916 deaths (11% mortality, however different rates are given in different literatures). The second epidemic event occurred approximately 10 years later. In 2012, the MERS coronavirus (MERS-CoV) emerged from bat origin through a dromedary camel in Saudi Arabia. It affected a total of 2494 people and caused 858 deaths (mortality rate of 34%). WHO has declared it as a pandemic after the outbreak and scientists are doing great efforts to identify the characterization of the new coronavirus and to develop antiviral therapies and vaccines. Clinical studies and vaccination studies are still ongo- ing fastly. Also, the pathogenesis of the virus is still not fully known, and new studies are needed in this regard. Currently, effective infection control intervention is the only way to prevent the spread of SARS-CoV-2. The most appropriate prophylactic regimen for patients under observa- tion due to COVID-19 related disease is unknown. For this reason, treatment protocols should be planned by following the current guidelines. This study consists of evaluating the opinions about the history of pandemics associated with COVID-19, related definitions and the projects being carried out with the compilation of avai- lable resources, the development stages of the pandemic and the projection of postpandemic interaction."
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography