Academic literature on the topic 'Vacuum processing'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Vacuum processing.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Vacuum processing"

1

Krishnamurthy, N., and A. K. Suri. "Material processing with vacuum." Journal of Physics: Conference Series 114 (May 1, 2008): 012016. http://dx.doi.org/10.1088/1742-6596/114/1/012016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Korolev, A. A., S. A. Krayukhin, G. I. Maltsev, and E. S. Filatov. "SILVER CRUST PROCESSING BY VACUUM." Izvestiya Vuzov Tsvetnaya Metallurgiya (Proceedings of Higher Schools Nonferrous Metallurgy, no. 4 (January 1, 2017): 21–29. http://dx.doi.org/10.17073/0021-3438-2017-4-21-29.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Collins, Don. "Dry vacuum gains for processing." World Pumps 2009, no. 514 (2009): 26–29. http://dx.doi.org/10.1016/s0262-1762(09)70246-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Govindaraju, M., Deepak Kulkarni, and K. Balasubramanian. "Multipurpose Vacuum Induction Processing System." Journal of Physics: Conference Series 390 (November 5, 2012): 012011. http://dx.doi.org/10.1088/1742-6596/390/1/012011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Golan, Gady, and Alex Axelevitch. "Progress in vacuum photothermal processing (VPP)." Microelectronics Journal 37, no. 5 (2006): 459–73. http://dx.doi.org/10.1016/j.mejo.2005.07.014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

O’Hanlon, John F. "Contamination reduction in vacuum processing systems." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 7, no. 3 (1989): 2500–2503. http://dx.doi.org/10.1116/1.575885.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kim, Hyung-Taek, and Dae-Yeon Kim. "Simulation of Vacuum Characteristics in Semiconductor Processing Vacuum System by the Combination of Vacuum Pumps." Journal of the Korean Institute of Electrical and Electronic Material Engineers 24, no. 6 (2011): 449–57. http://dx.doi.org/10.4313/jkem.2011.24.6.449.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Fedoseev, Alexander V., G. I. Sukhinin, Igor V. Yarygin, Victor G. Prikhodko, and Sergey A. Novopashin. "VACUUM PROCESSING OF GOLD-BEARING CLAY MATERIALS." Interfacial Phenomena and Heat Transfer 7, no. 2 (2019): 123–29. http://dx.doi.org/10.1615/interfacphenomheattransfer.2019030520.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Goldin, B. A., V. E. Grass, and Yu I. Ryabkov. "Vacuum carbothermal processing of low-iron bauxites." Glass and Ceramics 55, no. 9-10 (1998): 323–25. http://dx.doi.org/10.1007/bf02694780.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kim, Hyung-Taek. "Simulation of Vacuum Characteristics by Applications of Vacuum Valves in Display Processing." Journal of the Institute of Webcasting, Internet and Telecommunication 12, no. 2 (2012): 77–83. http://dx.doi.org/10.7236/jiwit.2012.12.2.77.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Vacuum processing"

1

Hoagland, David Wayne. "Continuous Permeability Measurement During Unidirectional Vacuum Infusion Processing." BYU ScholarsArchive, 2017. https://scholarsarchive.byu.edu/etd/6457.

Full text
Abstract:
Composite materials have traditionally been used in high-end aerospace parts and low-end consumer parts. The reason for this separation in markets is the wide gap in technology between pre-preg materials processed in an autoclave and chop strand fiberglass blown into an open mold. Liquid composite molding has emerged as a bridge between inexpensive tooling and large, technical parts. Processes such as vacuum infusion have made it possible to utilize complex layups of reinforcement materials in an open mold style set-up, creating optimal conditions for composites to penetrate many new markets with rapid innovation. Flow simulation for liquid composite molding is often performed to assist in process optimization, and requires the permeability of the reinforcement to be characterized. For infusion under a flexible membrane, such as vacuum infusion, or for simulation of a part with non-uniform thickness, one must test the permeability at various levels of compaction. This process is time consuming and often relies on interpolation or extrapolation around a few experimental permeability measurements. To accelerate the process of permeability characterization, a small number of methodologies have been previously presented in the literature, in which the permeability may be tested at multiple fiber volume contents in a single test. Some of the methods even measure the permeability over a continuous range of thicknesses, thus requiring no later interpolation of permeability values. A novel method is presented here for the rapid measurement of permeability over a continuous range of fiber volume content, in a single unidirectional vacuum infusion flow experiment. The thickness gradient across the vacuum bag, as well as the fluid pressure at several locations in the mold, were concurrently measured to calculate the fabric compressibility. An analytical flow model, which accounts for the compressibility, is then used by iterating the fitting constant in a permeability model until the predicted flow front progression matches empirical measurement. The method is demonstrated here for two reinforcement materials: 1) a fiberglass unbalanced weave and 2) a carbon bi-ax non-crimped fabric. The standard deviation of calculated permeabilities across the multiple infusion experiments for each material and flow orientation ranged from 12.8% to 29.7%. Validation of these results was performed by comparing the resulting permeability with multiple non-continuous permeability measurement methods.
APA, Harvard, Vancouver, ISO, and other styles
2

Kennedy, Michael A. D. "Development of Cost Effective Composites using Vacuum Processing Technique." Ohio University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1523633403784733.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Murfin, Alice M. "Thermally enhanced colloidal processing of #alpha#-alumina." Thesis, University of Nottingham, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.283403.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kim, Yong Ryun. "Room temperature vacuum processing of zinc acetate and oxide films." Thesis, Imperial College London, 2016. http://hdl.handle.net/10044/1/45005.

Full text
Abstract:
The development of organic optoelectronics has progressed rapidly. These devices are now an essential part of our lives (e.g. mobile phone, computer, energy applications and touch-enabled applications). With increasing demand for mass production of low-cost materials, researchers are readily seeking new innovative materials to replace conventional materials based on polymers or small molecules. Metal oxides are one of the most interesting classes of materials, but their current processing is incompatible with organic systems and their application in this field requires new simplified methods of deposition. In this thesis, zinc acetate dihydrate (ZnAc2H2O) has been selected as a precursor for the formation of ZnO. It is inexpensive, has high volatility and demonstrates the oligomerisation of basic zinc acetate (BZA) in vacuum, which is known as a molecular model of ZnO. While there are limited reports of BZA films and powder in the literature, this is the first time that it is fully characterised. The BZA film is prepared on room temperature substrates, with and without pre-coating of 3,4,9,10-perylenetetracharboxylic dianhydride (PTCDA) using organic molecular beam deposition (OMBD), which convey high quality films with well-controlled film thickness and high purity. Contrasting the morphology of the two films, the growth mode for the former is known as “Frank-van-der-Merwe” whereas the latter is “Stranski-Krastanov”. This formation is critical since film orientation and morphology can dramatically alter device performance. A new method for processing metal oxide using small molecules at room temperature has been developed. This method depends on exposing small molecule film to vacuum ultraviolet (VUV) light, generating a photon energy of 7.2 eV (172 nm) via several degradation mechanisms. The effect of atmosphere and irradiation length are evaluated by altering the partial pressure of oxygen and adjusting the height of the sample stage during the VUV process, respectively. The presence of oxygen molecules inducing oxygen radicals and ozone plays a major role in the degradation reaction. This is significantly greater than the effect of irradiance. Finally, a new, room temperature method, VUV process, is used on two BZA films to explore whether this is suitable to the formation of ZnO. Both films exposed to VUV light under different atmospheric conditions show the formation of M-O-M species, with optimised results for high vacuum conditions. Varying the irradiation length results in further enhancement of M-O-M. Furthermore, the underlying PTCDA is preserved during UV exposure. This suggests that ZnO formation acts as an effective barrier layer protecting the underlying organic components.
APA, Harvard, Vancouver, ISO, and other styles
5

Ding, Ziqian. "Large area vacuum fabrication of organic thin-film transistors." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:e7decca4-14e3-47e7-85ca-0bb14755f282.

Full text
Abstract:
A process has been developed to make the dielectric layer for organic thin-film transistors (OTFTs) in a roll-to-roll vacuum web coater environment. This dielectric layer combined with an organic semiconductor layer and metal layer deposited in vacuum allows a solvent-free process to make organic/inorganic multilayer structures for thin-film electronic devices on a flexible substrate at, potentially, high speed. The polymeric gate dielectric layers were fabricated by flash evaporation of acrylic monomers onto a polymer film with pre-patterned metal gates followed by radiation curing by electron beam, ultra-violent light (UV) or plasma. With a non-polar dielectric surface, charge carrier mobility (&mu;) of 1 cm<sup>2</sup>-V<sup>-1</sup>s<sup>-1</sup>; on/off curren ratio of 10<sup>8</sup>, sub-threshold swing (SS) of 0.3 V/decade and saturated output curve were routinely achieved in dinaphtho-[2,3-b:2'3'-f]thieno[3,2-b]thiophene (DNTT) transistors with dielectric layer of tripropylene glycol diacrylate (TPGDA) of ~400 nm. Apart from the TPGDA, monomer formulas including 1,6-Hexanediol diacrylate (HDDA) as well as several commercial acrylic resins have been used to make the dielectric layer. The highest areal capacitance of 41nF-cm<sup>-2</sup> was achieved with a pin-hole free film of less than 100 nm made of an acrylate mixture resin. A non-polar dielectric surface treatment layer has been developed based on flash evaporation of lauryl acrylate and HDDA mixture. The transistors with the buffer layer showed constant performance and a mobility fivefold greater than those of untreated samples. The effect of humidity, oxygen, and light during switching cycles of both pentacene and DNTT transistors were studied. Water and oxygen/illumination had a distinct effect on both pentacene and DNTT transistors. Oxygen leads to acceptor-like charge traps under illumination, which shifted the turn-on voltage (V<sub>to</sub>) to more positive values. In contrast, water in transistors gave rise to donor-like charge traps, which shifted the V<sub>to</sub> and the threshold voltage (V<sub>T</sub>) more negatively. The DNTT devices showed good stability in dry air without encapsulation, while pentacene transistors degraded with either repeating measurement or long term storage. A DNTT transistor with a PS-coated TPGDA dielectric layer showed stable drain current (I<sub>d</sub>) of ~105A under bias stress of the gate voltage (em>V<sub>g</sub>) of -20V and the drain voltage (em>V<sub>d</sub>) of -20V for at least 144 hours. The V<sub>to</sub> shift after the stress was less than 5 V and was recoverable when the device was kept in dry air for a few days. Possible reasons for the V<sub>to</sub> shift have been discussed.
APA, Harvard, Vancouver, ISO, and other styles
6

De, Jongh Willem Adriaan. "Possible applications for vacuum pyrolysis in the processing of waste materials." Thesis, Stellenbosch : Stellenbosch University, 2001. http://hdl.handle.net/10019.1/52407.

Full text
Abstract:
Thesis (MScEng)--University of Stellenbosch, 2001.<br>ENGLISH ABSTRACT: Current global trends in government, industry and popular OpInIOn indicate that recycling will become essential in the future. Vacuum pyrolysis is a new technology with many recycling applications that have not yet been investigated. This study is a contribution towards the better understanding of the vacuum pyrolysis process and also towards finding possible economically favourable recycling applications. A batch operated tube furnace, which allowed the controlled heating of different materials in a vacuum, was designed and built. The gases and vapours passed though a series of progressively colder vacuum traps, condensing the vapours for further study. The products from the process are charcoal, oil, an aqueous phase and noncondensable gases. The charcoal and oils' possible economic values (R2500- R5000/ton of charcoal, while the plant product oil can be sold as a low sulphur fuel, with a retail value of approximately R1.42 per litre) were determined along with the oils' chemical composition. Several possible feedstocks were studied, including intruder plant species, leather wastes, sewage sludge and a simplified representation of municipal solid waste. The three intruder plants studied were Kraalbos (Galenia africane), Scholtzbos (pteronia pallens) and Asbos (Psilocaolon absimile). These plants yielded 40%, 42% and 48% (charcoal per kilogram dry feedstock) respectively at their maximum oil yield temperatures of 380°C, 480°C and 450°C respectively. The maximum oil yields were 36%, 32% and 20% respectively (also on a dry feedstock basis). It was found that the plants with ash contents below 10% yielded commercially competitive charcoal, and that all of the plants yielded oils with heating values in the range of 24MJ/kg, containing several high value compounds. Asbos was the only plant that did not produce usable charcoal, as its ash content of 40% was double that of commercial charcoals. The leather wastes represent a previously unrecognised application of the technology that could bring huge financial rewards to the tanning industry and could provide a more environmentally friendly alternative to lined landfilling. The cost of landfilling for a medium sized tannery can be as high as RIOOO 000 a year. Apart from the volume reductions achieved (up to a factor 8) it was found that landfilling might be totally avoided if the chrome contained in the charcoal product could be extracted and reused. Sewage sludge was studied, as it is a hazardous waste that requires costly disposal in a lined landfill. It was revealed that volume reductions of up to a factor 3.5 were possible with corresponding charcoal and oil yields of 40% and 38% respectively at 500°C. It was also found that the charcoal product could be used as compost, which would then turn a costly waste into a commodity product. The oil from both the leather and sewage sludge had high energy values (26.7MJ/kg and 30.9MJ/kg respectively) and might either be sold as a bunker fuel or used in the process as a make-up heat source. The value of the oil depends on the problems posed by the oils' high nitrogen content (±5%-6%). A further study was also made of the co-pyrolysis of PVC and wood to determine the interaction between the feedstocks and as a simplified representation of municipal solid wastes. It was found that the HCI released from the PVC caused acid hydrolysis of the wood and led to lower charcoal (reduced from 32.6% to 29.7% on dry feedstock basis, at the maximum co-pyrolysis oil yield temperature of 460°C) and much higher oil yields (42.4% for the co-pyrolysis compared to 23.6% for the plant material at 460°C). An existing computer program (CEA by Gordan and McBride) was also employed in order to find explanations for some of the vacuum pyrolysis results. Although large specialist vacuum pyrolysis plants have been designed in the past (mostly to dispose of used tyre waste) it will be necessary to determine the process economics for small-scale applications if the technology is to be applied at the source of the problem. Overall vacuum pyrolysis appears to be a very promising technology that could solve many waste problems in an environmentally friendly and economically beneficial manner.<br>AFRIKAANSE OPSOMMING: Hedendaagse neigmgs in regenng, industrie en populêre opirue toon dat hergebruikstegnologieë al hoe meer noodsaaklik sal word in die toekoms. Vakuum pirolise is 'n nuwe tegnologie met vele moonlike hergebruik toepassings wat nog nie bestudeer is nie. Hierdie studie is 'n bydrae tot 'n dieper begrip van vakuum pirolise en ook tot die verdere soeke na nuwe toepassings vir die tegnologie. 'n Enkellading buis-oond, wat die beheerde verhitting van verskillende materiale in vakuum toegelaat het, is ontwerp en gebou. Die gevormde gasse en dampe het deur 'n progressief kouer reeks van vakuum valle beweeg waar dit vir verdere studie gekondenseer en opgevang is. Die produkte van die proses is houtskool, olie, 'n waterryke fase en nie-kondenseerbare gasse. Die houtskool en olie se moontlike waarde (R2500-R5000/ton houtskool, terwyl die plant produk olie verkoop kan word as 'n lae swael verhittings olie met 'n kleinmaat kommersieële verkoopswaarde van R1.42/1), saam met die chemiese samestelling van die olie fase, is bepaal. Die vakuum pirolise van verskeie moontlike voerstowwe is bestudeer, insluitende indringerplante, leerafval, rioolslyk en 'n vereenvoudigde voorstelling van munisipale afval. Die drie plant spesies wat bestudeer is, is: Kraalbos (Galenia africane), Scholtzbos (Pteronia pal/ens) en Asbos (Psilocaolon absimile). Die plante het opbrengste van 40%, 42% en 48% (houtskool per kilogram droë voerstof) onderskeidelik gelewer by elk van die plante se maksimum olie opbrengs temperature van 380°C, 480°C en 450°C onderskeidelik. Die maksimum olie opbrengste was 36%, 32%, 20% (olie per kilogram droë voerstof) vir die onderskeie plante. Daar is bevind dat die plante met as-inhoude van minder as 10% kommersieel kompeterende houtskool gelewer het. Dit is ook gevind dat die olie van al die plante verbrandingswaardes in die orde van 24MJ/kg lewer en dat die olies ook verskeie waardevolle chemikalieë bevat. Asbos was die enigste van die bestudeerde plante wat nie maklik bruikbare houtskool gelewer het nie. Die Asbos houtskool was minder bruikbaar as gevolg van die uiters hoë as-inhoude van tot 40% met gevolglike lae energie waarde. Die vakuum pirolise van leerafval is 'n toepassing wat nog nie voorheen ondersoek is nie. Dit kan moontlik lei tot groot finansiële voordele vir die leerlooi industrie en kan ook 'n meer omgewingsvriendelike alternatief tot belynde afval storting bied. Die koste verbonde aan die storting van leer afval van 'n medium grootte looiery kan tot R1000 000 per jaar beloop. Behalwe vir die volume verkleining behaal (tot 'n faktor 8), is daar ook gevind dat afvalstorting totaal vermy kan word as die hoë hoeveelheid chroom (12% van die houtskool) uit die houtskool verwyder en hergebruik kan word. Rioolslyk is ook bestudeer, siende dat dit ook 'n probleem afvalstof is wat teen groot koste gestort moet word. Die studie het getoon dat volume verkleinings van tot 'n faktor 3.5 en houtskool en olie opbrengste van onderskeidelik 40% en 38% by 500°C behaal kan word. 'n Ondersoek van die houtskool het getoon dat dit gebruik kan word as 'n kompos, wat dan sal beteken dat 'n probleem afvalstof verander word na 'n omgewingsvriendelike en ekonomies waardevolle produk. Die olie van beide die rioolslyk en leer het hoë energiewaardes (26.7MJ/kg en 30.9MJ/kg onderskeidelik) en kan verkoop word as verbrandingsolie of gebruik word in die vakuum pirolise proses as 'n hulp-hitte bron. Die gebruikswaarde van die olie sal baie afhang van die probleme wat deur die uiters hoë stikstof-inhoud (±5%-6%) veroorsaak gaan word. 'n Verdere studie van die ko-pirolise van PVC en hout is ook gedoen om die interaksie tussen die afvalstowwe te bestudeer en ook om as 'n vereenvoudigde voorstelling van munisipale afval te dien. Daar is gevind dat die HCI wat afkom as PVC verhit word, suur hidrolise van die houtstrukture veroorsaak en lei tot laer houtskool (verminder van 32.6% na 29.7% droë voerstofbasis, by die maksimum olie opbrengs temperatuur van 460°C) en veel hoër olie opbrengste (42.4% vir die kopirolise in vergelyking met 23.6% vir die plant materiaal by 460°C). 'n Studie van die energie wat verkry kan word uit die olie en houtskool het getoon dat 16% tot 28% meer energie verteenwoordig word deur die produkte per kilogram droë voerstof vir die ko-pirolise proses bo normale vakuum pirolise. Alhoewel groot spesialis vakuum pirolise aanlegte in die verlede ontwerp is (meestal vir die verwerking van gebruikte motor buitebande) sal dit nogstans noodsaaklik wees om die winsgewindheid van kleinermaat prosesse te bestudeer sodat vakuum pirolise by die oorsprong van die afvalstoftoegepas kan word. Dit blyk dat vakuum pirolise 'n baie belowende tegnologie IS wat verskeie afval probleme op 'n omgewingsvriendelike en ekonomies winsgewinde wyse kan oplos.
APA, Harvard, Vancouver, ISO, and other styles
7

Kratz, James. "Transport phenomena in vacuum bag only prepreg processing of honeycomb sandwich panels." Thesis, McGill University, 2014. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=121325.

Full text
Abstract:
Honeycomb sandwich panels offer an extremely lightweight solution for aerospace structures. As efficiency demands increase, low-cost non-autoclave manufacturing solutions are sought for honeycomb and other composite structures. Vacuum-bag-only (VBO) manufacturing is one possible solution that relies on vacuum to remove all entrapped volatiles prior to cure, and then the differential pressure between the inside and outside of the vacuum bag consolidates the layers during cure. This technique can be very effective for monolithic laminates made with out-of-autoclave (OOA) prepregs, but honeycomb structures introduce two additional manufacturing nuisances. First, the core entraps up to 98 % of its volume during lay-up, and second, non-metallic cores readily absorb ambient moisture. Entrapped air and moisture can increase the honeycomb core pressure during processing, reducing part quality. Given that the honeycomb core pressure is crucial to achieving success in VBO manufacturing of honeycomb panels, a threefold approach was used in this thesis to study the transport phenomena that influence this behaviour. First, the transport phenomena of the constituent materials were characterized. Applying an impermeable boundary condition to the tool-side skin allowed for simple air permeability characterization of honeycomb skins by considering only the bag-side skin. An instrumented test fixture was used to measure the honeycomb core pressure during the pre-processing vacuum hold. The results revealed that a transverse interconnected pore space was required in OOA prepreg skins for gas evacuation to proceed in honeycomb panels. The same test fixture was used to characterize the honeycomb skin air permeability and honeycomb core moisture diffusivity during elevated temperature processing. The evolving skin air permeability and core diffusivity were observed to cause the honeycomb core pressure to increase during the temperature ramp and decrease during the temperature hold. Second, a process model was developed to predict honeycomb core pressure throughout the manufacturing process. The process model identified that the honeycomb core pressure can exceed the vacuum bag consolidation pressure due to the high core moisture adsorption and elevated temperature diffusivity. Choosing, or creating, a honeycomb skin with high air permeability was identified as a key process parameter to avoid exceeding the consolidation pressure. Finally, the material characterization and process modelling were successfully scaled to reproduce the honeycomb core pressure behaviour in holistic honeycomb panels. The in-situ honeycomb core pressure was measured throughout the manufacturing process in dual-skin honeycomb panels using embedded pressure sensors. The embedded pressure sensor response validated the material characterization assumptions and model simplifications used to predict the honeycomb core pressure during the VBO manufacturing process. Manufacturing honeycomb panels is a complex activity with many material and processing variables. A suitable skin material and bagging configuration was selected for VBO manufacturing of honeycomb panels by coupling transport phenomena modelling and tailored material characterization. This approach could be used to reduce manufacturing trial and error before scaling these materials to larger applications.<br>Les panneaux sandwich en nid d'abeille offrent une solution extrêmement légère pour les structures aérospatiales. Avec l'augmentation de la demande pour les structures en matériaux composites, les solutions de fabrication de ces structures hors de l'autoclave sont recherchées afin de réduire les coûts. La méthode de fabrication avec sac sous vide requiert une pompe à vide pour enlever tous les gaz piégés après le drapage des matériaux préimprégnés et créer le différentiel de pression entre l'intérieur et l'extérieur du sac à vide afin de consolider les couches de composite. Cette technique peut être très efficace pour les laminés monolithiques, mais les structures en nid d'abeille présentent deux difficultés supplémentaires lorsque des nids d'abeilles non métalliques sont utilisés. D'abord, le nid d'abeille contient 98% du volume d'air piégé pendant le drapage, et deuxièmement, les nids d'abeilles non métalliques absorbent l'humidité pendant leur manipulation. L'air emprisonné dans le nid d'abeilles et l'humidité va augmenter la pression pendant la mise en forme, et peuvent créer des défauts. Cette thèse est divisée en trois thèmes pour étudier et pour optimiser le processus de fabrication des panneaux de composite sandwich avec nid d'abeilles. Tout d'abord, une condition imperméable a été appliquée sur le côté de l'outil, ce qui permet une caractérisation simple des matériaux utilisés pour la mise en forme combinés avec les matériaux préimprégnés de côté de sac à vide. La perméabilité à l'air pour les matériaux préimprégnés a été mesurée durant l'évacuation de l'air avant la cuisson, révélant un degré significatif de l'anisotropie de perméabilité à l'air. Pendant la cuisson à température élevée, la perméabilité à l'air a évolué avec le cycle de cuisson. En outre, le coefficient de diffusion de l'humidité du nid d'abeille non métallique a été caractérisé par une fonction de la concentration d'humidité et de la température. Deuxièmement, un modèle a été développé pour prédire la pression dans le nid d'abeille pendant le processus de fabrication. Des cartes de processus ont été créées afin d'identifier les combinaisons de conditions de traitement pouvant augmenter la pression dans le nid d'abeille au-dessus de la pression de consolidation. Finalement, des panneaux ont été fabriqués avec un laminé sur le côté de l'outil ainsi que sur le côté du sac à vide. Des capteurs de pression ont été incorporés pour mesurer la pression dans le nid d'abeilles pendant le processus de fabrication. La caractérisation des matériaux et la modélisation des processus développées à partir d'expériences simples à petite échelle ont permis de reproduire avec succès le comportement complexe de la pression dans le nid d'abeilles des pièces de grandes dimensions.
APA, Harvard, Vancouver, ISO, and other styles
8

Tu, Yudi. "Photo Processing and Microfabrication of Graphene Oxide." Kyoto University, 2018. http://hdl.handle.net/2433/232039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Silva, Elisabeth Mary Cunha da. "Chemical and sensory investigations on the processing and preservation of a lamb product." Thesis, Queen's University Belfast, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.324852.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kovacik, Peter. "Vacuum deposition of organic molecules for photovoltaic applications." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:98461a90-5ae3-4ae3-9245-0f825adafa72.

Full text
Abstract:
Organic photovoltaics have attracted considerable research and commercial interest due to their lightness, mechanical flexibility and low production costs. There are two main approaches for the fabrication of organic solar cells – solution and vacuum processing. The former relies on morphology control in polymer-fullerene blends resulting from natural phase separation in these systems. The latter takes advantage of solvent-free processing allowing highly complex multi-junction architectures similar to inorganic solar cells. This work aims to combine the benefits of both by depositing conjugated polymers using vacuum thermal evaporation. By employing this unconventional approach it aims to enhance the efficiency of organic photovoltaics through increased complexity of the thin-film architecture while improving the nanoscale morphology control of the individual active layers. The thesis explores the vacuum thermal deposition of polythiophenes, mainly poly(3-hexylthiophene) (P3HT) and side-group free poly(thiophene) (PTh). A variety of chemical techniques, such as NMR, FT-IR, GPC, DSC and TGA, are used to examine the effect of heating on chemical structure of the polymers. Optimal processing parameters are identified and related to the resulting thin-film morphology and charge transport properties. Efficient photovoltaic devices based on polythiophene donors and fullerene acceptors are fabricated. Materials science techniques AFM, XRD, SEM, TEM and MicroXAM are used to characterize topography and morphology of the thin films, and UV-Vis, EQE, I-V and C-V measurements relate these to the optical and electronic properties. The results of the study show that polymer side groups have a strong influence on molecular packing and charge extraction in vacuum-deposited polymer thin films. Unlike P3HT, evaporated PTh forms highly crystalline films. This leads to enhanced charge transport properties with hole mobility two orders of magnitude higher than that in P3HT. The effect of molecular order is demonstrated on polymer/fullerene planar heterojunction solar cells. PTh-based devices have significantly better current and recombination characteristics, resulting in improved overall power conversion efficiency (PCE) by 70% as compared to P3HT. This confirms that the chemical structure of the molecule is a crucial parameter in deposition of large organic semiconductors. It is also the first-ever example of vacuum-deposited polymer photovoltaic cell. Next, vacuum co-deposited PTh:C60 bulk heterojunctions with different donor-acceptor compositions are fabricated, and the effect of post-production thermal annealing on their photovoltaic performance and morphology is studied. Co-deposition of blended mixtures leads to 60% higher photocurrents than in thickness-optimized PTh/C60 planar heterojunction counterparts. Furthermore, by annealing the devices post-situ the PCE is improved by as much as 80%, achieving performance comparable to previously reported polythiophene and oligothiophene equivalents processed in solution and vacuum, respectively. The enhanced photo-response is a result of favourable morphological development of PTh upon annealing. In contrast to standard vacuum-processed molecular blends, annealing-induced phase separation in PTh:C60 does not lead to the formation of coarse morphology but rather to an incremental improvement of the already established interpenetrated nanoscale network. The morphological response of the evaporated PTh within the blend is further verified to positively differ from that of its small-molecule counterpart sexithiophene. This illustrates the morphological advantage of polymer-fullerene combination over all other vacuum-processable material systems. In conclusion, this processing approach outlines the conceptual path towards the most beneficial combination of solution/polymer- and vacuum-based photovoltaics. It opens up a fabrication method with considerable potential to enhance the efficiency of large-scale organic solar cells production.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Vacuum processing"

1

Vacuum Metallurgy Conference (1991 Pittsburgh, Pa.). Proceedings of the 1991 Vacuum Metallurgy Conference on the Melting and Processing of Specialty Materials. Edited by Bhat N, Bloore E. W, Malley D. R, and American Vacuum Society. Vacuum Metallurgy Division. Iron and Steel Society, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Vacuum, Metallurgy Conference (1986 Pittsburgh Pa ). Proceedings of the 1986 Vacuum Metallurgy Conference on Speciality Metals Melting and Processing: Pittsburgh, Pennsylvania, June 9-11, 1986. Iron and Steel Society, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Vacuum Metallurgy Conference on Specialty Metals Melting and Processing (1986 Pittsburgh, Pa.). Proceedings of the 1986 Vacuum Metallurgy Conference on Specialty Metals Melting and Processing, Pittsburgh, Pennsilvania, June 9-11, 1986. Edited by Lherbier L. W, Bhat G. K, and American Vacuum Society. Vacuum Metallurgy Division. Iron and Steel Society, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Vacuum, Metallurgy Conference (1984 Pittsburgh Pa ). Proceedings of the 1984 Vacuum Metallurgy Conference on Specialty Metals Melting and Processing: Pittsburgh, Pennsylvania, June 11-13, 1984. Iron and Steel Society, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Vacuum Metallurgy Conference on the Melting and Processing of Specialty Materials (1989 Pittsburgh, Pa.). Proceedings of the 1989 Vacuum Metallurgy Conference on the Melting and Processing of Specialty Materials: Pittsburgh, Pennsulvania, May 8-10, 1989. Edited by Lherbier L. W, Cordy J. T, American Vacuum Society. Vacuum Metallurgy Division., ASM International Pittsburgh Chapter, and Investment Casters Society of America. Iron and Steel Society, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Meeting, European Materials Research Society. Single chamber processing: Proceedings of the joint session on single chamber processing : requirements and challenges of the 1992 E-MRS Spring Meeting Conference, Strasbourg, France, June 2-5, 1992. North-Holland, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Eggers, Daniel D. Computing during the vacuum tube era at the University of Washington. D.D. Eggers, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Radchenko, Tat'yana, and Yuriy Shevcov. The creation of protective and strengthening coatings by methods of electron beam processing in vacuum. INFRA-M Academic Publishing LLC., 2020. http://dx.doi.org/10.12737/1000599.

Full text
Abstract:
This monograph presents basic theoretical and applied issues of the process of electron beam heat treatment, cladding and welding in various industries.&#x0D; Reviewed hardware and technological aspects, peculiarities of formation of structure of metals and alloys, as well as the patterns of change of such physical-mechanical properties, such as hardness, wear resistance, corrosion resistance, thermal conductivity. The specific examples of the electron beam to create a strengthening and protective coatings.&#x0D; Can be recommended as a textbook for students of technical universities, engineers and researchers and practical workers in the field of welding production.
APA, Harvard, Vancouver, ISO, and other styles
9

Dailey, Denton J. Electronics for Guitarists. 2nd ed. Springer New York, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lherbier, L. W. Proceedings: Vacuum Metallurgy Conference of Specialty Melting and Processing. Iron & Steel Society, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Vacuum processing"

1

Bluhm, H., B. Han, A. G. Chmielewski, et al. "Electron Beam Devices for Materials Processing and Analysis." In Vacuum Electronics. Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-71929-8_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dijkstra, Albert J. "Vacuum Stripping." In Edible Oil Processing from a Patent Perspective. Springer US, 2012. http://dx.doi.org/10.1007/978-1-4614-3351-4_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Harbison, J. P., P. F. Liao, D. M. Hwang, et al. "Ultra High Vacuum Processing: MBE." In Emerging Technologies for In Situ Processing. Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-1409-4_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Poirier, D. R., and G. H. Geiger. "Flow and Vacuum Production." In Transport Phenomena in Materials Processing. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-48090-9_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hruska, Samuel J. "Advances in Carburizing — Vacuum Carburizing." In Innovations in Materials Processing. Springer US, 1985. http://dx.doi.org/10.1007/978-1-4613-2411-9_26.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Deng, Yong, Bin Yang, DongSheng Li, Baoqiang Xu, and Heng Xiong. "Purification of Indium by Vacuum Distillation." In Materials Processing Fundamentals. John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118662199.ch21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Deng, Yong, Bin Yang, DongSheng Li, Baoqiang Xu, and Heng Xiong. "Purification of Indium by Vacuum Distillation." In Materials Processing Fundamentals. Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-48197-5_21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kodama, Tetsuro. "Particle Deposition in Vacuum." In Ultraclean Surface Processing of Silicon Wafers. Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-03535-1_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Holländer, A., J. Behnisch, and M. R. Wertheimer. "Plasma Vacuum UV Effects on Polymers." In Plasma Processing of Polymers. Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-015-8961-1_22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Herman, Marian A., and Helmut Sitter. "High Vacuum Growth and Processing Systems." In Molecular Beam Epitaxy. Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-97098-6_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Vacuum processing"

1

IGNATIEV, A., H. SHIH, M. DANIELS, R. SEGA, and T. BONNER. "Space vacuum processing." In 29th Aerospace Sciences Meeting. American Institute of Aeronautics and Astronautics, 1991. http://dx.doi.org/10.2514/6.1991-310.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kaneyama, Koji, Shinji Kobayashi, and Toshiro Itani. "EUV resist processing in vacuum." In SPIE Advanced Lithography, edited by Clifford L. Henderson. SPIE, 2009. http://dx.doi.org/10.1117/12.813365.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Stone, Martha B., Diana M. Ferriola, Joseph A. Maga, Robert A. Phillips, and Willy Z. Sadeh. "Vacuum Processing of Wheat in Space." In International Conference On Environmental Systems. SAE International, 1997. http://dx.doi.org/10.4271/972362.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lutsenko, A. S., and V. A. Kutovoy. "Thermal vacuum processing of brown coal." In 2015 International Young Scientists Forum on Applied Physics (YSF). IEEE, 2015. http://dx.doi.org/10.1109/ysf.2015.7333230.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Berkin, A. B., and V. V. Deryabina. "Hydroxyapatite ion-thermal processing in the vacuum." In 2014 12th International Conference on Actual Problems of Electronics Instrument Engineering (APEIE). IEEE, 2014. http://dx.doi.org/10.1109/apeie.2014.7040856.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Fu, Thomas T. H., Marylyn H. Bennett, and R. A. Bowling. "Particle generation mechanisms in vacuum processing tools." In Micro - DL Tentative, edited by Michael T. Postek, Jr. SPIE, 1992. http://dx.doi.org/10.1117/12.59844.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Borden, Dr Peter G., and John Gregg. "Particle monitoring and control in vacuum processing equipment." In VACUUM MECHATRONICS, FIRST INTERNATIONAL WORKSHOP. AIP, 1989. http://dx.doi.org/10.1063/1.38719.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chiao, Mu, and Liwei Lin. "Vacuum packaging of microresonators by rapid thermal processing." In SPIE's 9th Annual International Symposium on Smart Structures and Materials, edited by Vijay K. Varadan. SPIE, 2002. http://dx.doi.org/10.1117/12.475039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Motta, Claudio C. "Impregnated cathode processing for microwave tubes." In 2016 IEEE International Vacuum Electronics Conference (IVEC). IEEE, 2016. http://dx.doi.org/10.1109/ivec.2016.7561926.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Denisov, G., Yu Bykov, A. Eremeev, et al. "High Efficient Gyrotron-Based Systems for Materials Processing." In 2007 IEEE International Vacuum Electronics Conference. IEEE, 2007. http://dx.doi.org/10.1109/ivelec.2007.4283400.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Vacuum processing"

1

Groves, J. F., G. Mattausch, H. Morgner, D. D. Hass, and H. N. Wadley. Directed Vapor Deposition: Low Vacuum Materials Processing Technology. Defense Technical Information Center, 2000. http://dx.doi.org/10.21236/ada454379.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Elliott, Douglas, M. V. Olarte, and T. R. Hart. Pilot-Scale Biorefinery: Sustainable Transport Fuels from Biomass and Algal Residues via Integrated Pyrolysis, Catalytic Hydroconversion and Co-processing with Vacuum Gas Oil. Office of Scientific and Technical Information (OSTI), 2016. http://dx.doi.org/10.2172/1267107.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography