Journal articles on the topic 'Vanadium redox batteries'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Vanadium redox batteries.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Zhang, Feifei, Songpeng Huang, Xun Wang, Chuankun Jia, Yonghua Du, and Qing Wang. "Redox-targeted catalysis for vanadium redox-flow batteries." Nano Energy 52 (October 2018): 292–99. http://dx.doi.org/10.1016/j.nanoen.2018.07.058.
Full textWu, Xiongwei, Jun Liu, Xiaojuan Xiang, Jie Zhang, Junping Hu, and Yuping Wu. "Electrolytes for vanadium redox flow batteries." Pure and Applied Chemistry 86, no. 5 (2014): 661–69. http://dx.doi.org/10.1515/pac-2013-1213.
Full textClemente, Alejandro, and Ramon Costa-Castelló. "Redox Flow Batteries: A Literature Review Oriented to Automatic Control." Energies 13, no. 17 (2020): 4514. http://dx.doi.org/10.3390/en13174514.
Full textCarretero-González, Javier, Elizabeth Castillo-Martínez, and Michel Armand. "Highly water-soluble three-redox state organic dyes as bifunctional analytes." Energy & Environmental Science 9, no. 11 (2016): 3521–30. http://dx.doi.org/10.1039/c6ee01883a.
Full textHan, Pengxian, Xiaogang Wang, Lixue Zhang, et al. "RuSe/reduced graphene oxide: an efficient electrocatalyst for VO2+/VO2+ redox couples in vanadium redox flow batteries." RSC Adv. 4, no. 39 (2014): 20379–81. http://dx.doi.org/10.1039/c4ra01979b.
Full textChoi, So-Won, Sang-Ho Cha, and Tae-Ho Kim. "Nanostructured Membranes for Vanadium Redox Flow Batteries." Nanoscience &Nanotechnology-Asia 5, no. 2 (2015): 109–29. http://dx.doi.org/10.2174/2210681205666150903213628.
Full textCunha, Álvaro, Jorge Martins, Nuno Rodrigues, and F. P. Brito. "Vanadium redox flow batteries: a technology review." International Journal of Energy Research 39, no. 7 (2014): 889–918. http://dx.doi.org/10.1002/er.3260.
Full textSchwenzer, Birgit, Jianlu Zhang, Soowhan Kim, Liyu Li, Jun Liu, and Zhenguo Yang. "Membrane Development for Vanadium Redox Flow Batteries." ChemSusChem 4, no. 10 (2011): 1388–406. http://dx.doi.org/10.1002/cssc.201100068.
Full textNoack, Jens N., Lorenz Vorhauser, Karsten Pinkwart, and Jens Tuebke. "Aging Studies of Vanadium Redox Flow Batteries." ECS Transactions 33, no. 39 (2019): 3–9. http://dx.doi.org/10.1149/1.3589916.
Full textLourenssen, Kyle, James Williams, Faraz Ahmadpour, Ryan Clemmer, and Syeda Tasnim. "Vanadium redox flow batteries: A comprehensive review." Journal of Energy Storage 25 (October 2019): 100844. http://dx.doi.org/10.1016/j.est.2019.100844.
Full textTempelman, C. H. L., J. F. Jacobs, R. M. Balzer, and V. Degirmenci. "Membranes for all vanadium redox flow batteries." Journal of Energy Storage 32 (December 2020): 101754. http://dx.doi.org/10.1016/j.est.2020.101754.
Full textChoi, Chanyong, Soohyun Kim, Riyul Kim, et al. "A review of vanadium electrolytes for vanadium redox flow batteries." Renewable and Sustainable Energy Reviews 69 (March 2017): 263–74. http://dx.doi.org/10.1016/j.rser.2016.11.188.
Full textLutz, Christian, and Ursula Elisabeth Adriane Fittschen. "Laboratory XANES to study vanadium species in vanadium redox flow batteries." Powder Diffraction 35, S1 (2020): S24—S28. http://dx.doi.org/10.1017/s0885715620000226.
Full textDoan, The Nam Long, Tuan K. A. Hoang, and P. Chen. "Recent development of polymer membranes as separators for all-vanadium redox flow batteries." RSC Advances 5, no. 89 (2015): 72805–15. http://dx.doi.org/10.1039/c5ra05914c.
Full textPeng, Hao, Zuohua Liu, and Changyuan Tao. "Electrochemical oscillation of vanadium ions in anolyte." Journal of Electrochemical Science and Engineering 7, no. 3 (2017): 139. http://dx.doi.org/10.5599/jese.406.
Full textChoi, Chanyong, Hyungjun Noh, Soohyun Kim, et al. "Understanding the redox reaction mechanism of vanadium electrolytes in all-vanadium redox flow batteries." Journal of Energy Storage 21 (February 2019): 321–27. http://dx.doi.org/10.1016/j.est.2018.11.002.
Full textMaurya, Sandip, Sung-Hee Shin, Ju-Young Lee, Yekyung Kim, and Seung-Hyeon Moon. "Amphoteric nanoporous polybenzimidazole membrane with extremely low crossover for a vanadium redox flow battery." RSC Advances 6, no. 7 (2016): 5198–204. http://dx.doi.org/10.1039/c5ra26244e.
Full textLi, Yang, Lianbo Ma, Zhibin Yi, et al. "Metal–organic framework-derived carbon as a positive electrode for high-performance vanadium redox flow batteries." Journal of Materials Chemistry A 9, no. 9 (2021): 5648–56. http://dx.doi.org/10.1039/d0ta10580e.
Full textSon, Tae Yang, Kwang Seop Im, Ha Neul Jung, and Sang Yong Nam. "Blended Anion Exchange Membranes for Vanadium Redox Flow Batteries." Polymers 13, no. 16 (2021): 2827. http://dx.doi.org/10.3390/polym13162827.
Full textSchnucklake, Maike, Lysann Kaßner, Michael Mehring, and Christina Roth. "Porous carbon–carbon composite electrodes for vanadium redox flow batteries synthesized by twin polymerization." RSC Advances 10, no. 68 (2020): 41926–35. http://dx.doi.org/10.1039/d0ra07741k.
Full textJiang, H. R., W. Shyy, L. Zeng, R. H. Zhang, and T. S. Zhao. "Highly efficient and ultra-stable boron-doped graphite felt electrodes for vanadium redox flow batteries." Journal of Materials Chemistry A 6, no. 27 (2018): 13244–53. http://dx.doi.org/10.1039/c8ta03388a.
Full textZhang, Xiangyang, Qixing Wu, Yunhui Lv, Yongliang Li, and Xuelong Zhou. "Binder-free carbon nano-network wrapped carbon felt with optimized heteroatom doping for vanadium redox flow batteries." Journal of Materials Chemistry A 7, no. 43 (2019): 25132–41. http://dx.doi.org/10.1039/c9ta08859h.
Full textYang, Yang, Wenji Ma, Tong Zhang, Dingding Ye, Rong Chen, and Xun Zhu. "Pore engineering of graphene aerogels for vanadium redox flow batteries." Chemical Communications 56, no. 95 (2020): 14984–87. http://dx.doi.org/10.1039/d0cc06027e.
Full textReynard, Danick, Heron Vrubel, Christopher R. Dennison, Alberto Battistel, and Hubert H. Girault. "Purification of Copper-Contaminated Vanadium Electrolytes Using Vanadium Redox Flow Batteries." ECS Meeting Abstracts MA2020-01, no. 3 (2020): 481. http://dx.doi.org/10.1149/ma2020-013481mtgabs.
Full textMurcia-López, Sebastián, Monalisa Chakraborty, Nina M. Carretero, Cristina Flox, Joan Ramón Morante, and Teresa Andreu. "Adaptation of Cu(In, Ga)Se2 photovoltaics for full unbiased photocharge of integrated solar vanadium redox flow batteries." Sustainable Energy & Fuels 4, no. 3 (2020): 1135–42. http://dx.doi.org/10.1039/c9se00949c.
Full textSodiq, Ahmed, Lagnamayee Mohapatra, Fathima Fasmin, et al. "Black pearl carbon as a catalyst for all-vanadium redox flow batteries." Chemical Communications 55, no. 69 (2019): 10249–52. http://dx.doi.org/10.1039/c9cc03640g.
Full textKim, Jae-Hun, Seungbo Ryu, Sandip Maurya, et al. "Fabrication of a composite anion exchange membrane with aligned ion channels for a high-performance non-aqueous vanadium redox flow battery." RSC Advances 10, no. 9 (2020): 5010–25. http://dx.doi.org/10.1039/c9ra08616a.
Full textMehboob, Sheeraz, Asad Mehmood, Ju-Young Lee, et al. "Excellent electrocatalytic effects of tin through in situ electrodeposition on the performance of all-vanadium redox flow batteries." Journal of Materials Chemistry A 5, no. 33 (2017): 17388–400. http://dx.doi.org/10.1039/c7ta05657e.
Full textSchnucklake, Maike, Sophie Kuecken, Abdulmonem Fetyan, Johannes Schmidt, Arne Thomas, and Christina Roth. "Salt-templated porous carbon–carbon composite electrodes for application in vanadium redox flow batteries." Journal of Materials Chemistry A 5, no. 48 (2017): 25193–99. http://dx.doi.org/10.1039/c7ta07759a.
Full textWu, Yuping, and Rudolf Holze. "Electrocatalysis at Electrodes for VanadiumRedox Flow Batteries." Batteries 4, no. 3 (2018): 47. http://dx.doi.org/10.3390/batteries4030047.
Full textMaruyama, Jun, Shohei Maruyama, Tomoko Fukuhara, Toru Nagaoka, and Kei Hanafusa. "Concurrent nanoscale surface etching and SnO2 loading of carbon fibers for vanadium ion redox enhancement." Beilstein Journal of Nanotechnology 10 (April 30, 2019): 985–92. http://dx.doi.org/10.3762/bjnano.10.99.
Full textLee, Chi-Yuan, Chin-Lung Hsieh, Chia-Hung Chen, Yen-Pu Huang, Chong-An Jiang, and Pei-Chi Wu. "A Flexible 5-In-1 Microsensor for Internal Microscopic Diagnosis of Vanadium Redox Flow Battery Charging Process." Sensors 19, no. 5 (2019): 1030. http://dx.doi.org/10.3390/s19051030.
Full textSaccà, A., A. Carbone, R. Pedicini, I. Gatto, and E. Passalacqua. "Composite sPEEK Membranes for Vanadium Redox Batteries Application." Procedia Engineering 44 (2012): 1041–43. http://dx.doi.org/10.1016/j.proeng.2012.08.669.
Full textChen, D., M. A. Hickner, E. Agar, and E. C. Kumbur. "Anion Exchange Membranes for Vanadium Redox Flow Batteries." ECS Transactions 53, no. 7 (2013): 83–89. http://dx.doi.org/10.1149/05307.0083ecst.
Full textChen, Dongyang, Michael A. Hickner, Ertan Agar, and E. Caglan Kumbur. "Optimizing membrane thickness for vanadium redox flow batteries." Journal of Membrane Science 437 (June 2013): 108–13. http://dx.doi.org/10.1016/j.memsci.2013.02.007.
Full textUlaganathan, Mani, Vanchiappan Aravindan, Qingyu Yan, Srinivasan Madhavi, Maria Skyllas-Kazacos, and Tuti Mariana Lim. "Recent Advancements in All-Vanadium Redox Flow Batteries." Advanced Materials Interfaces 3, no. 1 (2015): 1500309. http://dx.doi.org/10.1002/admi.201500309.
Full textPark, Minjoon, Jaechan Ryu, and Jaephil Cho. "Nanostructured Electrocatalysts for All-Vanadium Redox Flow Batteries." Chemistry - An Asian Journal 10, no. 10 (2015): 2096–110. http://dx.doi.org/10.1002/asia.201500238.
Full textWu, Xiongwei, Junping Hu, Jun Liu, et al. "Ion exchange membranes for vanadium redox flow batteries." Pure and Applied Chemistry 86, no. 5 (2014): 633–49. http://dx.doi.org/10.1515/pac-2014-0101.
Full textBayanov, I. M., and R. Vanhaelst. "The numerical simulation of vanadium RedOx flow batteries." Journal of Mathematical Chemistry 49, no. 9 (2011): 2013–31. http://dx.doi.org/10.1007/s10910-011-9872-x.
Full textThiam, Baye Gueye, and Sébastien Vaudreuil. "Review—Recent Membranes for Vanadium Redox Flow Batteries." Journal of The Electrochemical Society 168, no. 7 (2021): 070553. http://dx.doi.org/10.1149/1945-7111/ac163c.
Full textJiang, Zhen, Konstantin Klyukin, and Vitaly Alexandrov. "First-principles study of adsorption–desorption kinetics of aqueous V2+/V3+ redox species on graphite in a vanadium redox flow battery." Physical Chemistry Chemical Physics 19, no. 23 (2017): 14897–901. http://dx.doi.org/10.1039/c7cp02350b.
Full textBoivin, Edouard, Jean-Noël Chotard, Christian Masquelier, and Laurence Croguennec. "Towards Reversible High-Voltage Multi-Electron Reactions in Alkali-Ion Batteries Using Vanadium Phosphate Positive Electrode Materials." Molecules 26, no. 5 (2021): 1428. http://dx.doi.org/10.3390/molecules26051428.
Full textXiang, Yan, and Walid A. Daoud. "Binary NiCoO2-modified graphite felt as an advanced positive electrode for vanadium redox flow batteries." Journal of Materials Chemistry A 7, no. 10 (2019): 5589–600. http://dx.doi.org/10.1039/c8ta09650c.
Full textWen, Yue Hua, Yan Xu, Jie Cheng, Han Min Liu, and Gao Ping Cao. "Investigation on the Stability of Electrolyte in Vanadium Flow Batteries." Advanced Materials Research 608-609 (December 2012): 1034–38. http://dx.doi.org/10.4028/www.scientific.net/amr.608-609.1034.
Full textMartin, Jan, Katharina Schafner, and Thomas Turek. "Preparation of Electrolyte for Vanadium Redox‐Flow Batteries Based on Vanadium Pentoxide." Energy Technology 8, no. 9 (2020): 2000522. http://dx.doi.org/10.1002/ente.202000522.
Full textLawton, Jamie S., Wyndom Chace, and Thomas M. Arruda. "State of Charge Effects on Vanadium Crossover in Vanadium Redox Flow Batteries." ECS Meeting Abstracts MA2020-01, no. 52 (2020): 2895. http://dx.doi.org/10.1149/ma2020-01522895mtgabs.
Full textWon, Seongyeon, Kyeongmin Oh, and Hyunchul Ju. "Numerical analysis of vanadium crossover effects in all-vanadium redox flow batteries." Electrochimica Acta 177 (September 2015): 310–20. http://dx.doi.org/10.1016/j.electacta.2015.01.166.
Full textKim, Ki Jae, Min-Sik Park, Young-Jun Kim, Jung Ho Kim, Shi Xue Dou, and M. Skyllas-Kazacos. "A technology review of electrodes and reaction mechanisms in vanadium redox flow batteries." Journal of Materials Chemistry A 3, no. 33 (2015): 16913–33. http://dx.doi.org/10.1039/c5ta02613j.
Full textCho, Hyeongrae, Vladimir Atanasov, Henning M. Krieg, and Jochen A. Kerres. "Novel Anion Exchange Membrane Based on Poly(Pentafluorostyrene) Substituted with Mercaptotetrazole Pendant Groups and Its Blend with Polybenzimidazole for Vanadium Redox Flow Battery Applications." Polymers 12, no. 4 (2020): 915. http://dx.doi.org/10.3390/polym12040915.
Full textCha, Sang-Ho. "Recent Development of Nanocomposite Membranes for Vanadium Redox Flow Batteries." Journal of Nanomaterials 2015 (2015): 1–12. http://dx.doi.org/10.1155/2015/207525.
Full text