To see the other types of publications on this topic, follow the link: Vapor intrusion.

Journal articles on the topic 'Vapor intrusion'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Vapor intrusion.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

ZMICH, KURT A., and CHRISTINE D. ALBERTIN. "Vapor Intrusion Part II—The Fundamental Elements of an Effective Vapor Intrusion Assessment." Environmental Claims Journal 17, no. 1 (2005): 97–105. http://dx.doi.org/10.1080/10406020590953006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

HANSON, DAVID J. "EPA MOVES ON VAPOR INTRUSION." Chemical & Engineering News Archive 89, no. 16 (2011): 32–34. http://dx.doi.org/10.1021/cen-v089n016.p032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Raina, Dhruv S., and Brian E. Silfer. "Soil Vapor Intrusion—Mitigation Measures." Environmental Claims Journal 18, no. 2 (2006): 185–91. http://dx.doi.org/10.1080/10406020600728262.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Siegel, Lenny. "Stakeholders’ Views on Vapor Intrusion." Ground Water Monitoring & Remediation 29, no. 1 (2009): 53–57. http://dx.doi.org/10.1111/j.1745-6592.2008.01214.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

PHILLIPS, S., G. KRIEGER, R. PALMER, and J. WAKSMAN. "Solvents and vapor intrusion pathways." Clinics in Occupational and Environmental Medicine 4, no. 3 (2004): 423–43. http://dx.doi.org/10.1016/j.coem.2004.03.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Seitz, J. Barton, Shani S. Harmon, and Christine Wyman. "USEPA's Vapor Intrusion Guidance Could Significantly Expand the Assessment and Mitigation of Vapor Intrusion." Environmental Claims Journal 28, no. 1 (2016): 75–81. http://dx.doi.org/10.1080/10406026.2016.1129299.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Shirazi, Elham, Sweta Ojha, and Kelly G. Pennell. "Building science approaches for vapor intrusion studies." Reviews on Environmental Health 34, no. 3 (2019): 245–50. http://dx.doi.org/10.1515/reveh-2019-0015.

Full text
Abstract:
Abstract Indoor air concentrations are susceptible to temporal and spatial variations and have long posed a challenge to characterize for vapor intrusion scientists, in part, because there was a lack of evidence to draw conclusions about the role that building and weather conditions played in altering vapor intrusion exposure risks. Importantly, a large body of evidence is available within the building science discipline that provides information to support vapor intrusion scientists in drawing connections about fate and transport processes that influence exposure risks. Modeling tools developed within the building sciences provide evidence of reported temporal and spatial variation of indoor air contaminant concentrations. In addition, these modeling tools can be useful by calculating building air exchange rates (AERs) using building specific features. Combining building science models with vapor intrusion models, new insight to facilitate decision-making by estimating indoor air concentrations and building ventilation conditions under various conditions can be gained. This review highlights existing building science research and summarizes the utility of building science models to improve vapor intrusion exposure risk assessments.
APA, Harvard, Vancouver, ISO, and other styles
8

Collier, Zachary A., John T. Vogel, Stephen G. Zemba, Elizabeth A. Ferguson, and Igor Linkov. "Management Tools for Managing Vapor Intrusion." Environmental Science & Technology 45, no. 20 (2011): 8611–12. http://dx.doi.org/10.1021/es203179w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Yao, Yijun, Rui Shen, Kelly G. Pennell, and Eric M. Suuberg. "A Review of Vapor Intrusion Models." Environmental Science & Technology 47, no. 6 (2013): 2457–70. http://dx.doi.org/10.1021/es302714g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Medina, Enrique. "Vapor Intrusion: Environmental and IAQ Challenge." Synergist 18, no. 2 (2007): 43. http://dx.doi.org/10.3320/1.2752587.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

McAlary, Todd, and Paul C. Johnson. "GWMR Focus Issue on Vapor Intrusion." Ground Water Monitoring & Remediation 29, no. 1 (2009): 40–41. http://dx.doi.org/10.1111/j.1745-6592.2008.01212.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Eklund, Bart, Lila Beckley, Vivian Yates, and Thomas E. McHugh. "Overview of state approaches to vapor intrusion." Remediation Journal 22, no. 4 (2012): 7–20. http://dx.doi.org/10.1002/rem.21327.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Dillon, Brooke M., and Laura M. Tobin. "Vapor intrusion: Implications for environmental due diligence." Environmental Quality Management 17, no. 1 (2007): 53–64. http://dx.doi.org/10.1002/tqem.20151.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Healey, Sunny, Ioana G. Petrisor, and Robert Morrison. "Vapor Intrusion—Forensic Approaches and Recent Developments." Environmental Claims Journal 16, no. 3-4 (2004): 237–48. http://dx.doi.org/10.1080/10406020490909943.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Wright, Robin, and Jessica Illaszewicz. "Vapor Intrusion into Large Commercial/Industrial Facilities." Environmental Claims Journal 21, no. 1 (2009): 73–81. http://dx.doi.org/10.1080/10406020802671906.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Bostock, Catherine E. "Vapor Intrusion: A Survey of Current Developments." Environmental Claims Journal 24, no. 4 (2012): 314–35. http://dx.doi.org/10.1080/10406026.2012.730927.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Lahvis, Matthew A., Ian Hers, Robin V. Davis, Jackie Wright, and George E. DeVaull. "Vapor Intrusion Screening at Petroleum UST Sites." Groundwater Monitoring & Remediation 33, no. 2 (2013): 53–67. http://dx.doi.org/10.1111/gwmr.12005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

McHugh, Thomas, Per Loll, and Bart Eklund. "Recent advances in vapor intrusion site investigations." Journal of Environmental Management 204 (December 2017): 783–92. http://dx.doi.org/10.1016/j.jenvman.2017.02.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Kapuscinski, Richard. "Two Proposals Regarding Nomenclature About Vapor Intrusion." Groundwater Monitoring & Remediation 41, no. 2 (2021): 7–9. http://dx.doi.org/10.1111/gwmr.12454.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

McAlary, Todd, Hester Groenevelt, Suresh Seethapathy, et al. "Quantitative passive soil vapor sampling for VOCs – part 4: flow-through cell." Environ. Sci.: Processes Impacts 16, no. 5 (2014): 1103–11. http://dx.doi.org/10.1039/c4em00098f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Fair, Justin D., William F. Bailey, Robert A. Felty, Amy E. Gifford, Benjamin Shultes, and Leslie H. Volles. "Quantitation by Portable Gas Chromatography: Mass Spectrometry of VOCs Associated with Vapor Intrusion." International Journal of Analytical Chemistry 2010 (2010): 1–6. http://dx.doi.org/10.1155/2010/278078.

Full text
Abstract:
Development of a robust reliable technique that permits for the rapid quantitation of volatile organic chemicals is an important first step to remediation associated with vapor intrusion. This paper describes the development of an analytical method that allows for the rapid and precise identification and quantitation of halogenated and nonhalogenated contaminants commonly found within the ppbv level at sites where vapor intrusion is a concern.
APA, Harvard, Vancouver, ISO, and other styles
22

Hanilçi, Nurullah, Gülcan Bozkaya, David A. Banks, Ömer Bozkaya, Vsevolod Prokofiev, and Yücel Öztaş. "Fluid Inclusion Characteristics of the Kışladağ Porphyry Au Deposit, Western Turkey." Minerals 10, no. 1 (2020): 64. http://dx.doi.org/10.3390/min10010064.

Full text
Abstract:
The deposit occurs in a mid-Miocene monzonite magmatic complex represented by three different intrusions, namely Intrusion 1 (INT#1), Intrusion 2 (INT#2, INT #2A), and Intrusion 3 (INT#3). Gold mineralization is hosted in all intrusions, but INT#1 is the best mineralized body followed by INT#2. SEM-CL imaging has identified two different veins (V1 and V2) and four distinct generations of quartz formation in the different intrusions. These are: (i) CL-light gray, mosaic-equigranular quartz (Q1), (ii) CL-gray or CL-bright quartz (Q2) that dissolved and was overgrown on Q1, (iii) CL-dark and CL-gray growth zoned quartz (Q3), and (iv) CL-dark or CL-gray micro-fracture quartz fillings (Q4). Fluid inclusion studies show that the gold-hosted early phase Q1 quartz of V1 and V2 veins in INT#1 and INT#2 was precipitated at high temperatures (between 424 and 594 °C). The coexisting and similar ranges of Th values of vapor-rich (low salinity, from 1% to 7% NaCl equiv.) and halite-bearing (high salinity: >30% NaCl) fluid inclusions in Q1 indicates that the magmatic fluid had separated into vapor and high salinity liquid along the appropriate isotherm. Fluid inclusions in Q2 quartz in INT#1 and INT#2 were trapped at lower temperatures between 303 and 380 °C and had lower salinities between 3% and 20% NaCl equiv. The zoned Q3 quartz accompanied by pyrite in V2 veins of both INT#2 and INT#3 precipitated at temperatures between 310 and 373 °C with a salinity range from 5.4% to 10% NaCl eq. The latest generation of fracture filling Q4 quartz, cuts the earlier generations with fluid inclusion Th temperature range from 257 to 333 °C and salinity range from 3% to 12.5% NaCl equiv. The low salinity and low formation temperature of Q4 may be due to the mixing of meteoric water with the hydrothermal system, or late-stage epithermal overprinting. The separation of the magmatic fluid into vapor and aqueous saline pairs in the Q1 quartz of the V1 vein of the INT#1 and INT#2 and CO2-poor fluids indicates the shallow formation of the Kışladağ porphyry gold deposit.
APA, Harvard, Vancouver, ISO, and other styles
23

Shen, Rui, Kelly G. Pennell, and Eric M. Suuberg. "Influence of Soil Moisture on Soil Gas Vapor Concentration for Vapor Intrusion." Environmental Engineering Science 30, no. 10 (2013): 628–37. http://dx.doi.org/10.1089/ees.2013.0133.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Stewart, Lloyd, Chris Lutes, Robert Truesdale, Brian Schumacher, John H. Zimmerman, and Rebecca Connell. "Field Study of Soil Vapor Extraction for Reducing Off‐Site Vapor Intrusion." Groundwater Monitoring & Remediation 40, no. 1 (2020): 74–85. http://dx.doi.org/10.1111/gwmr.12359.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Shen, Rui, Kelly G. Pennell, and Eric M. Suuberg. "Analytical modeling of the subsurface volatile organic vapor concentration in vapor intrusion." Chemosphere 95 (January 2014): 140–49. http://dx.doi.org/10.1016/j.chemosphere.2013.08.051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Reichman, Rivka, Mohammadyousef Roghani, Evan J. Willett, Elham Shirazi, and Kelly G. Pennell. "Air exchange rates and alternative vapor entry pathways to inform vapor intrusion exposure risk assessments." Reviews on Environmental Health 32, no. 1-2 (2017): 27–33. http://dx.doi.org/10.1515/reveh-2016-0039.

Full text
Abstract:
Abstract Vapor intrusion (VI) is a term used to describe indoor air (IA) contamination that occurs due to the migration of chemical vapors in the soil and groundwater. The overall vapor transport process depends on several factors such as contaminant source characteristics, subsurface conditions, building characteristics, and general site conditions. However, the classic VI conceptual model does not adequately account for the physics of airflow around and inside a building and does not account for chemical emissions from alternative “preferential” pathways (e.g. sewers and other utility connections) into IA spaces. This mini-review provides information about recent research related to building air exchange rates (AERs) and alternative pathways to improve the accuracy of VI exposure risk assessment practices. First, results from a recently published AER study for residential homes across the United States (US) are presented and compared to AERs recommended by the US Environmental Protection Agency (USEPA). The comparison shows considerable differences in AERs when season, location, building age, and other factors are considered. These differences could directly impact VI assessments by influencing IA concentration measurements. Second, a conceptual model for sewer gas entry into buildings is presented and a summary of published field studies is reported. The results of the field studies suggest that alternative pathways for vapors to enter indoor spaces warrant consideration. Ultimately, the information presented in this mini-review can be incorporated into a multiple-lines-of-evidence approach for assessing site-specific VI exposure risks.
APA, Harvard, Vancouver, ISO, and other styles
27

Ma, Enze, You-Kuan Zhang, Xiuyu Liang, Jinzhong Yang, Yuqing Zhao, and Xinyue Liu. "An analytical model of bubble-facilitated vapor intrusion." Water Research 165 (November 2019): 114992. http://dx.doi.org/10.1016/j.watres.2019.114992.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

McHugh, Thomas E., Lila Beckley, Danielle Bailey, et al. "Evaluation of Vapor Intrusion Using Controlled Building Pressure." Environmental Science & Technology 46, no. 9 (2012): 4792–99. http://dx.doi.org/10.1021/es204483g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Song, Stephen, Barry A. Schnorr, and Francis C. Ramacciotti. "Accounting for climate variability in vapor intrusion assessments." Human and Ecological Risk Assessment: An International Journal 24, no. 7 (2018): 1838–51. http://dx.doi.org/10.1080/10807039.2018.1425088.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Eklund, Bart, Lila Beckley, and Rich Rago. "Overview of state approaches to vapor intrusion: 2018." Remediation Journal 28, no. 4 (2018): 23–35. http://dx.doi.org/10.1002/rem.21573.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Medina, Enrique. "Vapor Intrusion: Environmental and IAQ Challenge, Part II." Synergist 18, no. 4 (2007): 36. http://dx.doi.org/10.3320/1.2752594.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Fitzgerald, John. "One Regulatory Perspective on the Vapor Intrusion Pathway." Ground Water Monitoring & Remediation 29, no. 1 (2009): 51–52. http://dx.doi.org/10.1111/j.1745-6592.2008.01213.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Yao, Yijun, Kelly G. Pennell, and Eric M. Suuberg. "Estimation of contaminant subslab concentration in vapor intrusion." Journal of Hazardous Materials 231-232 (September 2012): 10–17. http://dx.doi.org/10.1016/j.jhazmat.2012.06.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Verginelli, Iason, and Yijun Yao. "A Review of Recent Vapor Intrusion Modeling Work." Groundwater Monitoring & Remediation 41, no. 2 (2021): 138–44. http://dx.doi.org/10.1111/gwmr.12455.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Patel, Sanjay V., and William K. Tolley. "Developments toward a low-cost approach for long-term, unattended vapor intrusion monitoring." Analyst 139, no. 15 (2014): 3770–80. http://dx.doi.org/10.1039/c4an00736k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Shirazi, Elham, and Kelly G. Pennell. "Three-dimensional vapor intrusion modeling approach that combines wind and stack effects on indoor, atmospheric, and subsurface domains." Environmental Science: Processes & Impacts 19, no. 12 (2017): 1594–607. http://dx.doi.org/10.1039/c7em00423k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Phillips, Jenny, and Laura Collins. "Implementation of vapor intrusion evaluation - what might you find?" Land Contamination & Reclamation 14, no. 2 (2006): 599–604. http://dx.doi.org/10.2462/09670513.763.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Ma, Jie, Thomas McHugh, Lila Beckley, Matthew Lahvis, George DeVaull, and Lin Jiang. "Vapor Intrusion Investigations and Decision-Making: A Critical Review." Environmental Science & Technology 54, no. 12 (2020): 7050–69. http://dx.doi.org/10.1021/acs.est.0c00225.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Lonati, G., S. Saponaro, and E. Sezenna. "Vapor intrusion evaluation for redevelopment of former industrial facilities." IOP Conference Series: Earth and Environmental Science 296 (July 30, 2019): 012011. http://dx.doi.org/10.1088/1755-1315/296/1/012011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Moyer, Ellen, John Lowe, David MacPhaul, Christy Etter, and Loren Lund. "Addressing soil gas vapor intrusion using sustainable building solutions." Remediation Journal 19, no. 4 (2009): 17–33. http://dx.doi.org/10.1002/rem.20214.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Yao, Yijun, Iason Verginelli, and Eric M. Suuberg. "A two-dimensional analytical model of petroleum vapor intrusion." Water Resources Research 52, no. 2 (2016): 1528–39. http://dx.doi.org/10.1002/2015wr018320.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Plantz, Gina M., Kevin J. McCarthy, Stephen D. Emsbo-Mattingly, Allen D. Uhler, and Scott A. Stout. "Evaluating the Vapor Intrusion Pathway: Challenges and Source Identification." Environmental Claims Journal 20, no. 1 (2008): 71–86. http://dx.doi.org/10.1080/10406020701845916.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Alfaro Soto, Miguel, and Chang Hung Kiang. "Vapor intrusion in soils with multimodal pore-size distribution." E3S Web of Conferences 9 (2016): 07002. http://dx.doi.org/10.1051/e3sconf/20160907002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Archer, Natalie P., Carrie M. Bradford, John F. Villanacci, et al. "Relationship between vapor intrusion and human exposure to trichloroethylene." Journal of Environmental Science and Health, Part A 50, no. 13 (2015): 1360–68. http://dx.doi.org/10.1080/10934529.2015.1064275.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Yao, Yijun, Fangxing Yang, Eric M. Suuberg, Jeroen Provoost, and Weiping Liu. "Estimation of contaminant subslab concentration in petroleum vapor intrusion." Journal of Hazardous Materials 279 (August 2014): 336–47. http://dx.doi.org/10.1016/j.jhazmat.2014.05.065.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

McHugh, Thomas, Lila Beckley, Terry Sullivan, et al. "Evidence of a sewer vapor transport pathway at the USEPA vapor intrusion research duplex." Science of The Total Environment 598 (November 2017): 772–79. http://dx.doi.org/10.1016/j.scitotenv.2017.04.135.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Yao, Yijun, Fang Mao, Yuting Xiao, Huanyu Chen, Iason Verginelli, and Jian Luo. "Investigating the Role of Soil Texture in Petroleum Vapor Intrusion." Journal of Environmental Quality 47, no. 5 (2018): 1179–85. http://dx.doi.org/10.2134/jeq2018.04.0140.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Lutes, Christopher C., Robert S. Truesdale, Brian W. Cosky, John H. Zimmerman, and Brian A. Schumacher. "Comparing Vapor Intrusion Mitigation System Performance for VOCs and Radon." Remediation Journal 25, no. 4 (2015): 7–26. http://dx.doi.org/10.1002/rem.21438.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Coll, Frederic R., Richard A. Moore, and Jessica Ritenour. "Vapor intrusion mitigation challenges posed by a classic urban setting." Remediation Journal 27, no. 3 (2017): 55–65. http://dx.doi.org/10.1002/rem.21519.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Picone, Sara, Johan Valstar, Pauline van Gaans, Tim Grotenhuis, and Huub Rijnaarts. "Sensitivity analysis on parameters and processes affecting vapor intrusion risk." Environmental Toxicology and Chemistry 31, no. 5 (2012): 1042–52. http://dx.doi.org/10.1002/etc.1798.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography