Academic literature on the topic 'Vacuum cleaner'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Vacuum cleaner.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Vacuum cleaner"
Choi, Seobin, and Gwanseob Shin. "Center of mass location of stick vacuum cleaners affects physical demands during floor vacuuming." Proceedings of the Human Factors and Ergonomics Society Annual Meeting 60, no. 1 (September 2016): 1014–17. http://dx.doi.org/10.1177/1541931213601235.
Full textNakada, Seiichi, Hiromi Yoshikawa, Hiroshi Ohno, Tsuneo Nishijima, and Hiroshi Kawakami. "Vacuum cleaner." Journal of the Acoustical Society of America 77, no. 2 (February 1985): 778. http://dx.doi.org/10.1121/1.392284.
Full textKumar, Sanjay, Wong Sze Wing, and Heow Pueh Lee. "Psychoacoustic Analysis of Vacuum Cleaner Noise." Acoustics 3, no. 3 (August 4, 2021): 545–59. http://dx.doi.org/10.3390/acoustics3030035.
Full textJin, Hong Yan, and Zhi Wei Zhu. "Design of Household Multi-Function Vacuum Cleaner." Advanced Materials Research 945-949 (June 2014): 266–69. http://dx.doi.org/10.4028/www.scientific.net/amr.945-949.266.
Full textOmori, Mikio, and Hiroshi Uzawa. "Brush Vacuum Cleaner." JAPAN TAPPI JOURNAL 51, no. 2 (1997): 310–13. http://dx.doi.org/10.2524/jtappij.51.310.
Full textUlrich, Iwan, Francesco Mondada, and J. D. Nicoud. "Autonomous vacuum cleaner." Robotics and Autonomous Systems 19, no. 3-4 (March 1997): 233–45. http://dx.doi.org/10.1016/s0921-8890(96)00053-x.
Full textQuigley, Michael N. "Vacuum syringe cleaner." Journal of Chemical Education 68, no. 6 (June 1991): 520. http://dx.doi.org/10.1021/ed068p520.
Full textCarlson, C., and E. K. St. Louis. "Vacuum cleaner epilepsy." Neurology 63, no. 1 (July 12, 2004): 190–91. http://dx.doi.org/10.1212/01.wnl.0000132517.37505.73.
Full textKim, Jang Seok. "Research on Tick Vacuum cleaner design preference for Vacuum cleaner." KOREA SCIENCE & ART FORUM 19 (March 31, 2015): 203. http://dx.doi.org/10.17548/ksaf.2015.03.19.203.
Full textHu, Shu Jen, Ling Huey Su, James C. Chen, and Chih Yao Wei. "Innovative Vacuum Cleaner Design Using TRIZ Method." Advanced Materials Research 690-693 (May 2013): 3372–76. http://dx.doi.org/10.4028/www.scientific.net/amr.690-693.3372.
Full textDissertations / Theses on the topic "Vacuum cleaner"
Bergman, Joel, and Johan Lind. "Robot Vacuum cleaner." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-264502.
Full textÄven om robot dammsugare är en välkänd produkt är produktutveckling fortfarande intressant. Bättre sensorer och mer sofistikerade algoritmer och sensorer används i dammsugare. Syftet med denna avhandling var att lära sig mer om olika dammsugare, algoritmer och konstruktioner av robot dammsugare, för att prova idéer och möjliga hitta förbättringar att implementera på demonstranten. Det första arbetet var att göra en marknadsundersökning för att hitta kundens behov och förväntningar. Även att göra en grov design och layout för det mekaniska och elektriska systemet. Budgeteringen för demonstranten var 1000 kr. Kostnaderna översteg inte budgeten eftersom vi använde oss av laser skurna plastplattor, 3D-printade delar och erhöll motorer utan kostnad. Sex olika avhandlingar studerades för att hitta svar på några av frågorna. Avhandlingarna studerade ämnen som körmönster och mönster för att hitta tillbaka till laddstationen. Vissa idéer för körmönster implementerades på demonstranten. Den använda utvecklingsmetoden var iteration av att hitta användbar information, testa komponenter, koder och även den fullständiga demonstranten. De komponenter som användes var likströmsmotor, stegmotorer, ultraljudssensorer, Arduino mega-mikrokontroller, strömbrytare och AA-batterier. De olika komponenterna krävde olika spänningar och stegmotorn använder ett specifikt drivkort.
Torgilsman, Christoffer, and Eric Bröndum. "Ethical Hacking of a Robot Vacuum Cleaner." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-277918.
Full textDen här studien kretsar kring IoT enheters säkerhet, mer specifikt hur säker robotdammsugaren Ironpie m6 är. Metoden är baserad på att hotmodellera enheten med hjälp av DREAD och STRIDE modellerna. Dem allvarligaste hoten blev penetrationstestade för att se vilka säkerhetsåtgärder som har blivit implementerade for att skydda produkten från dem. En sårbarhet upptäcktes i Trifos mobilapplikation ”Trifo Home” som kunde exploiteras via manipulation av klient sidan. Denna sårbarhet kunde användas för att skada kunders ägodelar.
Mets, Kiritsis Lea. "Can cheap robotic vacuum cleaners be made more efficient? : A computer simulation of a smarter robotic vacuum cleaner." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-230228.
Full textRobotdammsugare är populära hushållsrobotar som städar golv utan människors inblandning. Syftet med den här rapporten är att undersöka hur billiga robotdammsugares navigeringsmönster kan förbättras. Detta görs genom att simulera två modeller av robotdammsugare, en "simpel" och en "smart", där båda förlitar sig på information som billiga sensorer kan ge om omgivningen. Resultaten anses vara lyckade då de visar hur den smarta roboten presterar bättre än den simpla roboten i alla simulationer. Faktumet att simulationerna är simplifierade versioner av verkliga robotdammsugare diskuteras och framtida forskning kan undersöka mer realistiska simulationer eller experimentera med riktiga robotdammsugare.
Svensson, Hanna. "Plush Plate Alternatives : – New solutions for vacuum cleaner nozzles." Thesis, KTH, Maskinkonstruktion (Inst.), 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-100888.
Full textThis Final thesis was performed at Electrolux Floor Care and Small Appliances AB in Stockholm in their primary development department. The purpose with the project was to find an alternative for today’s plush plate, placed on the vacuum cleaner nozzle, whose function is to pick up hair and fiber mainly from carpets. The Electrolux development process, the Product Creation Process, was used throughout the entire project with minor adjustments to fit the time plan and size of the project. Initially a study was made of the Electrolux vacuum cleaner nozzles to get a basic understanding of how a solution could look and how it could affect the dust pick-up capacity of the nozzle. A brainstorming session was executed and 11 suggestions for ideas were created. After this a number of tests where performed, both material- and shape-oriented ones. A number of the more promising concepts that was developed further will be excluded from this thesis due to patent issues. Concepts was developed and evaluated with help of the methods that are being presented in the beginning of this thesis. This finally led to two concepts of which a number of prototypes were constructed and tested. The final solution proved to function well in tests. From the beginning it was meant to be two solutions developed from the two final concepts. The company that was supposed to deliver one of them could not do so within the time limits and this led to the fact that this concept could not be tested and evaluated within the timeframe of this project. The concept proved to be so interesting though, that it was decided to go on with further testing both on this concept and the other one.
Schilling, Benjamin Fritz. "Robotic vacuum cleaner design to mitigate slip errors in warehouses." Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/114052.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 83-84).
Warehouses are extremely dusty environments due to the concrete and cardboard dust generated. This is problematic in automated warehouses that use robots to move items from one location to another. If the robot slips, it can collide with other robots or lose track of where it is located. Currently, to reduce the amount of dust on the floor, warehouses use industrial scrubbers that users walk behind or ride. This requires manual labor and a regular scheduled maintenance plan that needs to be followed to mitigate the dust accumulation. Therefore, an industrial robotic vacuum cleaner that can continuously clean the warehouse floors is proposed. The five key parts to a vacuum are inlet duct, brush roller, filtration, storage, and suction. This thesis will discuss in detail the design and development of the filtration, storage, and suction of the robotic vacuums that were developed in this project. The thesis will go through design considerations and computational fluid dynamics that were conducted to validate and improve the design. Then, it will discuss the experimental results of the robotic vacuum cleaners.
by Benjamin Fritz Schilling.
M. Eng. in Advanced Manufacturing and Design
Lans, Patrik. "Numerical Methods for Simulating Separation in a Vacuum Cleaner Cyclone." Thesis, KTH, Mekanik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-194498.
Full textBlomqvist, Anneli. "Millimeter Wave Radar as Navigation Sensor on Robotic Vacuum Cleaner." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-288146.
Full textHar radar med millimetervågor förutsättningar att vara navigationsutrustning för en robotdammsugare i ett hem? Electrolux robotdammsugare använder för närvarande en ljussensor för att navigera genom hemmet medan den städar. Nyligen släppte Texas Instruments en ny radarsensor med vågor i frekvensområdet 60-64 GHz. Denna studie syftar till att svara om radarsensorn är användbar för inomhusnavigering. Studien testar sensorn med avseende på noggrannhet och upplösning av vinklar och avstånd i områden som är relevanta för inomhusnavigering. Den testar om olika föremål tillverkade av plast, tyg, papper, metall och trä kan detekteras av sensorn. Slutligen testas vad sensorn kan se om den rör sig medan den mäter. Radarsensorn kan positionera roboten, men hinderdetektering omkring roboten är begränsad. För det mesta ligger sensorns absoluta noggrannhet inom 3° för vinklar och omkring 1dm för avstånd över 0,5 m. Upplösningen för en förflyttning av ett objekt är 1° respektive 5 cm, och två objekt måste placeras minst 14° eller 15 cm ifrån varandra för att båda kunna upptäckas. Kommande utmaningar är att ta bort antennstörningar som ger sämre reflektioner inom 0,5 meter och ta reda på det bästa sättet att förflytta sensorn för att förbättra upplösningen.
Rašínová, Jitka. "Design průmyslového vysavače." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2017. http://www.nusl.cz/ntk/nusl-319487.
Full textCulpepper, Martin L. (Martin Luther). "Design of debris cleaner with compound auger and vacuum pick up." Thesis, Massachusetts Institute of Technology, 1997. http://hdl.handle.net/1721.1/43326.
Full textHertzberg, Samuel, and Daniel Dahlgren. "Optimal Placement of a Charging Station for a Robotic Vacuum Cleaner." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-229763.
Full textRobotdammsugare används i många hushåll och industriella tillämpningar runt om i värden idag. Robotdammsugare har ett visst mål: att städa en yta inom en viss tid. Den gör det genom att använda olika tekniker beroende på informationen det får från sina sensorer. Dock kan effektiviteten variera mellan robot och robot. Variationerna beror på många olika saker då problemet är komplext. Denna rapport kommer att mäta variationer som uppstår på grund av startposition. I en statistisk analys på ett genererat dataset visade resultaten att i några fall påverkar startpositionen robotdammsugaren. Med en av de två algoritmerna som simulerades i detta arbete, random bump algoritmen, visade det sig inte spela stor roll. Medans den andra algoritmen, spiralalgoritmen, kunde bli upp till 20% mer effektiv på grund av startposi-tionen.
Books on the topic "Vacuum cleaner"
Scotellaro, Robert. Daddy fixed the vacuum cleaner. St. Petersburg, Fla: Willowisp Press, 1993.
Find full textShalev, Meir. My Russian grandmother and her American vacuum cleaner: A memoir. New York: Schocken Books, 2011.
Find full textHunkin, Tim. The secret life of the vacuum cleaner, sewing machine, central heating system, washing machine, refrigerator, television set. [S.l.]: [s.n.], 1988.
Find full textill, Flinn John, and Flinn Dana ill, eds. That crazy vacuum. Chico, Calif: Beich Pub. Co., 1996.
Find full textBook chapters on the topic "Vacuum cleaner"
Kececi, Emin Faruk, and Fatih Kendir. "Wired Autonomous Vacuum Cleaner." In Mechatronics and Robotics Engineering for Advanced and Intelligent Manufacturing, 167–75. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-33581-0_13.
Full textPhuong, Nguyen Cong. "Monitoring Electric Vacuum Cleaner Using Sound Analysis." In Advances in Natural Computation, Fuzzy Systems and Knowledge Discovery, 309–16. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-70665-4_36.
Full textLee, Hong Joo, Hee Jun Park, and Sangkyun Kim. "A Study on Authentication Mechanism Using Robot Vacuum Cleaner." In Computational Science and Its Applications – ICCSA 2005, 122–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11424925_15.
Full textSlanina, R., and P. Sniehotta. "The Structural Design of Industrial Vacuum Cleaner for Dental Laboratories." In The Latest Methods of Construction Design, 93–98. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-22762-7_15.
Full textNabi, Shaik Abdul, and Mettu Krishna Vardhan. "NavRobotVac: A Navigational Robotic Vacuum Cleaner Using Raspberry Pi and Python." In Smart Computing Techniques and Applications, 159–67. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1502-3_17.
Full textQin, Difu, Zhanxun Dong, Yuxuan Liu, Dong Wang, and Shiyao Qin. "How Does the COM Position of a Vacuum Cleaner Affect Muscle Activities While Vacuuming?" In Human Interaction, Emerging Technologies and Future Applications III, 344–50. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-55307-4_52.
Full textChang, Wen-chih, and Hsiao-ying Tai. "A Study of the Factors Affecting Product Values and Preferences–Using Vacuum Cleaner as an Example." In Lecture Notes in Computer Science, 561–71. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-07731-4_55.
Full textHeo, Seong-Min, Ki-Ryong Kim, and Hee-Je Kim. "Research on the MPPT Simulation of Mini Photovoltaic System for the Robotic Vacuum Cleaner Battery Charging." In Intelligent Robotics and Applications, 38–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-40852-6_6.
Full textAl-Wahedi, Khaled, Aya Darwish, and Basma Kodiah. "Cost Based Navigation for Autonomous Vacuum Cleaners." In Advances in Intelligent Systems and Computing, 415–22. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37374-9_40.
Full textCollenette, Joe, and Brian Logan. "Multi-agent Control of Industrial Robot Vacuum Cleaners." In Engineering Multi-Agent Systems, 87–99. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-66534-0_6.
Full textConference papers on the topic "Vacuum cleaner"
Hu, Wenfei. "Computer-aided Vacuum Cleaner Design." In 4th International Conference on Computer, Mechatronics, Control and Electronic Engineering. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/iccmcee-15.2015.61.
Full textLang, Goh Wee. "An expert autonomous vacuum cleaner robot." In the first international conference. New York, New York, USA: ACM Press, 1988. http://dx.doi.org/10.1145/51909.51978.
Full textNanhekhan, Brian, Peter van Duijsen, and Johan Woudstra. "DC — Readiness of a vacuum cleaner." In 2018 International Conference on the Domestic Use of Energy (DUE). IEEE, 2018. http://dx.doi.org/10.23919/due.2018.8384398.
Full textSami, Sriram, Yimin Dai, Sean Rui Xiang Tan, Nirupam Roy, and Jun Han. "Spying with your robot vacuum cleaner." In SenSys '20: The 18th ACM Conference on Embedded Networked Sensor Systems. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3384419.3430781.
Full textJarande, P. B., S. P. Murakar, N. S. Vast, N. P. Ubale, and S. S. Saraf. "Robotic Vacuum Cleaner Using Arduino with Wifi." In 2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT). IEEE, 2018. http://dx.doi.org/10.1109/icicct.2018.8473256.
Full textKantorovitch, Julia, Arto Laikari, Janne Väre, and Vesa Pehkonen. "Smart vacuum cleaner for your elderly relative." In the 4th International Conference. New York, New York, USA: ACM Press, 2011. http://dx.doi.org/10.1145/2141622.2141701.
Full textHsiao, Shih-Wen, and Yi-Chin Chen. "Concurrent Design Strategy in Vacuum Cleaner Development." In 2017 International Conference on Organizational Innovation (ICOI 2017). Paris, France: Atlantis Press, 2017. http://dx.doi.org/10.2991/icoi-17.2017.51.
Full textYamamoto, Masaki. "Sozzy: a hormone-driven autonomous vacuum cleaner." In Optical Tools for Manufacturing and Advanced Automation, edited by William J. Wolfe and Wendell H. Chun. SPIE, 1994. http://dx.doi.org/10.1117/12.167497.
Full textRakar, Andrej. "Model-based fault detection of vacuum cleaner motors." In 2003 European Control Conference (ECC). IEEE, 2003. http://dx.doi.org/10.23919/ecc.2003.7084951.
Full textLupetti, Maria Luce, Stefano Rosa, and Gabriele Ermacora. "From a Robotic Vacuum Cleaner to Robot Companion." In HRI '15: ACM/IEEE International Conference on Human-Robot Interaction. New York, NY, USA: ACM, 2015. http://dx.doi.org/10.1145/2701973.2702004.
Full textReports on the topic "Vacuum cleaner"
Dewey, L. A., and V. Guevara. Smart Vacuum Cleaner Concept of Operations. Office of Scientific and Technical Information (OSTI), March 2020. http://dx.doi.org/10.2172/1606478.
Full textFirby, R. J. An Architecture for a Synthetic Vacuum Cleaner. Fort Belvoir, VA: Defense Technical Information Center, January 1991. http://dx.doi.org/10.21236/ada278680.
Full textJones, R. D., K. C. Chen, and S. W. Holmes. Vacuum cleaner modifications leading to reduced ESD hazards. Office of Scientific and Technical Information (OSTI), March 1994. http://dx.doi.org/10.2172/10148472.
Full textShor, J. T., and M. J. Haire. Nuclear criticality safety calculations for a K-25 site vacuum cleaner. Office of Scientific and Technical Information (OSTI), February 1997. http://dx.doi.org/10.2172/638209.
Full textBrutzman, Don. Beyond Intelligent Vacuum Cleaners. Fort Belvoir, VA: Defense Technical Information Center, October 1993. http://dx.doi.org/10.21236/ada280565.
Full textRobinson Brown, Dennis, Michael T. Brumbach, and Alex James Mirabal. RGA Analysis of Plasma Cleaned Vacuum Systems. Office of Scientific and Technical Information (OSTI), July 2015. http://dx.doi.org/10.2172/1494343.
Full textTurnbaugh, J. E. U.S. Environmental Protection Agency Clear Air Act notice of construction for the spent nuclear fuel project - Cold Vaccum Drying Facility, project W-441. Office of Scientific and Technical Information (OSTI), November 1996. http://dx.doi.org/10.2172/325887.
Full textIn-depth survey report: removing mortar with a powered chisel with on-tool local exhaust ventilation and a higher-flow vacuum cleaner, International Union of Bricklayers and Allied Craftworkers Southern Ohio-Kentucky Regional Training Center, Batavia, Ohio. U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, January 2018. http://dx.doi.org/10.26616/nioshephb38112a.
Full text