Academic literature on the topic 'Vandermonde determinant'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Vandermonde determinant.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Vandermonde determinant"
Yaici, Malika, and Kamel Hariche. "A particular block Vandermonde matrix." ITM Web of Conferences 24 (2019): 01008. http://dx.doi.org/10.1051/itmconf/20192401008.
Full textXu, Junqin, and Likuan Zhao. "An application of the Vandermonde determinant." International Journal of Mathematical Education in Science and Technology 37, no. 2 (March 15, 2006): 229–31. http://dx.doi.org/10.1080/00207390500226093.
Full textLomidze, I. "On Some Generalizations of the Vandermonde Matrix and Their Relations with the Euler Beta-Function." gmj 1, no. 4 (August 1994): 405–17. http://dx.doi.org/10.1515/gmj.1994.405.
Full textMpimbo, Marco. "On the Convergence of Orbits in Sequence Space l^2." Tanzania Journal of Science 47, no. 3 (August 15, 2021): 1174–83. http://dx.doi.org/10.4314/tjs.v47i3.26.
Full textChang, Geng-Zhe. "Planar Metric Inequalities Derived from the Vandermonde Determinant." American Mathematical Monthly 92, no. 7 (August 1985): 495. http://dx.doi.org/10.2307/2322511.
Full textChang, Geng-Zhe. "Planar Metric Inequalities Derived from the Vandermonde Determinant." American Mathematical Monthly 92, no. 7 (August 1985): 495–99. http://dx.doi.org/10.1080/00029890.1985.11971664.
Full textChu, Wenchang, and Xiaoyuan Wang. "Extensions of Vandermonde determinant by computing divided differences." Afrika Matematika 29, no. 1-2 (September 8, 2017): 73–79. http://dx.doi.org/10.1007/s13370-017-0527-3.
Full textSogabe, Tomohiro, and Moawwad El-Mikkawy. "On a problem related to the Vandermonde determinant." Discrete Applied Mathematics 157, no. 13 (July 2009): 2997–99. http://dx.doi.org/10.1016/j.dam.2009.04.018.
Full text徐, 雯燕. "Application of Vandermonde Determinant in Advanced Algebra Solving." Pure Mathematics 11, no. 07 (2021): 1421–29. http://dx.doi.org/10.12677/pm.2021.117159.
Full textRamana, D. S. "Arithmetical applications of an identity for the Vandermonde determinant." Acta Arithmetica 130, no. 4 (2007): 351–59. http://dx.doi.org/10.4064/aa130-4-4.
Full textDissertations / Theses on the topic "Vandermonde determinant"
Seppälä, L. (Louna). "Diophantine perspectives to the exponential function and Euler’s factorial series." Doctoral thesis, University of Oulu, 2019. http://urn.fi/urn:isbn:9789529418237.
Full textLundengård, Karl. "Generalized Vandermonde matrices and determinants in electromagnetic compatibility." Licentiate thesis, Mälardalens högskola, Utbildningsvetenskap och Matematik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-34864.
Full textSavitraz, Marcos. "DETERMINANTE DE ALGUMAS MATRIZES ESPECIAIS." Universidade Federal da Grande Dourados, 2015. http://tede.ufgd.edu.br:8080/tede/handle/tede/306.
Full textMade available in DSpace on 2016-04-11T13:35:04Z (GMT). No. of bitstreams: 2 license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) MARCOSSAVITRAZ.pdf: 593690 bytes, checksum: 425f2b9c86d8ddf94121fd26504fdcf8 (MD5) Previous issue date: 2015-10-07
This work brings an introductory context on determinants of special matrices, specifically the Vandermonde matrix, Cauchy and Hilbert. A compact algebraic formula is deduced for the determinant of each matrix. This formula provides ease in determining in the calculation process for this class of matrices. Applications are considered in the resolution of linear systems as well as in polynomial interpolation. Finally, we propose a class where we discuss concepts cited in the resolution of a problem situation, to be worked with high school students.
O presente trabalho nos traz um contexto introdutório sobre determinantes de matrizes especiais, mais concretamente a matriz de Vandermonde, Cauchy e Hilbert. Uma fórmula algébrica compacta é deduzida para o determinante de cada matriz. Esta fórmula nos proporciona facilidade no processo de cálculo do determinante para esta classe de matrizes. Aplicações são consideradas na resolução de sistemas lineares como também na interpolação polinomial. Finalmente, apresentamos uma proposta de aula onde abordamos conceitos citados na resolução de uma situação problema, para ser trabalhada com alunos do Ensino Médio.
Li, Xuan Zhu, and 李宣助. "A proof about the generalized vandermonde determinant." Thesis, 1994. http://ndltd.ncl.edu.tw/handle/72478540854090189080.
Full textLee, Shuan-Juh, and 李宣助. "A PROOF ABOUT THE GENERALIZED VANDERMONDE DETERMINANT." Thesis, 1994. http://ndltd.ncl.edu.tw/handle/87915476536930245791.
Full text國立政治大學
應用數學研究所
82
When we solve a characteristic equation of a recurrence relation ,no matter what the roots are distinct or not,we take the linear independence of these solutions producing by each root for granted.Basing on this fact,we can easily write out the general solutions of this recurrence relation by using linear combination.
Hsuan-Chu, Li, and 李宣助. "Studies on Generalized Vandermonde Matrices: Their Determinants, Inverses, Explicit LU Factorizations, with Applications." Thesis, 2007. http://ndltd.ncl.edu.tw/handle/98917357188189258047.
Full text國立政治大學
應用數學研究所
95
Classical and generalized Vandermonde matrices are ubiquitous in mathematics, and various studies on their determinants, inverses, explicit LU factorizations with applications are done recently by many authors. In this thesis we shall focus on two topics: One is generalized Vandermonde matrices revisited and the other is various decompositions of some generalized Vandermonde matrices. In the first topic, we prove the well-known determinant formulas of two types of generalized Vandermonde matrices using only mathematical induction, different from the proofs of Fulin Qian's and Flowe-Harris'. In the second topic, which constitutes the main results of this thesis, we devote ourself to two themes. Firstly, we study a special class which is the transpose of the generalized Vandermonde matrix of the first type and succeed in obtaining its LU factorization in an explicit form. Furthermore, we express the LU factorization into 1-banded factorizations and get the inverse explicitly. Secondly, we consider a totally positive(TP) generalized Vandermonde matrix and obtain its unique LU factorization without using Schur functions. The result is better than Demmel and Koev's which is involved Schur functions. As by-products, we gain the determinant and the inverse of the required matrix and express any Schur function in an explicit form. Basing on the above result, we obtain a way to calculate Kostka numbers by expanding Schur functions.
Book chapters on the topic "Vandermonde determinant"
Lundengård, Karl, Jonas Österberg, and Sergei Silvestrov. "Extreme Points of the Vandermonde Determinant on the Sphere and Some Limits Involving the Generalized Vandermonde Determinant." In Springer Proceedings in Mathematics & Statistics, 761–89. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-41850-2_32.
Full textKiefer, J., and J. Wolfowitz. "On a Problem Connected with the Vandermonde Determinant." In Collected Papers III, 212–15. New York, NY: Springer New York, 1985. http://dx.doi.org/10.1007/978-1-4615-6660-1_11.
Full textKitamoto, Takuya. "On the Computation of the Determinant of a Generalized Vandermonde Matrix." In Computer Algebra in Scientific Computing, 242–55. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-10515-4_18.
Full textMuhumuza, Asaph Keikara, Karl Lundengård, Jonas Österberg, Sergei Silvestrov, John Magero Mango, and Godwin Kakuba. "Extreme Points of the Vandermonde Determinant on Surfaces Implicitly Determined by a Univariate Polynomial." In Springer Proceedings in Mathematics & Statistics, 791–818. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-41850-2_33.
Full textMuhumuza, Asaph Keikara, Karl Lundengård, Jonas Österberg, Sergei Silvestrov, John Magero Mango, and Godwin Kakuba. "Optimization of the Wishart Joint Eigenvalue Probability Density Distribution Based on the Vandermonde Determinant." In Springer Proceedings in Mathematics & Statistics, 819–38. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-41850-2_34.
Full textLorentz, Rudolph A. "Vandermonde determinants." In Lecture Notes in Mathematics, 139–55. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/bfb0088799.
Full textKolokotronis, Nicholas, Konstantinos Limniotis, and Nicholas Kalouptsidis. "Lower Bounds on Sequence Complexity Via Generalised Vandermonde Determinants." In Sequences and Their Applications – SETA 2006, 271–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11863854_23.
Full text"Vandermonde determinants." In Abstract Algebra, 237–46. Chapman and Hall/CRC, 2007. http://dx.doi.org/10.1201/b15896-19.
Full textFallat, Shaun M., and Charles R. Johnson. "Recognition." In Totally Nonnegative Matrices. Princeton University Press, 2011. http://dx.doi.org/10.23943/princeton/9780691121574.003.0004.
Full textConference papers on the topic "Vandermonde determinant"
WYBOURNE, BRIAN G. "THE VANDERMONDE DETERMINANT REVISITED." In Proceedings of the 7th International School on Theoretical Physics. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812704474_0006.
Full textLundengård, Karl, Jonas Österberg, and Sergei Silvestrov. "Optimization of the determinant of the Vandermonde matrix and related matrices." In 10TH INTERNATIONAL CONFERENCE ON MATHEMATICAL PROBLEMS IN ENGINEERING, AEROSPACE AND SCIENCES: ICNPAA 2014. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4904633.
Full text