Academic literature on the topic 'Valet de parking'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Valet de parking.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Valet de parking"

1

Mody, Mihir, Kedar Chitnis, Hemant Hariyani, et al. "Single Chip Auto-Valet Parking System with TDA4VMID SoC." Electronic Imaging 2021, no. 17 (2021): 113–1. http://dx.doi.org/10.2352/issn.2470-1173.2021.17.avm-113.

Full text
Abstract:
Auto-Valet parking is a key emerging function for Advanced Driver Assistance Systems (ADAS) enhancing traditional surround view system providing more autonomy during parking scenario. Auto-Valet parking system is typically built using multiple HW components e.g. ISP, micro-controllers, FPGAs, GPU, Ethernet/PCIe switch etc. Texas Instrument’s new Jacinto7 platform is one of industry’s highest integrated SoC replacing these components with a single TDA4VMID chip. The TDA4VMID SoC can concurrently do analytics (traditional computer vision as well as deep learning) and sophisticated 3D surround view, making it a cost effective and power optimized solution. TDA4VMID is a truly heterogeneous architecture and it can be programmed using an efficient and easy to use OpenVX based middle-ware framework to realize distribution of software components across cores. This paper explains typical functions for analytics and 3D surround view in auto-valet parking system with data-flow and its mapping to multiple cores of TDA4VMID SoC. Auto-valet parking system can be realized on TDA4VMID SOC with complete processing offloaded of host ARM to the rest of SoC cores, providing ample headroom for customers for future proofing as well as ability to add customer specific differentiation.
APA, Harvard, Vancouver, ISO, and other styles
2

Gilbey, J. "Parking functions, valet functions and priority queues." Discrete Mathematics 197-198, no. 1-3 (1999): 351–73. http://dx.doi.org/10.1016/s0012-365x(98)00245-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gilbey, Julian D., and Louis H. Kalikow. "Parking functions, valet functions and priority queues." Discrete Mathematics 197-198 (February 1999): 351–73. http://dx.doi.org/10.1016/s0012-365x(99)90085-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ma, Jun, Xuejing Feng, Zaiyan Gong, and Qianwen Zhang. "Creating Appropriate Trust in Automated Valet Parking System." Journal of Physics: Conference Series 1549 (June 2020): 052059. http://dx.doi.org/10.1088/1742-6596/1549/5/052059.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Song, B. "Cooperative lateral vehicle control for autonomous valet parking." International Journal of Automotive Technology 14, no. 4 (2013): 633–40. http://dx.doi.org/10.1007/s12239-013-0068-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chen, Chen, Bing Wu, Liang Xuan, Jian Chen, Tianxiang Wang, and Lijun Qian. "A Trajectory Planning Method for Autonomous Valet Parking via Solving an Optimal Control Problem." Sensors 20, no. 22 (2020): 6435. http://dx.doi.org/10.3390/s20226435.

Full text
Abstract:
In the last decade, research studies on parking planning mainly focused on path planning rather than trajectory planning. The results of trajectory planning are more instructive for a practical parking process. Therefore, this paper proposes a trajectory planning method in which the optimal autonomous valet parking (AVP) trajectory is obtained by solving an optimal control problem. Additionally, a vehicle kinematics model is established with the consideration of dynamic obstacle avoidance and terminal constraints. Then the parking trajectory planning problem is modeled as an optimal control problem, while the parking time and driving distance are set as the cost function. The homotopic method is used for the expansion of obstacle boundaries, and the Gauss pseudospectral method (GPM) is utilized to discretize this optimal control problem into a nonlinear programming (NLP) problem. In order to solve this NLP problem, sequential quadratic programming is applied. Considering that the GPM is insensitive to the initial guess, an online calculation method of vertical parking trajectory is proposed. In this approach, the offline vertical parking trajectory, which is calculated and stored in advance, is taken as the initial guess of the online calculation. The selection of an appropriate initial guess is based on the actual starting position of parking. A small parking lot is selected as the verification scenario of the AVP. In the validation of the algorithm, the parking trajectory planning is divided into two phases, which are simulated and analyzed. Simulation results show that the proposed algorithm is efficient in solving a parking trajectory planning problem. The online calculation time of the vertical parking trajectory is less than 2 s, which meets the real-time requirement.
APA, Harvard, Vancouver, ISO, and other styles
7

Yu, Jiang, and Hua. "Anti-Congestion Route Planning Scheme Based on Dijkstra Algorithm for Automatic Valet Parking System." Applied Sciences 9, no. 23 (2019): 5016. http://dx.doi.org/10.3390/app9235016.

Full text
Abstract:
Based on the Dijkstra algorithm, with the parking parameters in the static state, the shortest route to each parking space of the parking lot without dynamic influence factors can be calculated. In the new technology background of the combination of the V2X environment and driverless technology, the dynamic influence factors, for example, the lanes occupancy situation caused by parking, can be considered to improve the shortest route with the new scheme in this paper. Then the final route that costs the least time to reach each parking space will be calculated. This is very important for the development of the intelligent transportation system in the parking lot environment.
APA, Harvard, Vancouver, ISO, and other styles
8

Ma, Shidian, Weifeng Fang, Haobin Jiang, Mu Han, and Chenxu Li. "Parking Space Recognition Method Based on Parking Space Feature Construction in the Scene of Autonomous Valet Parking." Applied Sciences 11, no. 6 (2021): 2759. http://dx.doi.org/10.3390/app11062759.

Full text
Abstract:
At present, the realization of autonomous valet parking (AVP) technology does not achieve information interaction between the parking spaces and vehicles, and accurate parking spaces information perception cannot be obtained when the accuracy of the search is not precise. In addition, when using the camera vision to identify the parking spaces, traditional parking space features such as parking lines and parking angles recognition are susceptible to light and environment. Especially when the vehicle nearby partially occupies the parking space to be parked, it is not easy to determine whether it is a valid empty parking space. This paper proposes a parking space recognition method based on parking space features in the scene of AVP. By constructing the multi-dimensional features containing the parking space information, the cameras are used to extract features’ contour, locate features’ position and recognize features. In this paper, a new similarity calculation formula is proposed to recognize the stained features through template matching algorithm. According to the relative position relationship between the feature and parking space, the identification of effective empty parking spaces and their boundaries is realized. The experimental results show that compared with the recognition of traditional parking lines and parking angles, this method can identify effective empty parking spaces even when the light conditions are complex and the parking spaces are partially occupied by adjacent vehicles, which simplifies the recognition algorithm and improves the reliability of the parking spaces identification.
APA, Harvard, Vancouver, ISO, and other styles
9

Khalid, Muhammad, Kezhi Wang, Nauman Aslam, Yue Cao, Naveed Ahmad, and Muhammad Khurram Khan. "From smart parking towards autonomous valet parking: A survey, challenges and future Works." Journal of Network and Computer Applications 175 (February 2021): 102935. http://dx.doi.org/10.1016/j.jnca.2020.102935.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kim, Seunghyun, Joongsik Kim, Moonsoo Ra, and Whoi-Yul Kim. "Vacant Parking Slot Recognition Method for Practical Autonomous Valet Parking System Using around View Image." Symmetry 12, no. 10 (2020): 1725. http://dx.doi.org/10.3390/sym12101725.

Full text
Abstract:
The parking assist system (PAS) provides information of parking slots around the vehicle. As the demand for an autonomous system is increasing, intelligent PAS has been developed to park the vehicle without the driver’s intervention. To locate parking slots, most existing methods detect slot markings on the ground using an around-view monitoring (AVM) image. There are many types of parking slots of different shapes in the real world. Due to this fact, these methods either limit their target types or use predefined slot information of different types to cover the types. However, the approach using predefined slot information cannot handle more complex cases where the slot markings are connected to other line markings and the angle between slot marking is slightly different from the predefined settings. To overcome this problem, we propose a method to detect parking slots of various shapes without predefined type information. The proposed method is the first to introduce a free junction type feature to represent the structure of parking slot junction. Since the parking slot has a modular or repeated junction pattern at both sides, junction pair consisting of one parking slot can be detected using the free junction type feature. In this process, the geometrically symmetric characteristic of the junction pair is crucial to find each junction pair. The entrance of parking slot is reconstructed according to the structure of junction pair. Then, the vacancy of the parking slot is determined by a support vector machine. The Kalman tracker is applied for each detected parking slot to ensure stability of the detection in consecutive frames. We evaluate the performance of the proposed method by using manually collected datasets, captured in different parking environments. The experimental results show that the proposed method successfully detects various types of parking slots without predefined slot type information in different environments.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Valet de parking"

1

Espinoza, Espinoza Juan Alejandro. "Responsabilidad civil derivada del contrato de servicio de valet parking." IUS ET VERITAS, 2015. http://repositorio.pucp.edu.pe/index/handle/123456789/123465.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bruns, Christian. "Lidar-based Vehicle Localization in an Autonomous Valet Parking Scenario." The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1461236677.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Schönemann, Valerij [Verfasser], Hermann [Akademischer Betreuer] Winner, and Uwe [Akademischer Betreuer] Klingauf. "Safety Requirements and Distribution of Functions for Automated Valet Parking / Valerij Schönemann ; Hermann Winner, Uwe Klingauf." Darmstadt : Universitäts- und Landesbibliothek Darmstadt, 2019. http://d-nb.info/1200548086/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Chirca, Mihai. "Perception pour la navigation et le contrôle des robots mobiles. Application à un système de voiturier autonome." Thesis, Clermont-Ferrand 2, 2016. http://www.theses.fr/2016CLF22763/document.

Full text
Abstract:
Ce travail porte sur la conception d’un système capable d’effectuer des manœuvres de parking automatique plus polyvalent que ceux actuellement commercialisés, tout en conservant une définition technique des capteurs extéroceptifs limités en prix et en gabarit. Un cas d’usage typique est de permettre au véhicule de se rendre automatiquement dans la zone de garage du domicile de son propriétaire, cette fonction est classiquement appelée voiturier autonome à domicile. Partant de l’existant et connaissant les performances attendues, une architecture système et une architecture fonctionnelle ont été tracées. Cela a permis de constituer un ensemble de fonctions interconnectées qui ont participé dans la création d’une architecture software modulaire ainsi que dans la création des interfaces de connexion au véhicule prototype. Dans un premier temps, nous explorons la problématique de la détection d’obstacles. Partant d’un système propriétaire fermé de capteurs ultrason, nous avons réussi à réaliser une carte d’obstacle à un niveau de précision supérieur au produit d’origine. Une augmentation de la limite de détection des capteurs ultrason a été réalisée utilisant une technique Structure from Motion. Ces informations d’occupation ont été exploitées par la suite pour traiter la problématique de détection du couloir de navigation. Dans un second temps, la fonction de localisation du véhicule est abordée. Trois techniques de localisation collaborent pour une robustesse de fonctionnement continu : la localisation odométrique, la localisation par appariement des grilles d’occupation et la localisation par appariement entre une image actuelle et une base d’images adaptée à notre besoin et améliorée en termes de temps de calcul. Enfin, nous nous sommes intéressés à la problématique de navigation du véhicule. Nous avons considéré résolue la problématique de contrôle des actionneurs pour le suivi d’une trajectoire donnée et nous nous sommes concentrés sur la création d’une trajectoire admissible. Nous avons développé une technique de planification locale pour l’évitement d’un d’obstacles non cartographiés. Pour la construction de trajectoire nous avons utilisé des courbes à géométrie connue et avons montré qu’en utilisant trois clothoïdes et éventuellement deux arcs de cercle (si le braquage maximal est atteint) il est possible de créer des trajectoires à courbure continue adaptées à notre situation. Nous avons montré que l’utilisation d’une carte d’obstacles nous permet de prédire plus en avance de la possibilité d’emprunter un certain couloir de navigation. Chacune des parties de ce travail a fait l’objet de validations en simulation mais aussi sur des données réelles démontrant la pertinence des approches proposées quant à l’application visée<br>This work covers the conception of a system capable to do automatic parking maneuvers more versatile than those already commercialized, respecting the technical definition of exteroceptive sensors limited by costs and weight. A typical use case is to set a vehicle to park autonomously in the parking lot of a home, function generally called autonomous home valet parking. Taking from the existing and knowing the expected performances, a system architecture and a functional architecture were drawn. This allowed to compose an assembly of interconnected functions that participated in the creation of modular software architecture, as well as in the creation of connection interfaces with the prototype vehicle. First, we explored the obstacle detection problem. Having a closed property system with ultrasonic sensors, we managed to build an obstacle map with a higher precision level than the build-in product. An increasing limit detection of the ultrasonic sensors was developed using the Structure from Motion technique. This obstacle occupancy information was exploited afterwards in order to solve the detection problem of the navigation corridors. Second, the vehicle localization is addressed. Three localization techniques work for a continuous functioning robustness: the localization by odometry, the localization by occupancy grid map matching and the localization by comparing the current image with the images stored in a database adapted to our needs and improved by computing means. Last, we interested in the vehicle navigation problem. We considered solved the actuator control problem for the tracking of a given trajectory and we concentrated on an admissible trajectory planning. We developed a local path planning technique for avoiding the unmapped obstacles. In order to build the trajectory we used curves of known geometry and we proved that by using clothoides and eventually two circle arches (if maximum steering angle achieved) it is therefore be possible to create trajectories with continuous curves adapted to our situation. We confirmed that using an obstacle map will allow us to predict forehead the possibility to take a specific navigation corridor. Each part of this work was validated in simulation as well as on real data, proving the pertinence of the proposed approaches for the intended application
APA, Harvard, Vancouver, ISO, and other styles
5

Alhammad, Abdulmalik. "Context-aware aided parking solutions based on VANET." Thesis, De Montfort University, 2014. http://hdl.handle.net/2086/10861.

Full text
Abstract:
Vehicular Ad-hoc Network (VANET) is a special application of the Mobile Ad-hoc Network (MANET) for managing road traffic and substantially contributes to the development of Intelligent Transportation Systems (ITS). VANET was introduced as a standard for data communication between moving vehicles with and without fixed infrastructure. It aims to support drivers by improving safety and driving comfort as a step towards constructing a safer, cleaner and a more intelligent environment. Nowadays, vehicles are manufactured equipped with a number of sensors and devices called On Board Units (OBU) assisting the vehicle to sense the surrounding environment and then process the context information to effectively manage communication with the surrounding vehicles and the associated infrastructure. A number of challenges have emerged in VANET that have encouraged researchers to investigate this concept further. Many of the recent studies have applied different technologies for intelligent parking management. However, despite all the technological advances, researchers are no closer to developing a system that enables drivers to easily locate and reserve a parking space. Limited resources such as energy, storage space, availability and reliability are factors which could have contributed to the lack success and progress in this area. The task then is to close these gaps and present a novel solution for parking. This research intends to address this need by developing a novel architecture for locating and reserving a parking space that best matches the driver's preferences and vehicle profile without distracting the driver. The simple and easy-to-use mechanism focuses on the domain of an intelligent parking system that exploits the concept of InfoStation (IS) and context-aware system creating a single framework to locate and reserve a parking space. A three tier network topology comprising of vehicles, IS and the InfoStation Centre (ISC) has been proposed as the foundation of the on-street parking system architecture. The thesis attempts to develop the architecture of a parking management solution as a comfort-enhancing application that offers to reduce congestion related stress and improve the driver experience by reducing the time it takes to identify and utilise a parking space that is available.
APA, Harvard, Vancouver, ISO, and other styles
6

Schönemann, Valerij. "Safety Requirements and Distribution of Functions for Automated Valet Parking." Phd thesis, 2019. https://tuprints.ulb.tu-darmstadt.de/9238/1/Dissertation_Sch%C3%B6nemann_2019_V1.pdf.

Full text
Abstract:
Automated valet parking (AVP) is a service which potentially releases the driver from the burden of parking the vehicle manually and saves his valuable time. However, the integration of AVP systems into today’s parking facilities may result in a mixed traffic of manually driven and automated vehicles. Thereby, function modules to execute the AVP Service can be placed inside the vehicle and/ or inside the infrastructure. The two yet unresolved research questions in such a scenario are the definition of necessary minimum criteria for a safe AVP service and the distribution of functions between the infrastructure and the automated vehicle. In particular, the definition of minimum criteria is required to ensure the necessary safety by design in the early system development phase. This thesis specifies such minimum criteria for AVP systems to minimize the risks of harm for future deployed AVP systems. The necessary safety design is derived for different topologies of parking garages by considering the needed cooperation between the infrastructure and the automated vehicle. In the first step, the lack of minimum criteria and the lack of possible AVP configurations is identified in the state-of-the-art. The methodology to identify minimum criteria is divided in three parts: minimum safety requirements, minimum required perception zone and minimum functional requirements. Minimum safety requirements define the parameters and corresponding thresholds that are required to be investigated. They prevent the AVP-system to cause potential hazards and critical situations. A minimum required perception and safety zone describe technology-independent, geometric-based and minimum safety-relevant areas around the ego-vehicle. The determination of necessary parameters for a collision-free stop is required in the minimum required perception zone. Additionally, minimum functional requirements are derived from defined scenarios. The functional requirements are assigned to function modules and form as system building blocks modular AVP system architecture. Minimum safety requirements, the minimum required perception zone and minimum functional requirements form the minimum criteria for the elaborated checklist. In the scope of this work, minimum criteria and impacts on costs, time efficiency, safety as well as availability serve as a justification to derive needed AVP configurations. Distributed functions range from the perception to the execution. A tradeoff exists between overall costs, time efficiency, safety and availability of AVP systems with today’s vehicles. AVP configurations and minimum criteria ease the migration of AVP systems in today’s existing and in newly constructed parking garages. Minimum criteria lay the foundation for the development of a necessary safety design.
APA, Harvard, Vancouver, ISO, and other styles
7

Berghöfer, Moritz. "Generierung realer und synthetischer Sensordaten zur Validierung von Sensormodellen für die simulationsbasierte Absicherung der Valet Parking Funktion." Bachelor's thesis, 2019. https://tuprints.ulb.tu-darmstadt.de/8637/1/Berghoefer%20-%20Generierung%20realer%20und%20synthetischer%20Sensordaten%20zur%20Validierung%20von%20Sensormodellen.pdf.

Full text
Abstract:
Im Zuge der zunehmenden Automatisierung von Fahrzeugen ergibt sich das Problem der „Freigabefalle des autonomen Fahrens“: Zur Einführung von Systemen mit Automatisierungsstufen, bei denen eine Überwachung des Fahrzustands durch den Fahrer nicht erforderlich ist, wäre eine Absicherung dieser durch reale Fahrversuche aufgrund der dafür zu fahrenden Strecke nicht realisierbar. Eine mögliche Lösung des Problems ist die simulationsbasierte Absicherung von automatisierten Fahrfunktionen. Dabei spielt die realitätsgetreue Modellierung der Umfeldsensorik des Fahrzeugs eine wichtige Rolle. Ein für das automatisierte Fahren entscheidender Teil dieser Umfeldsensorik ist der Lidar-Sensor. In dieser Bachelorthesis wird ein vorhandenes Lidar-Sensormodell im Kontext des automatisierten Valet Parkings (AVP), einem Anwendungsfall des automatisierten Fahrens, bewertet. Dazu werden relevante Fahrszenarien entwickelt, durch deren Durchführung in realen und virtuellen Versuchen reale bzw. synthetische Messdaten erzeugt werden. Der Vergleich dieser ermöglicht eine Bewertung des Sensormodells. Bevor die Fahrszenarien durchgeführt werden, ergibt sich aus den Eigenschaften einer typischen AVP-Umgebung die Notwendigkeit einer ausreichend genauen GPS-autarken Lokalisierung des Fahrzeugs. Dazu werden Ansätze entwickelt, die in Versuchen auf Genauigkeit und Eignung überprüft werden. Die Kombination eines radbasierten Odometrie-Ansatzes mit dem Ansatz der Erzeugung von Markierungen auf dem Boden durch das Fahrzeug weist eine ausreichende Genauigkeit zur GPS-autarken Lokalisierung des Fahrzeugs auf. Anhand der Eigenschaften einer typischen AVP-Umgebung und der Betrachtung von sensorspezifischen Limitierungen werden für die Absicherung relevante AVP-Fahrszenarien entwickelt. Diese Fahrszenarien werden durch Nachstellung der entwickelten Szenarioumgebung, einerseits in realen Versuchen mit einem realen Lidar-Sensor und andererseits in virtuellen Versuchen mit dem zu bewertenden Lidar-Sensormodell in einer Simulationsumgebung, durchgeführt. Die dadurch erzeugten realen und synthetischen Messdaten werden auf Verarbeitungsebene der Punktwolken anhand von Metriken und einem visuellen Vergleich auf ihre Übereinstimmung überprüft. Es zeigt sich, dass die Bewertung des Sensormodells anhand der Metriken nur schwer möglich ist, da einerseits keine Erfahrungswerte zur Beurteilung einer Lidar-Sensorsimulation vorliegen und andererseits bei der angewendeten Methodik zur Erzeugung der Messdaten einige Faktoren, welche nicht auf die Qualität des Sensormodells zurückzuführen sind, die Ergebnisse der Metriken in einem unbekannten Maß beeinflussen. Der visuelle Vergleich der Messdaten zeigt, dass der Großteil der AVP-Szenarioumgebung realitätsgetreu durch das Sensormodell erfasst wird.
APA, Harvard, Vancouver, ISO, and other styles
8

Lee, Wei-De, and 李韋德. "Compare the Effects Between 2D and 3D Around View Display of Automated Valet Parking on Drivers’ Situation Awareness." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/2m9ew4.

Full text
Abstract:
碩士<br>國立交通大學<br>工業工程與管理系所<br>106<br>Automated Valet Parking (AVP), an automated system based on automated parking technique, helps drivers finish the parking task. While the driver gets off the vehicle, AVP automatically finds a free space in the parking lot and parks the vehicle. The driver can monitor the process and the location of the vehicle with their mobile device. According to the Human-autonomy System Oversight Model (HASO model), the automated system should correctly present the situation of the system to benefit operators’ situation awareness and to avoid the out-of-the-loop problem. With Around View Display(AVD), synthesizing images of cameras around the vehicle, the driver can take a bird's-eye view of the vehicle and perceive any detail of the surrounding. According to the synthesis method, AVD can be divided into 2D and 3D forms. This paper compares the effects between 2D and 3D AVD of AVP on drivers’ situation awareness of monitoring task, including navigation and precise judgment. The result from 27 participants shows that 3D AVD benefits the navigation and 2D AVD benefits the precise judgment in terms of better situation awareness and lower workload. This finding provides a design guideline in order to optimize drivers’ situation awareness while they are using automated valet parking.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Valet de parking"

1

Weber, Bruce. No valet parking: Photology. [B. Weber, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Parker, Philip M. The 2007-2012 World Outlook for Parking Lots, Garages, and Valet Parking Services. ICON Group International, Inc., 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

The 2006-2011 World Outlook for Parking Lots, Garages, and Valet Parking Services. Icon Group International, Inc., 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Parker, Philip M. The 2007-2012 Outlook for Parking Lots, Garages, and Valet Parking Services in Japan. ICON Group International, Inc., 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Parker, Philip M. The 2007-2012 Outlook for Parking Lots, Garages, and Valet Parking Services in India. ICON Group International, Inc., 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Parker, Philip M. The 2007-2012 Outlook for Parking Lots, Garages, and Valet Parking Services in Greater China. ICON Group International, Inc., 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Parker, Philip M. The 2007-2012 Outlook for Parking Lots, Garages, and Valet Parking Services in the United States. ICON Group International, Inc., 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

This town: Two parties and a funeral--plus, plenty of valet parking!--in America's gilded capital. Blue Rider Press, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Leibovich, Mark. This Town: Two Parties and a Funeral - Plus, Plenty of Valet Parking! - In America's Gilded Capital. Penguin Publishing Group, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Valet de parking"

1

Möller, Dietmar P. F., and Roland E. Haas. "Connected Parking and Automated Valet Parking." In Guide to Automotive Connectivity and Cybersecurity. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-73512-2_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Esen, Hasan, Maximilian Kneissl, Adam Molin, et al. "Validation of Automated Valet Parking." In Validation and Verification of Automated Systems. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-14628-3_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Shoeibi, Nastaran, and Niloufar Shoeibi. "Future of Smart Parking: Automated Valet Parking Using Deep Q-Learning." In Advances in Intelligent Systems and Computing. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-23946-6_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ryu, Hyunjee, Beomyoung Kim, Heecheol Yoo, and Jungwon Lee. "Fully Automated Valet Parking System Based on Infrastructure Sensing." In Lecture Notes in Mechanical Engineering. Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-4803-8_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sakr, Mostafa, Adel Moussa, Walid Abdelfatah, Mohamed Elsheikh, and Naser El-Sheimy. "Reliable Localization Using Multi-sensor Fusion for Automated Valet Parking Applications." In Lecture Notes in Electrical Engineering. Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3707-3_68.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Xu, Shiyuan, Xue Chen, Chao Wang, Yunhua He, Ke Xiao, and Yibo Cao. "A Lattice-Based Ring Signature Scheme to Secure Automated Valet Parking." In Wireless Algorithms, Systems, and Applications. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-86130-8_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Schönemann, Valerij, Hermann Winner, Thomas Glock, et al. "Scenario-Based Functional Safety for Automated Driving on the Example of Valet Parking." In Advances in Intelligent Systems and Computing. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-03402-3_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Makkeh, Abdullah, and Dirk Oliver Theis. "Comparison of IP and CNF Models for Control of Automated Valet Parking Systems." In Springer Proceedings in Mathematics & Statistics. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-67308-0_24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ma, Jun, Xuejing Feng, Zaiyan Gong, and Qianwen Zhang. "From the Parking Lot to Your Gate: A Need-Centered Approach for Optimizing User Experience in Automated Valet Parking System." In HCI International 2020 – Late Breaking Papers: Digital Human Modeling and Ergonomics, Mobility and Intelligent Environments. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59987-4_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Drabek, Christian, Dhavalkumar Shekhada, Gereon Weiss, et al. "Dependable and Efficient Cloud-Based Safety-Critical Applications by Example of Automated Valet Parking." In Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-71454-3_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Valet de parking"

1

Conner, David C., Hadas Kress-Gazit, Howie Choset, Alfred A. Rizzi, and George J. Pappas. "Valet parking without a valet." In 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2007. http://dx.doi.org/10.1109/iros.2007.4399374.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Nayak, Anuj K., H. C. Akash, and Geetha Prakash. "Robotic Valet Parking System." In 2013 Texas Instruments India Educators' Conference (TIIEC). IEEE, 2013. http://dx.doi.org/10.1109/tiiec.2013.62.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Geva, S., J. Sitte, and G. Willshire. "Valet Parking Neural Network." In IEEE International Workshop on Emerging Technologies and Factory Automation,. IEEE, 1992. http://dx.doi.org/10.1109/etfa.1992.683266.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Suppé, Arne, Luis E. Navarro-Serment, and Aaron Steinfeld. "Semi-autonomous virtual valet parking." In the 2nd International Conference. ACM Press, 2010. http://dx.doi.org/10.1145/1969773.1969798.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Chirca, Mihai, Roland Chapuis, and Roland Lenain. "Autonomous Valet Parking System Architecture." In 2015 IEEE 18th International Conference on Intelligent Transportation Systems - (ITSC 2015). IEEE, 2015. http://dx.doi.org/10.1109/itsc.2015.421.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Rottmann, Stephan, Julian Timpner, and Lars Wolf. "Demo: Automated valet parking and charging." In 2014 IEEE Vehicular Networking Conference (VNC). IEEE, 2014. http://dx.doi.org/10.1109/vnc.2014.7013348.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Klemm, Sebastian, Thomas Schamm, J. Marius Zollner, et al. "Autonomous multi-story navigation for valet parking." In 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC). IEEE, 2016. http://dx.doi.org/10.1109/itsc.2016.7795698.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kang, Dong Hee, Chang Mook Kang, Joong-Sik Kim, et al. "Vision-based autonomous indoor valet parking system." In 2017 17th International Conference on Control, Automation and Systems (ICCAS). IEEE, 2017. http://dx.doi.org/10.23919/iccas.2017.8204420.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Jeong, Yonghwan, Seonwook Kim, Kyongsu Yi, Sangyong Lee, and ByeongRim Jo. "Design and Implementation of Parking Control Algorithm for Autonomous Valet Parking." In SAE 2016 World Congress and Exhibition. SAE International, 2016. http://dx.doi.org/10.4271/2016-01-0146.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Yang, Qinghua, Hui Chen, Junzhe Su, and Jie Li. "Towards High Accuracy Parking Slot Detection for Automated Valet Parking System." In New Energy & Intelligent Connected Vehicle Technology Conference. SAE International, 2019. http://dx.doi.org/10.4271/2019-01-5061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!