Academic literature on the topic 'Vacuum assisted resin transfer molding (VARTM)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Vacuum assisted resin transfer molding (VARTM).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Vacuum assisted resin transfer molding (VARTM)"

1

Chang, Chih-Yuan. "Numerical study of filling strategies in vacuum assisted resin transfer molding process." Journal of Polymer Engineering 35, no. 5 (June 1, 2015): 493–501. http://dx.doi.org/10.1515/polyeng-2014-0237.

Full text
Abstract:
Abstract During the filling process of vacuum assisted resin transfer molding (VARTM), the infusion pressure gradient causes the resin flow and preform thickness variation. Even after the resin infusion discontinues, the resin keeps on flowing until the unnecessary resin is removed. In this study, a one-dimensional flow model coupled to the preform deformation is numerically analyzed to assess the influences of various processing scenarios on the infusion and post-infusion stages. The numerical model is implemented using a finite difference method. Results show that two strategies effectively reduce the filling process. One is to infuse less excess resin and the other is to turn the inlet into the additional vent. For a typical process using a one-sided vent, the theoretically optimum scenario is to infuse the exact required resin volume into the preform. From a practical standpoint, excess resin infusion is inevitable and a robust scenario is proposed by integrating the concept of fully filled preform and two strategies. Additional cases are performed using a vacuum assisted compression RTM (VACRTM) process for comparison purposes. Through the numerical work, a tool for optimization of the VARTM process is provided to reduce the filling process, resin waste and variability in the final composite part.
APA, Harvard, Vancouver, ISO, and other styles
2

Chang, Chih-Yuan, and Hung-Jie Lin. "Unsaturated polyester/E-glass fiber composites made by vacuum assisted compression resin transfer molding." Journal of Polymer Engineering 32, no. 8-9 (December 1, 2012): 539–46. http://dx.doi.org/10.1515/polyeng-2012-0071.

Full text
Abstract:
Abstract A variant process incorporating the method of bag compression into resin transfer molding (RTM), called vacuum assisted compression RTM (VACRTM), has been developed to reduce the cycling period and improve the quality of the part. The process utilizes a flexible bag placed between the upper mold and the preform compared with RTM. By controlling the stretchable bag, the resin is easily introduced into the cavity filled with a loose preform. Then, ambient pressure is applied on the bag that compacts the preform and drives the resin through the remaining dry preform. The objective of this research is to explore the simplified VACRTM feasibility and investigate the effects of process variables, including resin temperature, resin infusion pressure, mold cavity height and cure temperature, on the mechanical strength of the part, by applying Taguchi’s method. The results show that VACRTM has advantages in terms of its being an easy and good seal among mold parts and the the lack of a need to clean the upper mold. The resin infusion pressure is a significant variable for improvement of the mechanical strength of the part. Optimal VACRTM reduces the filling time by 58% and increases the flexural strength by 10%, as compared with typical vacuum assisted RTM (VARTM).
APA, Harvard, Vancouver, ISO, and other styles
3

Xia, Changlei, Sheldon Q. Shi, Liping Cai, and Jun Hua. "Property enhancement of kenaf fiber composites by means of vacuum-assisted resin transfer molding (VARTM)." Holzforschung 69, no. 3 (April 1, 2015): 307–12. http://dx.doi.org/10.1515/hf-2014-0054.

Full text
Abstract:
Abstract This work was aimed at applying vacuum-assisted resin transfer molding (VARTM) technique to reinforced polymer molding products made of vegetable fibers. Kenaf (Hibiscus cannabinus L. Malvaceae) bast fibers were preformed into mat by means of a cold press. The unsaturated polyester resin was infused into the preforms at a vacuum pressure of 1.3–1.6 kPa. The examination of the mechanical properties and microstructure of the prepared composites indicated that the modulus of elasticity (MOE), modulus of rapture (MOR), and tensile strength (TS) of the VARTM composites were increased by 65.5%, 30.7%, and 41.7%, respectively, compared to the traditional hot-pressing composites. The dynamic mechanical analysis (DMA) revealed that the VARTM composite moduli in the temperature range of -50°C–200°C were doubled. The observations by scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and mercury porosimetry confirmed that the interfacial compatibility between the kenaf fibers and the polyester resin was substantially improved.
APA, Harvard, Vancouver, ISO, and other styles
4

Ouezgan, Ahmed, Said Adima, Aziz Maziri, El Hassan Mallil, and Jamal Echaabi. "Relaxation-Compression Resin Transfer Molding under Magnetic Field." Key Engineering Materials 847 (June 2020): 81–86. http://dx.doi.org/10.4028/www.scientific.net/kem.847.81.

Full text
Abstract:
Relaxation-compression resin transfer molding under magnetic field is a new variant of VARTM (“vacuum assisted resin transfer molding”) process, which uses a flexible magnetic membrane controlled by a magnetic force, in order to govern the relaxation and compression phases by changing the permeability of the fabric preform. Thus permits to the resin to enter easily into the mold and to increase the resin impregnation velocity and the fiber volume fraction. This innovation is based on the application of the TRIZ theory (“the theory of inventive problem solving”), which allows us to answer to the shortcomings and the conflict links exist inside the VARTM processes. The objective of this paper is to present this new process and to study the effect of the current intensity and the separated gap between the flexible magnetic membrane and solenoid on the permeability of the preform.
APA, Harvard, Vancouver, ISO, and other styles
5

Loudad, Raounak, Abdelghani Saouab, Pierre Beauchene, Romain Agogue, and Bertrand Desjoyeaux. "Numerical modeling of vacuum-assisted resin transfer molding using multilayer approach." Journal of Composite Materials 51, no. 24 (January 5, 2017): 3441–52. http://dx.doi.org/10.1177/0021998316687145.

Full text
Abstract:
Vacuum-assisted resin transfer molding (VARTM) is a very suitable solution for composite manufacturing industry. It allows the manufacturing of large and complex shape parts at low costs. However, the simulation of this process is complicated due to myriad physical phenomena involved, specifically the strong coupling between the resin flow and the preform compressibility, i.e. hydro-mechanical coupling. Moreover, the use of the distribution medium involves two types of flow: Planar flow and through-the-thickness flow. These flows cannot be considered together by a 2D model. On the other hand, 3D models require an important amount of computation time. This article presents a VARTM modeling approach that takes into account the hydro-mechanical coupling and the coexistence of planar and transverse flows. The proposed modeling approach allows the simulation of the infusion process in the case of multilayer preform with different materials and orientations, including the distribution medium. This model is validated experimentally based on several infusions.
APA, Harvard, Vancouver, ISO, and other styles
6

Kim, Yun Hae, Dong Hun Yang, Chang Won Bae, Kyung Man Moon, Young Dae Jo, Sung Won Yoon, and Hee Beom An. "Glass Fiber Permeability Using the VARTM Process." Advanced Materials Research 97-101 (March 2010): 1772–75. http://dx.doi.org/10.4028/www.scientific.net/amr.97-101.1772.

Full text
Abstract:
This study investigated a flow rate control system for the vacuum-assisted resin transfer molding (VARTM) process. Using Darcy’s equation, the permeability of multiaxial glass fiber composites is predicted and experimentally confirmed. The resin velocity vector is inversely proportional to the fiber mat length and resin viscosity, but proportional to the fiber mat permeability. In this study, the permeability of the preform and viscosity of the epoxy resin were measured using multiaxial glass fiber by VARTM. The permeability and time for impregnation differed according to the fiber direction in the VARTM process. The results indicated the need for further study of reinforcement fiber permeability in VARTM processing design.
APA, Harvard, Vancouver, ISO, and other styles
7

Sales, Rita de Cássia Mendonça, Silas Rodrigo Gusmão, Ricardo Francisco Gouvêa, Thomas Chu, José Maria Fernandez Marlet, Geraldo Maurício Cândido, and Maurício Vicente Donadon. "The temperature effects on the fracture toughness of carbon fiber/RTM-6 laminates processed by VARTM." Journal of Composite Materials 51, no. 12 (November 25, 2016): 1729–41. http://dx.doi.org/10.1177/0021998316679499.

Full text
Abstract:
The increasing use of composite in the aircraft industry has raised the interest for a better understanding of the failure process in these materials, which can be also influenced by the manufacturing process of the laminate. Some materials used in vacuum assisted resin transfer molding process have been studied in the open literature but very few data have been published for resin transfer molding-6 epoxy based laminates, in particular studies showing the influence of the temperature on the interlaminar fracture behavior of this type of laminates. The aim of this article is to investigate the interlaminar fracture behavior of resin transfer molding-6 based carbon composite laminates manufactured by vacuum assisted resin transfer molding subjected to Modes I and II at 25℃ and 80℃. The results show the influence of the temperature on the interlaminar fracture toughness of composites and provide a database to design composite aerostructures subjected to temperatures commonly experienced in civil aviation. The fracture aspects of the tested laminates were also investigated and directly related to the trend in results found for the fracture toughness values.
APA, Harvard, Vancouver, ISO, and other styles
8

Correia, N. C., F. Robitaille, A. C. Long, C. D. Rudd, P. Sˇima´cˇek, and S. G. Advani. "Use of Resin Transfer Molding Simulation to Predict Flow, Saturation, and Compaction in the VARTM Process." Journal of Fluids Engineering 126, no. 2 (March 1, 2004): 210–15. http://dx.doi.org/10.1115/1.1669032.

Full text
Abstract:
The present paper examines the analysis and simulation of the vacuum assisted resin transfer molding process (VARTM). VARTM differs from the conventional resin transfer molding (RTM) in that the thickness of the preform varies during injection affecting permeability and fill time. First, a governing equation for VARTM is analytically developed from the fundamental continuity condition, and used to show the relation between parameters in VARTM. This analytical work is followed by the development of a numerical 1-D/2-D solution, based on the flow simulation software LIMS, which can be used to predict flow and time dependent thickness of the preform by introducing models for compaction and permeability. Finally, the results of a VARTM experimental plan, focusing on the study of the influence of outlet pressure on compaction and fill time, are correlated with both the analytical and the numerical work. The present work also proposes an explanation for the similarities between VARTM and RTM and shows when modeling VARTM and RTM can result in an oversimplification.
APA, Harvard, Vancouver, ISO, and other styles
9

KIM, YUN-HAE, JIN-HO SON, BYUNG-KUN CHOI, YOUNG-DAE JO, KUK-JIN KIM, and JOONG-WON HAN. "EVALUATION OF MECHANICAL PROPERTIES OF CFRP BY VARTM AND ITS APPLICATION." International Journal of Modern Physics B 20, no. 25n27 (October 30, 2006): 3896–901. http://dx.doi.org/10.1142/s0217979206040556.

Full text
Abstract:
In the present study, we contrast the change of mechanical and physical properties between VaRTM (Vacuum Assisted Resin Transfer Molding) and hand lay-up process. In the results of mechanical tests, VaRTM specimen is stronger than hand lay-up specimen and hand lay-up specimen became delamination. In the results of physical tests, the resin content of VaRTM specimen is lower than hand lay-up specimen. On micrograph, the strength of specimen by VaRTM between fiber and resin is stronger than that of one by hand lay-up. And the specimen by hand lay-up contains more defects than one by VaRTM. So, VaRTM process can practically apply for automobile engine hood. This paper shows that VaRTM process is one of the most suitable processes for composite parts of automobile.
APA, Harvard, Vancouver, ISO, and other styles
10

Walsh, Shawn M., and Colin E. Freese. "Numerical model of relaxation during vacuum-assisted resin transfer molding (VARTM)." Polymer Composites 26, no. 5 (2005): 628–35. http://dx.doi.org/10.1002/pc.20135.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Vacuum assisted resin transfer molding (VARTM)"

1

Song, Xiaolan. "Vacuum Assisted Resin Transfer Molding (VARTM): Model Development and Verification." Diss., Virginia Tech, 2003. http://hdl.handle.net/10919/27168.

Full text
Abstract:
In this investigation, a comprehensive Vacuum Assisted Resin Transfer Molding (VARTM) process simulation model was developed and verified. The model incorporates resin flow through the preform, compaction and relaxation of the preform, and viscosity and cure kinetics of the resin. The computer model can be used to analyze the resin flow details, track the thickness change of the preform, predict the total infiltration time and final fiber volume fraction of the parts, and determine whether the resin could completely infiltrate and uniformly wet out the preform. Flow of resin through the preform is modeled as flow through porous media. Darcy's law combined with the continuity equation for an incompressible Newtonian fluid forms the basis of the flow model. During the infiltration process, it is well accepted that the total pressure is shared by the resin pressure and the pressure supported by the fiber network. With the progression of the resin, the net pressure applied to the preform decreases as a result of increasing local resin pressure. This leads to the springback of the preform, and is called the springback mechanism. On the other side, the lubrication effect of the resin causes the rearrangement of the fiber network and an increase in the preform compaction. This is called the wetting compaction mechanism. The thickness change of the preform is determined by the relative magnitude of the springback and wetting deformation mechanisms. In the compaction model, the transverse equilibrium equation is used to calculate the net compaction pressure applied to the preform, and the compaction test results are fitted to give the compressive constitutive law of the preform. The Finite Element/Control Volume (FE/CV) method is adopted to find the flow front location and the fluid pressure. The code features the ability of simultaneous integration of 1-D, 2-D and 3-D element types in a single simulation, and thus enables efficient modeling of the flow in complex mold geometries. VARTM of two flat composite panels was conducted to verify the simulation model. The composite panels were fabricated using the SAERTEX multi-axial warp knit carbon fiber fabric and SI-ZG-5A epoxy resin. Panel 1 contained one stack of the carbon fabric, and Panel 2 contained four stacks of the fabric. The parameters verified included the flow front location and preform thickness change. For Panel 1, the flow front locations were accurately predicted while the predicted resin infiltration was much slower than measured for Panel 2. The disagreement is attributed to the permeability model used in the simulation, which failed to consider the interface flow in the unstitched preform containing more than one stack of the fabric under very low compaction force. The predicted transverse displacements agree well with the experimental measurement qualitatively, but not quantitatively. The reasons for the differences were discussed, and further investigations are recommended to develop a more accurate compaction model. The simulation code was also used to investigate the VARTM of a new form of sandwich structure with through-the-thickness reinforcements, which is being considered for use in primary aircraft structure. The infiltration of three foam core sandwich preforms with different stitch densities was studied. The objective of the study was to determine whether the preforms could be completely infiltrated and how the stitch density affects the infiltration process. The visualization experiments were conducted to verify the simulation. The model accurately predicted the resin infiltration patterns. The calculated filling times underpredicted experimental times by 4 to 14%. The model revealed the resin flow details and found that increasing the stitch spacing shortens the total filling time, but increases the nonuniformity of the flow front shape. Extreme nonuniformity of the flow front shape could result in the formation of the voids.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
2

Sayre, Jay Randall. "Vacuum-Assisted Resin Transfer Molding (VARTM) Model Development, Verification, and Process Analysis." Diss., Virginia Tech, 2000. http://hdl.handle.net/10919/27034.

Full text
Abstract:
Vacuum-Assisted Resin Transfer Molding (VARTM) processes are becoming promising technologies in the manufacturing of primary composite structures in the aircraft industry as well as infrastructure. A great deal of work still needs to be done on efforts to reduce the costly trial-and-error methods of VARTM processing that are currently in practice today. A computer simulation model of the VARTM process would provide a cost-effective tool in the manufacturing of composites utilizing this technique. Therefore, the objective of this research was to modify an existing three-dimensional, Resin Film Infusion (RFI)/Resin Transfer Molding (RTM) model to include VARTM simulation capabilities and to verify this model with the fabrication of aircraft structural composites. An additional objective was to use the VARTM model as a process analysis tool, where this tool would enable the user to configure the best process for manufacturing quality composites. Experimental verification of the model was performed by processing several flat composite panels. The parameters verified included flow front patterns and infiltration times. The flow front patterns were determined to be qualitatively accurate, while the simulated infiltration times over predicted experimental times by 8 to 10%. Capillary and gravitational forces were incorporated into the existing RFI/RTM model in order to simulate VARTM processing physics more accurately. The theoretical capillary pressure showed the capability to reduce the simulated infiltration times by as great as 6%. The gravity, on the other hand, was found to be negligible for all cases. Finally, the VARTM model was used as a process analysis tool. This enabled the user to determine such important process constraints as the location and type of injection ports and the permeability and location of the high-permeable media. A process for a three-stiffener composite panel was proposed. This configuration evolved from the variation of the process constraints in the modeling of several different composite panels. The configuration was proposed by considering such factors as: infiltration time, the number of vacuum ports, and possible areas of void entrapment.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
3

Grimsley, Brian William. "Characterization of the Vacuum Assisted Resin Transfer Molding Process for Fabrication of Aerospace Composites." Thesis, Virginia Tech, 2005. http://hdl.handle.net/10919/36062.

Full text
Abstract:
This work was performed under a cooporative research effort sponsored by the National Aeronautics and Space Administration (NASA) in conjunction with the aerospace industry and acedemia. One of the primary goals of NASA is to improve the safety and affordability of commercial air flight. Part of this goal includes research to reduce fuel consumption by developing lightweight carbon fiber, polymer matrix composites to replace existing metallic airframe structure. In the Twenty-first Aircraft Technology Program (TCAT) efforts were focused on developing novel processing methods to fabricate tailored composite airframe structure. The Vacuum Assisted Resin Transfer Molding (VARTM) processing technique offers a safer, more affordable alternative to manufacture large scale composite fuselages and wing structures. Vacuum assisted resin transfer molding is an infusion process originally developed for manufacturing of composites in the marine industry. The process is a variation of Resin Transfer Molding (RTM), where the rigid matched metal tooling is replaced on one side with a flexible vacuum bag. The entire process, including infusion and consolidation of the part, occurs at atmospheric pressure (101.5 kPa). High-performance composites with fiber volumes in the range of 45% to 50% can be achieved without the use of an autoclave. The main focus of the VARTM process development effort was to determine the feasibility of manufacturing aerospace quality composites with fiber volume fractions approaching 60%. A science-based approach was taken, utilizing finite element process models to characterize and develop a full understanding of the VARTM infusion process as well as the interaction of the constituent materials. Achieving aerospace quality composites requires further development not only of the VARTM process, but also of the matrix resins and fiber preforms. The present work includes an investigation of recently developed epoxy matrix resins, including the characterization of the resin cure kinetics and flow behaviors. Two different fiber preform architectures were characterized to determine the response to compaction under VARTM conditions including a study to determine the effect of thickness on maximum achievable fiber volume fraction. Experiments were also conducted to determine the permeabilities of these preforms under VARTM flow conditions. Both the compaction response and the permeabilities of the preforms were fit to empirical models which can be used as input for future work to simulate VARTM infusion using process models. Actual infusion experiments of these two types preforms were conducted using instrumented tools to determine the pressures and displacements that occur during VARTM infiltration. Flow experiments on glass tooling determined the fill-times and flow front evolution of preform specimens of various thicknesses. The results of these experiments can be used as validation of process model infusion simulations and to verify the compaction and permeability empirical models. Panels were infused with newly developed epoxy resins, cured and sectioned to determine final fiber volume fractions and part quality in an effort to verify both the infusion and compaction experimental data. The preforms characterized were found to have both elastic and inelastic compression response. The maximum fiber volume fraction of the knitted fabrics was dependent on the amount of stacks in the preform specimen. This relationship was found in the determination of the Darcy permeabilities of the preforms. The results of the characterization of the two epoxy resin systems the show that the two resins have similar minimum viscosities but significantly different curing behaviors. Characterization of the VARTM process resulted in different infusion responses in the two preform specimens investigated. The response of the saturated preform to a recompaction after infusion indicated that a significant portion of the fiber volume lost during infusion could be recovered. Fiber volume and void-content analysis of flat composite panels fabricated in VARTM using the characterized resins and preforms resulted in void-free parts with fiber volumes over 58%. Results in the idealized compaction tests indicated fiber volumes as high as 60% were achievable with the knitted fabric. The work over the presented here has led to a more complete understanding of the VARTM process but also led to more questions concerning its feasibility as an aerospace composite manufacturing technique.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
4

McGrane, Rebecca Ann. "Vacuum Assisted Resin Transfer Molding of Foam Sandwich Composite Materials: Process Development and Model Verification." Thesis, Virginia Tech, 2001. http://hdl.handle.net/10919/42108.

Full text
Abstract:
Vacuum assisted resin transfer molding (VARTM) is a low cost resin infusion process being developed for the manufacture of composite structures. VARTM is being evaluated for the manufacture of primary aircraft structures, including foam sandwich composite materials. One of the benefits of VARTM is the ability to resin infiltrate large or complex shaped components. However, trial and error process development of these types of composite structures can prove costly and ineffective. Therefore, process modeling of the associated flow details and infiltration times can aide in manufacturing design and optimization. The purpose of this research was to develop a process using VARTM to resin infiltrate stitched and unstitched dry carbon fiber preforms with polymethacrylimide foam cores to produce composite sandwich structures. The infiltration process was then used to experimentally verify a three-dimensional finite element model for VARTM injection of stitched sandwich structures. Using the processes developed for the resin infiltration of stitched foam core preforms, visualization experiments were performed to verify the finite element model. The flow front progression as a function of time and the total infiltration time were recorded and compared with model predictions. Four preform configurations were examined in which foam thickness and stitch row spacing were varied. For the preform with 12.7 mm thick foam core and 12.7 mm stitch row spacing, model prediction and experimental data agreed within 5%. The 12.7 mm thick foam core preform with 6.35 mm row spacing experimental and model predicted data agreed within 8%. However, for the 12.7 mm thick foam core preform with 25.4 mm row spacing, the model overpredicted infiltration times by more 20%. The final case was the 25.4 mm thick foam core preform with 12.7 mm row spacing. In this case, the model overpredicted infiltration times by more than 50%. This indicates that the model did not accurately describe flow through the needle perforations in the foam core and could be addressed by changing the mesh elements connecting the two face sheets.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
5

Saw, Kee Hong. "Simulation on filling pattern of vacuum assisted resin transfer molding (VARTM) for sectional wind blade shells." Thesis, Wichita State University, 2012. http://hdl.handle.net/10057/5610.

Full text
Abstract:
The Vacuum Assisted Resin Transfer Molding (VARTM) process is one of the most common and economical processes which has been adapted by many wind blade manufacturers. The significant advantages for this process primarily owed to its simplicity as well as its lower cost of operation. Nevertheless, there are several potential drawbacks from this process such as the delamination and the dryspot issues. The dryspot issue will be the main focus in this thesis. In this thesis, the methodology includes 3-D solid modeling, finite element modeling and injection simulations. Throughout the framework of this thesis, 3-D non-isothermal conditions would be implemented and double core framework will be incorporated within the sectional blade shells. The standard design of the blade is directly adapted from the Wind PACT Blade Designs. [1] The modeling work involves the use of CATIA V5 CAD modeling software to create a single full half wind blade shell which later sectioned to two sections. The sectional wind blade shells were equally divided right at the mid-span of the full blade namely, the root section and the tip section of the wind blade shells. Finite element modeling was also incorporated through the use of PATRAN 2008 r2 while the injection simulation is directly simulated through ESI Group of PAM RTM software. The results from the simulation were discussed and analyzed. Post analysis involves recommended solutions toward the issues found throughout the manufacturing process. Future works were also discussed in the final conclusions to provide potential future development study in the VARTM process.
Thesis (M.S.)--Wichita State University, College of Engineering, Dept. of Mechanical Engineering
APA, Harvard, Vancouver, ISO, and other styles
6

Robinson, Marc J. "Simulation of the vacuum assisted resin transfer molding (VARTM) process and the development of light-weight composite bridging." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2008. http://wwwlib.umi.com/cr/ucsd/fullcit?p3336692.

Full text
Abstract:
Thesis (Ph. D.)--University of California, San Diego, 2008.
Title from first page of PDF file (viewed January 9, 2009). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references (p. 482-492).
APA, Harvard, Vancouver, ISO, and other styles
7

Larsson, Turtola Simon, and Adam Rönnbäck. "Utredning av tillverkningsinducerade avvikelser i fiberförstärkt komposit genom blandningsexperiment : En fallstudie enligt DMAIC vid ABB Composites." Thesis, Luleå tekniska universitet, Institutionen för ekonomi, teknik och samhälle, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-80031.

Full text
Abstract:
Tillämpningen av fiberförstärkt polymerkomposit har senaste decenniet ökat kraftigt inom flertalet högteknologiska branscher. Trots framgången är förekomsten av tillverkningsinducerade avvikelser fortfarande en utmaning. Avvikelserna försämrar materialets mekaniska egenskaper och förkortar dess livslängd, vilket orsakar kassationer, miljöbelastningar och försvårad produktetablering för industriaktörer. ABB Composites i Piteå står inför en liknande situation. Företaget producerar cylindriska isolatorer i fiberförstärkt komposit till högspänningsindustrin, och behöver utreda förekomsten av en specifik avvikelse, som under senaste tre åren medfört omfattande kvalitetsbristkostnader. Produkten tillverkas genom vakuuminjicering där en hartsblandning impregnerar en glasfiberform, för att sedan övergå från flytande till fast form genom en exoterm reaktion. Hartsblandningens reaktionsförlopp har länge misstänkts påverka avvikelsernas förekomst, men har inte bekräftats, på grund av flera svårkontrollerade egenskaper. Examensarbetets syfte har därför varit att utreda om hartsblandningens egenskaper påverkar förekomsten av tillverkningsinducerade avvikelser vid tillverkning av cylindriska isolatorer. Arbetet har bedrivits som ett Sex Sigma-projekt enligt problemlösningsmetodiken DMAIC. Ett blandningsexperiment med sex komponenter genomfördes i laborationsmiljö där en datagenererad design med 36 delförsök tillämpades, varav sex stycken egenskaper hos hartsblandningen undersöktes. Experimentet påvisade att samtliga egenskaper var möjliga att styra genom att förändra proportionerna av ingredienserna. Däremot visade sig flera av egenskaperna vara korrelerade och kan därav inte justeras oberoende av varandra. Kunskapen användes till att utveckla och testa två nya varianter av hartsblandningen vid tillverkning av cylindriska isolatorer. Resultatet bekräftade att hartsblandningens egenskaper signifikant påverkar förekomsten av tillverkningsinducerade avvikelser. En viss kombination av egenskaperna som kännetecknade ett långsamt reaktionsförlopp minskade förekomsten av avvikelser på isolatorerna med 99.3 procent i jämförelse med den ordinarie hartsblandningen. Förbättringen förväntas medföra betydelsefulla besparingar, ökad konkurrenskraft och förhöjd kvalitetsmedvetenhet för ABB Composites. Examensarbetets kunskapsbidrag anses också betydelsefullt för kompositindustrin i strävan mot fortsatt reducering av tillverkningsinducerade avvikelser.
The application of fibre-reinforced polymer composites (FRPC) have during the last decades increased in many high-tech industries. Despite the success, the existence of manufacturing-induced deviations has been a long-standing challenge. These deviations affect the lifetime and the mechanical properties of the composite, which in turn lead to scrap of products and environmental impact, obstructing market exploitation for industry stakeholders. ABB Composites in Piteå is facing a similar scenario. The company produces cylindrical insulators in fibre-reinforced composite for the high-voltage industry and need to investigate a specific deviation, which has caused extensive costs during the last three years. The product is manufactured through vacuum assisted resin transfer molding (VARTM), where a resin blend impregnates a fibreglass preform, as the resin cures and transforms from liquid to solid form through an exothermic reaction. One suspected cause for the deviation has been the curing process of the resin. However, it is dependent on several difficult-to-control characteristics and is yet to be confirmed. The purpose of this thesis has therefore been to investigate whether the characteristics of the resin blend affects the occurrence of manufacturing-induced deviations while producing cylindrical insulators. The work has been conducted as an internal Six Sigma-project following the DMAIC improvement cycle. A mixture experiment with six components was performed, using a computer-generated design with 36 runs, in which six characteristics of the resin blend were examined. The experiment proved that all characteristics could be controlled by changing the proportions of the design factors. However, many of the characteristics were correlated, implying that the characteristics cannot be independently controlled. The knowledge from the experiment were used to develop two new resin blends, which were infused to cylindrical insulators in regular production environment. The result confirmed that the characteristics of the resin blend significantly affects the quality of the insulator. One of the blends, which represented a slower curing process, reduced the deviations by 99.3 percent in relation to the original blend. The improvement is expected to generate substantial savings, increased competitiveness and enhanced quality awareness for ABB Composites. Possible contributions to the industry are related to the development of a method to experimentally investigate the resin blend with the objective of reducing manufacturing-induced deviations.
APA, Harvard, Vancouver, ISO, and other styles
8

Sun, Xiudong. "Analysis of vacuum-assisted resin transfer molding /." The Ohio State University, 1998. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487950658548618.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Al, Omari Ali. "Effect of vacuum level on the vacuum-assisted resin transfer molding process." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape8/PQDD_0002/MQ43656.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Vogt, Christian. "An experimental cost model for composite parts using vacuum assisted resin transfer moulding (VARTM)." Thesis, Stellenbosch : University of Stellenbosch, 2011. http://hdl.handle.net/10019.1/6579.

Full text
Abstract:
Thesis (MScEng (Mechanical and Mechatronic Engineering))--University of Stellenbosch, 2011.
ENGLISH ABSTRACT: Vacuum assisted resin transfer moulding (VARTM) belongs to the category of resin infusion techniques that use lower than atmospheric pressure to infiltrate a reinforced cavity. This technique has various advantages; however, manufacturing costs can be relatively high due to more difficult shapes fabricated and a lack of knowledge regarding cost driving factors. The objective of this study was to develop a cost model for composite parts. Such a model allows the estimation of manufacturing costs of shapes of different geometries. Therefore, it provides a comparison to alternative manufacturing techniques, such as metal forming or composite spray lay-up and helps to avoid unnecessarily expensive design features. The proposal was made to split complex shaped composite parts into individual basic shapes, which are further investigated here. For the basic shapes, an experimental approach was used where the manufacturing times of each process step are measured and then statistically analysed. Infusion simulation software was used to obtain additional filling times to complete the design of experiments. This method allows the estimation of manufacturing times of composite parts with different geometries. The manufacturing times were validated to that of a complex shaped industrial part, with reasonable results. Finally, a flexible cost model was developed to compare different manufacturing techniques and to estimate the manufacturing costs.
AFRIKAANSE OPSOMMING: Vakuumgesteunde harsinspuitingsgietwerk (VARTM) behoort tot die kategorie harsinspuitingstegnieke wat laer-as-atmosferiese druk gebruik om ʼn versterkte holte binne te dring. Hierdie tegniek hou verskeie voordele in. Tog kan vervaardigingskoste betreklik hoog wees wanneer dit by ingewikkelder vorms en ʼn gebrek aan kennis met betrekking tot kostesnellers kom. Die doelwit van hierdie studie was om ʼn kostemodel vir saamgestelde onderdele te ontwikkel. Die model maak voorsiening vir die raming van die vervaardigingskoste vir verskillende afmetings. Sodoende bied dit ʼn vergelyking met alternatiewe tegnieke, en help voorkom onnodig duur ontwerpkenmerke. Daar is voorgestel dat dele met ingewikkelde vorms in individuele basiese vorms verdeel word, wat dan hier verder ondersoek word. Vir die basiese vorms word ʼn eksperimentele benadering gebruik waar die vervaardigingstye in elke prosesstap gemeet en statisties ontleed word. Voorts word inspuitingsimulasiesagteware gebruik om komplementêre inspuitingstye te bepaal ten einde die eksperimentele ontwerp te voltooi. Hierdie metode maak dit ook moontlik om die vervaardigingstye vir saamgestelde materiaal onderdele van verskillende afmetings te raam. Die vervaardigingstye word dan bevestig aan die hand van dié van ʼn kompleks gevormde industriële onderdeel, met redelike resultate. Uiteindelik word ʼn buigsame kostemodel ontwikkel om verskillende vervaardigingstegnieke te vergelyk en die vervaardigingskoste te raam.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Vacuum assisted resin transfer molding (VARTM)"

1

An Analytical Vacuum-Assisted Resin Transfer Molding (VARTM) Flow Model. Storming Media, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Vacuum assisted resin transfer molding (VARTM)"

1

Kuratani, Yasunari, Kentaro Hase, Tomoe Kawazu, Aya Miki, Norimich Nanami, Hayato Nakatani, and Hiroyuki Hamada. "Comparison of Worker’s Skill During Vacuum-Assisted Resin Transfer Molding Using Motion Analysis." In Advances in Ergonomics of Manufacturing: Managing the Enterprise of the Future, 398–406. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-60474-9_37.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hsiao, K. T., and D. Heider. "Vacuum assisted resin transfer molding (VARTM) in polymer matrix composites." In Manufacturing Techniques for Polymer Matrix Composites (PMCs), 310–47. Elsevier, 2012. http://dx.doi.org/10.1533/9780857096258.3.310.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Uddin, N., S. Cauthen, L. Ramos, and U. K. Vaidya. "Vacuum assisted resin transfer molding (VARTM) for external strengthening of structures." In Developments in Fiber-Reinforced Polymer (FRP) Composites for Civil Engineering, 77–114. Elsevier, 2013. http://dx.doi.org/10.1533/9780857098955.1.77.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Glancey, James. "Vacuum-Assisted Resin Transfer Molding." In Innovations in Materials Manufacturing, Fabrication, and Environmental Safety, 531–44. CRC Press, 2010. http://dx.doi.org/10.1201/b10386-19.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Vacuum assisted resin transfer molding (VARTM)"

1

Mohamed, M., R. R. Vuppalapati, S. Hawkins, K. Chandrashekhara, and T. Schuman. "Impact Characterization of Polyurethane Composites Manufactured Using Vacuum Assisted Resin Transfer Molding." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-88267.

Full text
Abstract:
Glass fiber reinforced composites are finding various applications due to their high specific stiffness/strength, and corrosion resistance. Vacuum assisted resin transfer molding (VARTM) is one of the commonly used low cost composite manufacturing processes. Polyurethane (PU) resin system has been observed to have better mechanical properties and higher impact strength when compared to conventional resin systems such as polyester and vinyl ester. Until recently, PU could not be used in composite manufacturing processes such as VARTM due to its low pot life. In the present work, a thermoset PU resin systems with longer pot life developed by Bayer MaterialScience is used. Glass fiber reinforced PU composites have been manufactured using one part PU resin system. Performance evaluation was conducted on these composites using tensile, flexure and impact tests. Finite element simulation was conducted to validate the mechanical tests. Results showed that PU composites manufactured using novel thermoset PU resins and VARTM process will have significant applications in infrastructure and automotive industries.
APA, Harvard, Vancouver, ISO, and other styles
2

Heider, Dirk, A. Graf, Bruce K. Fink, and John W. Gillespie, Jr. "Feedback control of the vacuum-assisted resin transfer molding (VARTM) process." In Nondestructive Evaluation Techniques for Aging Infrastructures & Manufacturing, edited by David M. Pepper. SPIE, 1999. http://dx.doi.org/10.1117/12.339956.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Fuqua, Michael, and James L. Glancey. "A Port Injection Process for Improved Resin Delivery and Flow Control in Vacuum-Assisted Resin Transfer Molding." In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-14422.

Full text
Abstract:
Vacuum Assisted Resin Transfer Molding (VARTM) is used to produce high quality composite parts at lower cost than other manufacturing methods. However, traditional VARTM injection methods are incapable of accounting for variations in preform permeability within a mold. As a result, creating complex components is a labor intensive and expensive process often requiring a trial and error approach to insure complete infusion of the preform fibers. To address this limitation, a new system for delivering resin to a VARTM mold using a series of ports in the tooling surface rather than traditional injection lines has been developed. A port injection process has been designed that utilizes a closed loop control system of ports and sensors built into the mold. Finite element models of this new process indicate complete infusion can consistently be achieved, even for mold lay-ups with large variations in permeability. Results indicate the system is capable of identifying and accounting for preform variability, and correctly delivering resin to low permeability regions usually unfilled with conventional VARTM. In addition, this new technique significantly reduces lay-up time and total time to infuse a part. Experiments with a prototype lab-scale mold have been used to validate the performance of this new injection process. Unlike a conventional VARTM setup, the innovative port injection process can deliver resin to any location within the mold, thus reducing the potential for dry regions and improving part quality and consistency.
APA, Harvard, Vancouver, ISO, and other styles
4

Correia, N. C., F. Robitaille, A. C. Long, C. D. Rudd, P. Sˇima´cˇek, and S. G. Advani. "Use of Resin Transfer Molding Simulation to Predict Flow, Saturation and Compaction in the VARTM Process." In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-39696.

Full text
Abstract:
Vacuum Assisted Resin Transfer Molding (VARTM) and Resin Transfer Molding (RTM) are among the most significant and widely used Liquid Composite manufacturing processes. In RTM preformed-reinforcement materials are placed in a mold cavity, which is subsequently closed and infused with resin. RTM numerical simulations have been developed and used for a number of years for gate assessment and optimization purposes. Available simulation packages are capable of describing/predicting flow patterns and fill times in geometrically complex parts manufactured by the resin transfer molding process. Unlike RTM, the VARTM process uses only one sided molds (tool surfaces) where performs are placed and enclosed by a sealed vacuum bag. To improve the delivery of the resin, a distribution media is sometimes used to cover the preform during the injection process. Attempts to extend the usability of the existing RTM algorithms and software packages to the VARTM domain have been made but there are some fundamental differences between the two processes. Most significant of these are 1) the thickness variations in VARTM due to changes in compaction force during resin flow 2) fiber tow saturation, which may be significant in the VARTM process. This paper presents examples on how existing RTM filling simulation codes can be adapted and used to predict flow, thickness of the preform during the filling stage and permeability changes during the VARTM filling process. The results are compared with results obtained from an analytic model as well as with limited experimental results. The similarities and differences between the modeling of RTM and VARTM process are highlighted.
APA, Harvard, Vancouver, ISO, and other styles
5

Kasprzak, Scott, John Nasr, Michael Fuqua, and Jim Glancey. "A Robotic System for Real-Time Resin Flow Modification During Vacuum-Assisted Resin Transfer Molding." In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-14411.

Full text
Abstract:
To complement existing resin flow control strategies currently under development for Vacuum-Assisted Resin Transfer Molding (VARTM), and to provide the ability to react to unexpected changes in resin behavior during injection, a new technique for resin flow manipulation has been investigated. This approach consists of a semi-cylindrical shaped vacuum chamber placed on a mold which, when evacuated, increases the permeability of the region under the chamber by lifting the bag atop the mold. A finite element model has been developed to predict the resin flow within the mold while using the external chamber. Laboratory testing has shown significant modification in resin flow with reduced injection time. Using the external chamber, a robotic system has been prototyped that identifies dry regions forming during injection via computer vision, deploys the vacuum chamber over the mold with a robotic arm, and actuates the chamber in order to modify and correct the resin flow within the mold. Test results using lab-scale molds with large variations in preform permeabilities indicate that the robotic system can correct and/or modify the resin flow within a mold in real time, thus eliminating dry, unimpregnated regions. This computer-based method has the potential to significantly enhance molded part quality and consistency by eliminating resin starved regions within a molded composite part.
APA, Harvard, Vancouver, ISO, and other styles
6

Adhikari, Debabrata, and Suhasini Gururaja. "Transient Analysis of In-Plane and Through Thickness Flow During VARTM in the Presence of HPM." In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-37628.

Full text
Abstract:
Modeling resin flow for a Vacuum Assisted Resin Transfer Molding (VARTM) process involves developing an approach for coupled flow-compaction, porosity-permeability, resin-cure and stress-development phenomena. In the present work, a modified transient incompressible resin flow model has been developed for VARTM without considering the constant flow rate assumption. The use of High Permeability Medium (HPM) during VARTM results in a through-thickness flow in addition to in-plane flow developing due to the pressure gradient. Results have been validated with existing literature. Fill time comparisons for with and without HPM cases have been presented. Some preliminary results of 2D plane flow have also been obtained which show promise in replicating the physics of vacuum assisted resin infusion composite manufacturing process.
APA, Harvard, Vancouver, ISO, and other styles
7

Zhang, Yuhong, Sergey Lopatnikov, and Dirk Heider. "Modeling of Distribution Media and Vacuum Bag Properties on Permeability Variations During Vacuum Assisted Resin Transfer Molding (VARTM)." In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-82732.

Full text
Abstract:
This paper investigates the deformation of the vacuum film into the distribution media, its effect on the change of the unit cell porosity and ultimately the reduction of permeability of the overall system in a Vacuum Assisted Resin Transfer Molding (VARTM) process. Experimental results have shown the obvious effects of the vacuum bagging penetration into the distribution media on permeability; however, there is no analytical model to explicitly characterize this phenomenon. In this paper, we proposed an analytical model to capture the vacuum film penetration into the distribution media based on an energy approach for the first time, and then we connect this analytical model with Carman-Kozeny equation to predict the permeability variations in terms of the parameters of plastic vacuum bag and distribution media. Design curves are obtained in parametric studies to predict the permeability reduction as a function of bag modulus and thickness, and distribution media geometry. These reduction factors can be used in flow simulations to accurately predict the resin filling time for a wide variety of distribution media/flexible bag systems. Simulation results are compatible with observations from the preliminary experiment results.
APA, Harvard, Vancouver, ISO, and other styles
8

Pishvar, Maya, Mehrad Amirkhosravi, and M. Cengiz Altan. "Applying Magnetic Consolidation Pressure During Cure to Improve Laminate Quality: A Comparative Analysis of Wet Lay-Up and Vacuum Assisted Resin Transfer Molding Processes." In ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-72019.

Full text
Abstract:
This paper presents the application of a new technique, Magnet Assisted Composite Manufacturing (MACM), to enhance the quality of composite laminates fabricated by wet lay-up/vacuum bag (WLVB) and vacuum assisted resin transfer molding (VARTM). Towards this goal, a set of high-power, Neodymium permanent magnets, which are placed on a magnetic tool plate, is applied on the vacuum bag/lay-up. To further demonstrate the effectiveness of MACM, six-ply random mat, E-glass/epoxy composite laminates are produced under four processing scenarios: (i) Conventional WLVB; (ii) WLVB with magnetic consolidation; (iii) Conventional VARTM; and (iv) VARTM with magnetic consolidation. Applying magnetic consolidation pressure is found to be a convenient and efficient method for enhancing the overall quality of the laminates fabricated by WLVB and VARTM. For instance, in WLVB-MACM process, fiber volume fraction improves by 98% to 49% and void content reduces from 5% to less than 1.5% compared to conventional WLVB. These two factors lead to substantially increased mechanical properties of the WLVB-MACM laminates to a level comparable to those achieved by the higher-cost VARTM-MACM process.
APA, Harvard, Vancouver, ISO, and other styles
9

Sharma, Sanjay, and Dennis A. Siginer. "VARTM Process Improvement for Repeatable and Improved Mechanical Properties of Composite Laminates." In ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-12593.

Full text
Abstract:
Quality of laminates produced by Seeman Composite Resin Infusion Molding Process (SCRIMP) is studied by comparing their Fiber Volume fraction and void content. SCRIMP is a variant of Vacuum Assisted Resin Transfer Molding (VARTM). Manufacturing process parameters are then identified and varied to study the impact on mechanical properties of laminated composites. Modification to SCRIMP is carried out by infusing the resin under additional pressure. Optimal process parameters for this modified SCRIMP process are suggested to yield laminates that are repeatable and consistent in quality. Void content is reduced in the composite laminates by altering the vacuum pressure level. Thickness gradient commonly found in SCRIMP processed laminates is eliminated by allowing longer de-bulking time. Final laminate quality is measured using ASTM standardized mechanical testing.
APA, Harvard, Vancouver, ISO, and other styles
10

Ntakobatagize, Francois, Oscar Ntakontagize, and Donald Klosterman. "The Effect of Fabric Architecture on the Processing and Properties of Composites Made By Vacuum Assisted Resin Transfer Molding (VARTM)." In SAMPE 2019 - Charlotte, NC. SAMPE, 2019. http://dx.doi.org/10.33599/nasampe/s.19.1586.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Vacuum assisted resin transfer molding (VARTM)"

1

Larimore, Zachary J., Jr Holmes, and Larry R. Tailoring Fiber Volume Fraction of Vacuum-assisted Resin Transfer Molding Processed Composite Laminates by Bladder-bag Resin Reservoir. Fort Belvoir, VA: Defense Technical Information Center, November 2012. http://dx.doi.org/10.21236/ada570166.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wang, Ben. Development of a High-Temperature Vacuum Assisted Resin Transfer Molding Testbed for Aerospace Grade Composites. Fort Belvoir, VA: Defense Technical Information Center, November 2005. http://dx.doi.org/10.21236/ada440199.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Fink, Bruce K., Roopesh Mathur, Dirk Heider, Christian Hoffman, John W. Gillespie, and Jr. Experimental Validation of a Closed-Form Fluid Flow Model for Vacuum-Assisted Resin-Transfer Molding. Fort Belvoir, VA: Defense Technical Information Center, May 2001. http://dx.doi.org/10.21236/ada395181.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Spurgeon, William A. Thickness and Reinforcement Fiber Content Control in Composites by Vacuum-Assisted Resin Transfer Molding Fabrication Processes. Fort Belvoir, VA: Defense Technical Information Center, June 2005. http://dx.doi.org/10.21236/ada436340.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Juska, Thomas, and Steve Mayes. A Post-Cure Study of Glass/Vinyl Ester Laminates Fabricated by Vacuum Assisted Resin Transfer Molding. Fort Belvoir, VA: Defense Technical Information Center, March 1995. http://dx.doi.org/10.21236/ada298742.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography