Academic literature on the topic 'Vapor-liquid equilibrium'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Vapor-liquid equilibrium.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Vapor-liquid equilibrium"

1

Wibowo, A. A., A. Mustain, M. Mufid, N. Hendrawati, A. W. Mustikarini, and S. Altway. "UNIFAC PREDICTION OF VAPOR LIQUID EQUILIBRIA INVOLVING GAMMA-VALEROLACTONE DERIVATIVE SYSTEMS." Azerbaijan Chemical Journal, no. 2 (May 7, 2024): 16–25. http://dx.doi.org/10.32737/0005-2531-2024-2-16-25.

Full text
Abstract:
Researchers have studied the hydrogenation of Gamma-Valerolactone (GVL) over Ru/C to produce 2-methyltetrahydrofuran (2-MTHF), a biomass-based platform chemical with potential as a biofuel and green solvent. Other byproducts of this reaction include 2-butanol (2-BuOH), 2-pentanol (2-PeOH), and 1,4-pentanediol (1,4-PDO). In this study, UNIFAC activity coefficient models were used to predict the vapor-liquid equilibrium of several systems included in the process to explain the phase behavior which is important in purification process. The accuracy of the UNIFAC model is tested by comparing the experimental boiling points for the binary system of 2-propanol + 1-butanol and the vapor-liquid equi-librium of the GVL + 2-MTHF system. From this comparison, the Root Mean Square Deviation (RMSD) values for the boiling point measurements are obtained to be 3.153%, and for the liquid and vapor phases in the vapor-liquid equilibrium measurements, the RMSD values are 1.934% and 0.298% respectively. These RMSD values indicate the level of accuracy of the UNIFAC model in representing the experimental data for both boiling point measurements and vapor-liquid equilibrium phase behavior. The prediction results of vapor-liquid equilibrium data for GVL derivative systems showed that the 2-BuOH + 2-MTHF system does form an azeotrope when the mol fraction of 2-BuOH is 0.0031 at 79.780C. The calculation was performed using ChemCAD commercial software for chemical process modeling and simulation
APA, Harvard, Vancouver, ISO, and other styles
2

Renon, Henri. "Vapor-liquid equilibrium bibliographic database." Fluid Phase Equilibria 112, no. 1 (November 1995): 170–71. http://dx.doi.org/10.1016/0378-3812(95)90025-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

ZHANG, SHIMIN. "THE STABILITY OF LIQUID EVAPORATION EQUILIBRIUM." Surface Review and Letters 12, no. 01 (February 2005): 115–21. http://dx.doi.org/10.1142/s0218625x05006846.

Full text
Abstract:
For the evaporation of the pure liquid under the condition of constant temperature and constant external pressure, the phase equilibrium of the liquid vapor in the bubble and the liquid outside the bubble is always a kind of stable equilibrium whether there is air or not in the bubble. If there is no air in the bubble, the bubble and liquid cannot coexist in the mechanical equilibrium when the vapor pressure of the liquid in the bubble is less than or equal to the external pressure; the bubble and liquid can coexist in an unstable equilibrium of mechanics when the vapor pressure of the liquid is greater than the external pressure. If there is air in the bubble, the bubble and liquid can coexist in a stable equilibrium of mechanics when the vapor pressure of the liquid is less than or equal to the external pressure; the bubble and liquid can coexist in a stable and an unstable equilibrium of mechanics when the vapor pressure of the liquid is greater than the external pressure and less than a certain pressure pm; the bubble and liquid cannot coexist in the mechanical equilibrium when the vapor pressure of the liquid is equal to or greater than pm.
APA, Harvard, Vancouver, ISO, and other styles
4

Oktavian, Rama, Agung Ari Wibowo, and Zuraidah Fitriah. "Study on Particle Swarm Optimization Variant and Simulated Annealing in Vapor Liquid Equilibrium Calculation." Reaktor 19, no. 2 (August 11, 2019): 77–83. http://dx.doi.org/10.14710/reaktor.19.2.77-83.

Full text
Abstract:
Phase equilibrium calculation plays a major rule in optimization of separation process in chemical processing. Phase equilibrium calculation is still very challenging due to highly nonlinear and non-convex of mathematical models. Recently, stochastic optimization method has been widely used to solve those problems. One of the promising stochastic methods is Particle Swarm Optimization (PSO) due to its simplicity and robustness. This study presents the capability of particle swarm optimization for correlating isothermal vapor liquid equilibrium data of water with methanol and ethanol system by optimizing Wilson, Non-Random Two Liquids (NRTL), and Universal Quasi Chemical (UNIQUAC) activity coefficient model and also presents the comparison with bare-bones PSO (BBPSO) and simulated annealing (SA). Those three optimization methods were successfully tested and validated to model vapor liquid equilibrium calculation and were successfully applied to correlate vapor liquid equilibrium data for those types of systems with deviation less than 2%. In addition, BBPSO shows a consistency result and faster convergence among those three optimization methods. Keywords: Phase equilibrium, stochastic method, particle swarm optimization, simulated annealing and activity coefficient model
APA, Harvard, Vancouver, ISO, and other styles
5

Li, Xinyu, Baowei Niu, Wenjiao Ma, Wenying Zhao, Xiaoyan Sun, Li Xia, and Shuguang Xiang. "Equation of State Associated with Activity Coefficient Model Based on Elements and Chemical Bonds." Processes 11, no. 5 (May 15, 2023): 1499. http://dx.doi.org/10.3390/pr11051499.

Full text
Abstract:
A new element- and chemical bond-dependent GE-EoS model(SRK-UNICAC) is proposed to consider the deviation of the vapor and liquid phases from the ideal state. The SRK-UNICAC model combines the UNICAC model and the SRK cubic equation of state. It uses the original interaction parameters of the UNICAC model and uses this model to calculate the GE. The SRK-UNICAC model predicted vapor-liquid equilibria for 87 binary systems under low- and medium-pressure conditions, 12 binary systems under high-pressure conditions, and 14 ternary systems; a comparison of the predictions with five other activity coefficient models were also made. The new model predicted the vapor-phase fraction and bubble-point pressure, and temperature for the binary system at high pressure, with a mean relative error of 3.75% and 6.58%, respectively. The mean relative errors of vapor-phase fraction and bubble-point temperature or bubble-point pressure for ternary vapor–liquid phase equilibrium were 6.50%, 4.76%, and 2.25%. The SRK-UNICAC model is more accurate in predicting the vapor–liquid phase equilibrium of high-pressure, non-polar, and polar mixtures and has a simpler and wider range of prediction processes. It can therefore be applied to the prediction of vapor–liquid equilibrium.
APA, Harvard, Vancouver, ISO, and other styles
6

Islam, Akand, and Vinayak Kabadi. "Universal liquid mixture model for vapor-liquid and liquid-liquid equilibria in hexane-butanol-water system over the temperature range 10 - 100 °C." Chemical and Process Engineering 32, no. 2 (June 1, 2011): 101–15. http://dx.doi.org/10.2478/v10176-011-0009-3.

Full text
Abstract:
Universal liquid mixture model for vapor-liquid and liquid-liquid equilibria in hexane-butanol-water system over the temperature range 10 - 100 °C This is an extended research of the paper (Islam et al., 2011) conducted to obtain a universal set of interaction parameters of the model NRTL over the temperature range 10 - 100 °C for hexane-butanol-water system; meaning for binary pairs hexane-butanol, butanol-water and hexane-water; and for ternary system hexane-butanol-water. Thorough investigations of data selections for all binary pairs (Vapor-Liquid Equilibrium (VLE), Liquid-Liquid Equilibrium (LLE)), infinite dilution activity coefficient (γ∞), infinite dilution distribution coefficient (Dsw), excess enthalpy (HE), and for ternary system (LLE of hexane-butanol-water) were carried out. Finally quadratic temperature dependent interaction parameters were estimated regressing all the mentioned data and in each case calculated results were compared with literature values. The comparisons showed an overall percentage of error within 15% for the mentioned phase equilibrium calculations.
APA, Harvard, Vancouver, ISO, and other styles
7

Ilčin, Michal, Martin Michalík, Klára Kováčiková, Lenka Káziková, and Vladimír Lukeš. "Water liquid-vapor equilibrium by molecular dynamics: Alternative equilibrium pressure estimation." Acta Chimica Slovaca 9, no. 1 (April 1, 2016): 36–43. http://dx.doi.org/10.1515/acs-2016-0007.

Full text
Abstract:
Abstract The molecular dynamics simulations of the liquid-vapor equilibrium of water including both water phases — liquid and vapor — in one simulation are presented. Such approach is preferred if equilibrium curve data are to be collected instead of the two distinct simulations for each phase separately. Then the liquid phase is not restricted, e.g. by insufficient volume resulting in too high pressures, and can spread into its natural volume ruled by chosen force field and by the contact with vapor phase as vaporized molecules are colliding with phase interface. Averaged strongly fluctuating virial pressure values gave untrustworthy or even unreal results, so need for an alternative method arisen. The idea was inspired with the presence of vapor phase and by previous experiences in gaseous phase simulations with small fluctuations of pressure, almost matching the ideal gas value. In presented simulations, the first idea how to calculate pressure only from the vapor phase part of simulation box were applied. This resulted into very simple method based only on averaging molecules count in the vapor phase subspace of known volume. Such simple approach provided more reliable pressure estimation than statistical output of the simulation program. Contrary, also drawbacks are present in longer initial thermostatization time or more laborious estimation of the vaporization heat. What more, such heat of vaporization suffers with border effect inaccuracy slowly decreasing with the thickness of liquid phase. For more efficient and more accurate vaporization heat estimation the two distinct simulations for each phase separately should be preferred.
APA, Harvard, Vancouver, ISO, and other styles
8

Gomis, Vicente, Ana Pequenín, and Juan Carlos Asensi. "Isobaric vapor–liquid–liquid equilibrium and vapor–liquid equilibrium for the system water–ethanol-1,4-dimethylbenzene at 101.3kPa." Fluid Phase Equilibria 281, no. 1 (July 2009): 1–4. http://dx.doi.org/10.1016/j.fluid.2009.03.024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Luo, T., and A. Yu Chirkov. "Thermodynamic Property Calculation in Vapor-Liquid Equilibrium for Multicomponent Mixtures using Highly Accurate Helmholtz Free Energy Equation of State." Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering, no. 3 (138) (September 2021): 108–21. http://dx.doi.org/10.18698/0236-3941-2021-3-108-121.

Full text
Abstract:
Thermodynamic properties of multicomponent mixtures in phase equilibrium were studied. The tangent plane criterion was used for stability analysis, and the Gibbs energy minimization was employed for phase equilibrium calculation when the successive substitution didn't converge. Thermodynamic properties of a 12-component natural gas mixture in vapor-liquid equilibrium were calculated with highly accurate Helmholtz free energy equation of state GERG--2008, simplified GERG--2008 and common cubic Peng --- Robinson (PR) equation of state. Results show that in vapor-liquid equilibrium, GERG--2008 has high accuracy and works better than simplified GERG--2008 and PR-equation of state. Simplified GERG--2008 and PR-equation of state both work unsatisfactorily in vapor-liquid equilibrium calculation, especially near the saturation zone. The deviation function in GERG--2008 can significantly affect the accuracy of GERG--2008 when calculating thermodynamic properties of mixtures in vapor-liquid equilibrium
APA, Harvard, Vancouver, ISO, and other styles
10

Yeh, G. C., B. V. Yeh, S. T. Schmidt, M. S. Yeh, A. M. McCarthy, and W. J. Celenza. "Vapor-liquid equilibrium in capillary distillation." Desalination 81, no. 1-3 (July 1991): 161–87. http://dx.doi.org/10.1016/0011-9164(91)85052-v.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Vapor-liquid equilibrium"

1

Windmann, Thorsten [Verfasser]. "Vapor-liquid equilibrium properties from molecular simulation and experiment / Thorsten Windmann." Paderborn : Universitätsbibliothek, 2015. http://d-nb.info/1066295239/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Varughese, Babu. "Estimation of unifac parameters for prediction of vapor-liquid equilibria." Thesis, Georgia Institute of Technology, 1986. http://hdl.handle.net/1853/10029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

King, Nathan H. "Vapor-liquid Equilibrium of Polymer Solutions During Thermal Decomposition of Rigid Foams." Diss., CLICK HERE for online access, 2008. http://contentdm.lib.byu.edu/ETD/image/etd2538.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Elias, Junior Antonio 1980. "Caracterização PVT de petróleo contendo CO2." [s.n.], 2015. http://repositorio.unicamp.br/jspui/handle/REPOSIP/265759.

Full text
Abstract:
Orientador: Osvair Vidal Trevisan
Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica
Made available in DSpace on 2018-08-28T11:42:17Z (GMT). No. of bitstreams: 1 EliasJunior_Antonio_D.pdf: 4086783 bytes, checksum: 191c12f04f51818fb12b75a3c273b418 (MD5) Previous issue date: 2015
Resumo: O presente trabalho trata da caracterização experimental de petróleo em misturas contendo diferentes conteúdos de CO2. Os resultados experimentais são analisados através de correlações de propriedades PVT e de simulação computacional. O trabalho visa atender a notável carência de dados públicos sobre propriedades termodinâmicas de petróleo contendo CO2. Os dados PVT avaliados neste estudo contemplam ponto de bolha, ponto de orvalho, razão de solubilidade do óleo, fator volume-formação do óleo, fator volume-formação do gás, fator de compressibilidade do gás, fator de inchamento do óleo, massa específica do óleo, densidade do gás, viscosidade do óleo. São também avaliadas as cromatografias do óleo do reservatório, recombinado e também as cromatografias dos gases coletados durante o ensaio de liberação diferencial. As correlações utilizadas na análise resultados foram as de Standing, Valko-McCain, Al-Shammasi, Dindoruk, Beggs-Robinson e Vasquez & Beggs. Os principais fatores de seleção das correlações foram o espectro de dados dos quais se originaram as correlações e a média do erro relativo absoluto. As correlações selecionadas reproduziram bem os resultados obtidos no laboratório para o fator volume-formação, a razão de solubilidade do gás, o ponto de bolha e a viscosidade. A simulação computacional foi aplicada na análise dos resultados e na obtenção do envelope de fases da mistura através do ajuste da equação de estado de Peng-Robinson. O método usado para a simulação foi o de Coats & Smart, porém foram feitas modificações desse método para um melhor ajuste. O método adaptado reproduziu adequadamente os dados experimentais, sendo que todos os ajustes apresentaram um desvio padrão percentual menor que 6%. O envelope de fases descrito pelo simulador é considerado representativo do sistema, com boa aproximação. Com os resultados obtidos, foram realizadas análises das propriedades da mistura e do comportamento do equilíbrio de fases em decorrência das variações das concentrações molares de CO2, da temperatura e da pressão. Foi a constatado o surgimento de uma terceira fase líquida em algumas condições de tese configurando um equilíbrio L-L-V
Abstract: The present work refers to the experimental characterization of petroleum mixtures with variable contents of CO2. The experimental results are, analyzed via PVT properties correlations and computer model simulations. The work aims to cover the remarkable lack of public data on thermodynamic properties of petroleum containing CO2. The PVT data analyzed in the study comprise bubble point, dew point, oil solubility rate, gas and oil formation volume factor, gas compressibility factor, swelling test, oil density, gas density, oil viscosity. The chromatography of the recombined reservoir oil and also the chromatography of gases mixture collected during the differential liberation test are also evaluated. The correlations used in the analysis of the results were Standing, Valko-McCain, Al-Shammasi, Dindoruk, Beggs-Robinson e Vasquez & Beggs. The principal criteria used in the selection of the correlations were the range of data which originated the correlations and the average absolute relative error. The correlations reproduced well the results obtained in the laboratory for the formation volume factor, gas solubility ratio, bubble point and viscosity. The computer model simulation was used to analyze the data and also to define the phase envelope of the mixture by adjusting Peng-Robinson's state equation. The method used in the simulation was developed by Coats & Smart, but some modifications were made to obtain a better match. The modified method reproduced adequately the experimental results, within a standard deviation less than 6%. The phase envelope obtained from the simulation is considered, with good approximation, representative of the system. Once with the results obtained were performed analyses of the properties and phase equilibrium behavior of the mixture related with the CO2 molar concentration, temperature and pressure. A third liquid phase was observed in some conditions of the tests configuring a L-L-V phase equilibrium
Doutorado
Reservatórios e Gestão
Doutor em Ciências e Engenharia de Petróleo
APA, Harvard, Vancouver, ISO, and other styles
5

Belting, Patrícia Castro 1977. "Vapor liquid phase equilibrium in the vegetable oil industry = Equilíbrio líquido vapor na indústria de óleos vegetais." [s.n.], 2013. http://repositorio.unicamp.br/jspui/handle/REPOSIP/255089.

Full text
Abstract:
Orientadores: Antonio José de Almeida Meirelles, Jürgen Gmehling
Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia de Alimentos
Made available in DSpace on 2018-08-23T15:44:16Z (GMT). No. of bitstreams: 1 Belting_PatriciaCastro_D.pdf: 4041052 bytes, checksum: 985b093f692b3bc9a1072474787582f8 (MD5) Previous issue date: 2013
Resumo: Propriedades termodinâmicas são úteis para a realização de projetos confiáveis, otimização e modelagem de processos que envolvam separação térmica e para a seleção de solventes usados em processos de extração. Tais propriedades são também necessárias no desenvolvimento de novos modelos termodinâmicos e no ajuste de parâmetros de modelos preditivos. Este trabalho de tese teve como objetivo principal ampliar o banco de dados de propriedades termodinâmicas para compostos graxos através da determinação sistemática do coeficiente de atividade à diluição infinita ( ), entalpia de excesso ( ) e dados de equilíbrio líquido-vapor (ELV) de sistemas contendo ácidos graxos e óleos vegetais. A primeira parte deste trabalho apresenta os dados de para vários solutos orgânicos diluídos em ácidos graxos saturados e insaturados, medidos pelo método de cromatografia gás-líquido na faixa de temperatura entre 303,13 K e 368,19 K. Através dos resultados obtidos, puderam ser identificadas diferentes tendências para compostos polares e não polares, tanto na série de ácidos graxos como também em relação à temperatura. Foi verificado que tanto a presença quanto o número de insaturações na cadeia carbônica do ácido graxo têm influência nas interações solvente-soluto e, consequentemente, nos valores de . A segunda parte deste trabalho tratou de medidas realizadas em sistemas contendo óleos vegetais refinados. Os óleos de soja, girassol e canola foram submetidos a determinações de , e ELV. As medidas de para n-hexano, metanol e etanol diluídos nos óleos vegetais foram determinadas pela técnica do Dilutor na faixa de temperatura entre 313,15 K e 353,15 K. Os dados experimentais obtidos foram comparados com os resultados gerados pelos métodos UNIFAC original e modificado (Dortmund) e para este último modelo, foi proposta uma extensão para os triacilgliceróis. Os dados de foram medidos para 11 misturas contendo solventes e os óleos vegetais relacionados anteriormente na faixa de temperatura de 298,15 K a 383,15 K. Todos os sistemas investigados apresentaram desvio em relação ao comportamento ideal e os valores de apresentaram-se, na maioria, positivos. Dados isotérmicos de ELV foram medidos para misturas entre os mesmos óleos vegetais e metanol, etanol e n-hexano a 348,15 K e 373,15 K através de um método estático. Para misturas com n-hexano, foi observado desvio negativo da lei de Raoult e um comportamento homogêneo, enquanto que as misturas com álcool apresentaram desvio positivo da idealidade e imiscibilidade. Os dados experimentais de ELV foram representados satisfatoriamente pelo modelo UNIQUAC, enquanto que os modelos UNIFAC modificado (Dortmund) e sua extensão proposta para triacilgliceróis foram capazes de predizer os sistemas apenas de forma qualitativa. Finalmente, dados isobáricos de ELV foram medidos para misturas com etanol + óleo de soja a 101,3 kPa e n-hexano + óleo de algodão a 41,3 kPa utilizando o ebuliômetro de Othmer modificado. Os resultados da correlação UNIQUAC também apresentaram boa concordância com os dados experimentais. Este trabalho resultou em um total de 1829 novos dados que irão expandir o banco de dados disponível para compostos graxos, permitindo uma descrição mais precisa do comportamento real de sistemas contendo tais substâncias
Abstract: Thermodynamic properties are useful for the reliable design, optimization and modelling of thermal separation processes as well as for the selection of solvents used in extraction processes. They are also required for the development of new thermodynamic models and for the adjustment of reliable model parameters. In order to improve the thermodynamic properties data bank of fatty compounds, the systematic determination of activity Coefficients at infinite dilution ( ), excess enthalpies ( ) and vapor-liquid equilibria (VLE) data of systems containing fatty acids and vegetable oils was performed. The first part of this work presents data for several organic solutes dissolved in saturated and unsaturated fatty acids measured by gas-liquid chromatography at temperatures from 303.13 K to 368.19 K and the comparison to available literature data. Different trends for polar and non-polar compounds could be identified both in the series of fatty acids and as function of temperature. It appears that both the presence and the number of cis double bonds in the fatty acid alkyl chain have influence on the solvent-solute interactions and hence on the values of . The second part of this work deals with measurements performed on systems with refined vegetable oils. Soybean, sunflower and rapeseed oils were submitted to measures of , , and VLE. The measurements of for n-hexane, methanol and ethanol dissolved in these vegetable oils were determined by gas stripping method (dilutor technique) in the temperature range of 313.15 K to 353.15 K. The experimental data were compared with the results of the group contribution methods original UNIFAC and modified UNIFAC (Dortmund) and an extension of the latter method to triacylglycerols was proposed. The data were measured for eleven mixtures containing solvents (organic and water) and the prior mentioned vegetable oils in the temperature range from 298.15 K to 383.15 K. All systems investigated showed deviation from the ideal behavior and their experimental data are mostly positive. Isothermal VLE data have been measured for methanol, ethanol, and n-hexane with the same vegetable oils at 348.15 K and 373.15 K using a computer-driven static apparatus. For mixtures with n-hexane it was observed a negative deviation from Raoult¿s law and a homogeneous behavior, while mixtures with alcohols had a positive deviation from ideal behavior and, in some cases, with miscibility gap. The experimental VLE data were satisfactorily represented by the UNIQUAC model, while the mod. UNIFAC (Dortmund) method and its proposed extension for triacylglicerols were capable of predicting the experimental data only in a qualitative way. Finally, isobaric VLE data were measured for mixtures of ethanol with refined soybean oil at 101.3 kPa and for n-hexane and cottonseed oil at 41.3 kPa using a modified Othmer-type ebulliometer. The results of the UNIQUAC correlation also showed good agreement with the experimental results. This work resulted in a total of 1829 new data that will expand the available fatty compounds data base, allowing a more accurate description of the real behavior of fatty systems
Doutorado
Engenharia de Alimentos
Doutora em Engenharia de Alimentos
APA, Harvard, Vancouver, ISO, and other styles
6

Gazawi, Ayman. "EVALUATING COSMO-RS FOR VAPOR LIQUID EQUILIBRIUM AND TURBOMOLE FOR IDEAL GAS PROPERTIES." University of Akron / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=akron1196731182.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Simonelli, Danielle Marie. "Probing vibrational modes of ammonia with the nonlinear optical technique sum frequency generation /." Thesis, Connect to Dissertations & Theses @ Tufts University, 2000.

Find full text
Abstract:
Thesis (Ph.D.)--Tufts University, 2000.
Adviser: Mary Jane Shultz. Submitted to the Dept. of Chemistry. Includes bibliographical references. Access restricted to members of the Tufts University community. Also available via the World Wide Web;
APA, Harvard, Vancouver, ISO, and other styles
8

Sejnoha, Milena. "Vapour-liquid equilibria of benzene and cyclohexane with CO2." Thesis, McGill University, 1986. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=66092.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

D'Souza, Rupert. "Separation of fructose from glucose using supercritical solvents." Diss., Georgia Institute of Technology, 1986. http://hdl.handle.net/1853/21530.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Taylor, Donald Fulton. "Measurement of binary phase equilibria and ternary/quaternary gas antisolvent (GAS) system measurement and analysis." Thesis, Available online, Georgia Institute of Technology, 2004:, 2004. http://etd.gatech.edu/theses/available/etd-07112004-194307/unrestricted/taylor%5Fonald%5Ff%5F200407%5FMS.pdf.

Full text
Abstract:
Thesis (M.S.)--School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 2005. Directed by Charles Eckert.
Charles Eckert, Committee Chair ; Amyn Teja, Committee Member ; Pete Ludovice, Committee Member. Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Vapor-liquid equilibrium"

1

Ōe, Shūzō. Vapor-liquid equilibrium data. Tokyo: Kodansha, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gmehling, Jürgen. Vapor-liquid equilibrium data collection. Frankfurt am Main: DECHEMA, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gmehling, Jürgen. Vapor-liquid equilibrium data collection: Ethers : supplement 2. Frankfurt-am-Main: DECHEMA, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kryukov, Alexei, Vladimir Levashov, and Yulia Puzina. Non-Equilibrium Phenomena near Vapor-Liquid Interfaces. Heidelberg: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00083-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ōe, Shūzō. Vapor-liquid equilibrium data at high pressure. Tokyo: Kodansha, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kryukov, Alexei. Non-Equilibrium Phenomena near Vapor-Liquid Interfaces. Heidelberg: Springer International Publishing, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Orbey, Hasan. Modeling vapor-liquid equilibria: Cubic equations of state and their mixing rules. New York: Cambridge University Press, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gmehling, JÜrgen. Vapor-liquid equilibrium data collection: Ketones : supplement 1. Frankfurt-am-Main: DECHEMA, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gmehling, Jürgen. Vapor-liquid equilibrium data collection: Aldehydes : supplement 1. Frankfurt-am-Main: DECHEMA, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gmehling, JÜrgen. Vapor-liquid equilibrium data collection: Aromatic hydrocarbons : supplement 1. Frankfurt-am-Main: DECHEMA, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Vapor-liquid equilibrium"

1

Puibasset, Joël. "Vapor–Liquid Equilibrium." In Adsorption and Phase Behaviour in Nanochannels and Nanotubes, 213–40. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-2481-7_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Tassios, Dimitrios P. "Low Pressure Vapor-Liquid Equilibrium." In Applied Chemical Engineering Thermodynamics, 435–509. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-662-01645-9_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Tassios, Dimitrios P. "High Pressure Vapor-Liquid Equilibrium." In Applied Chemical Engineering Thermodynamics, 511–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-662-01645-9_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Raal, J. David, and Andreas L. Mühlbauer. "Low-Pressure Vapor-Liquid Equilibrium Measurement." In Phase Equilibria, 39–96. Boca Raton: Routledge, 2023. http://dx.doi.org/10.1201/9780203743621-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kryukov, Alexei, Vladimir Levashov, and Yulia Puzina. "Motion of Vapor–Liquid Interfaces." In Non-Equilibrium Phenomena near Vapor-Liquid Interfaces, 25–40. Heidelberg: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00083-1_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kryukov, Alexei, Vladimir Levashov, and Yulia Puzina. "Liquid–Vapor Interface Form Determination." In Non-Equilibrium Phenomena near Vapor-Liquid Interfaces, 41–51. Heidelberg: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00083-1_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sarmad, S., and J. Mikkola. "Vapor-Liquid Equilibrium of Ionic Liquids." In Encyclopedia of Ionic Liquids, 1–22. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-10-6739-6_107-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sarmad, S., and Jyri-Pekka Mikkola. "Vapor-Liquid Equilibrium of Ionic Liquids." In Encyclopedia of Ionic Liquids, 1331–51. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-33-4221-7_107.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Raal, J. David, and Andreas L. Mühlbauer. "Prediction of Low-Pressure Vapor-Liquid Equilibrium." In Phase Equilibria, 295–328. Boca Raton: Routledge, 2023. http://dx.doi.org/10.1201/9780203743621-15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Rowlinson, J. S. "Penetrable Sphere Models of Liquid-Vapor Equilibrium." In Advances in Chemical Physics, 1–57. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470142608.ch1.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Vapor-liquid equilibrium"

1

Martins Freitas, F. F., and F. M. S. Silva Fernandes. "Vapor-liquid equilibrium of methyl chloride." In The first European conference on computational chemistry (E.C.C.C.1). AIP, 1995. http://dx.doi.org/10.1063/1.47710.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Polikarpov, Alexey, Irina Graur, Lounes Tadrist, Elizaveta Gatapova, and Oleg A. Kabov. "NON-EQUILIBRIUM PHENOMENA ON THE LIQUID-VAPOR INTERFACE." In International Heat Transfer Conference 16. Connecticut: Begellhouse, 2018. http://dx.doi.org/10.1615/ihtc16.mpf.024466.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Chen, Qiu, and Lili Gu. "Vapor-Liquid Equilibrium Data of Citronella Oil Systems." In 2011 International Conference on Information Management, Innovation Management and Industrial Engineering (ICIII). IEEE, 2011. http://dx.doi.org/10.1109/iciii.2011.297.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Tsuruta, Takaharu, and Gyoko Nagayama. "NON-EQUILIBRIUM MASS TRANSFER AT LIQUID-VAPOR INTERFACE." In Proceedings of Symposium on Energy Engineering in the 21st Century (SEE2000) Volume I-IV. Connecticut: Begellhouse, 2023. http://dx.doi.org/10.1615/see2000.800.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Barbosa Neto, Antonio Marinho, Jônatas Ribeiro, Martín Aznar, and Antonio Carlos Bannwart. "THERMODYNAMIC MODELING OF VAPOR-LIQUID EQUILIBRIUM FOR PETROLEUM FLUIDS." In Congresso Nacional de Matemática Aplicada à Indústria. São Paulo: Editora Edgard Blücher, 2015. http://dx.doi.org/10.5151/mathpro-cnmai-0105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Dobrudzhaliev, Dragomir, and Miluvka Stancheva. "Computer modeling of vapor-liquid equilibrium of high fatty acids." In the International Conference. New York, New York, USA: ACM Press, 2009. http://dx.doi.org/10.1145/1731740.1731815.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

He, Pan, and Jizheng Chu. "Low pressure vapor-liquid equilibrium validation with special pseudo-components." In 2017 36th Chinese Control Conference (CCC). IEEE, 2017. http://dx.doi.org/10.23919/chicc.2017.8029008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Soprano, Arthur Besen, and António Fábio Carvalho da Silva. "Development of a Vapor-Liquid-Equilibrium Module for Reservoir Simulation." In XXXVIII Iberian-Latin American Congress on Computational Methods in Engineering. Florianopolis, Brazil: ABMEC Brazilian Association of Computational Methods in Engineering, 2017. http://dx.doi.org/10.20906/cps/cilamce2017-0335.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Frezzotti, Aldo. "A Kinetic Model for Equilibrium and Non-Equilibrium Structure of the Vapor-Liquid Interface." In RAREFIED GAS DYNAMICS: 23rd International Symposium. AIP, 2003. http://dx.doi.org/10.1063/1.1581646.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Shuker, Muhannad T., and Firas Ismail. "Prediction of Solid-Vapor-Liquid Equilibrium in Natural Gas Using ANNs." In International Petroleum Technology Conference. International Petroleum Technology Conference, 2011. http://dx.doi.org/10.2523/iptc-15492-ms.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Vapor-liquid equilibrium"

1

Srinivasan, L. Vapor-liquid equilibrium of coal derived fluids by continuous thermodynamics. Office of Scientific and Technical Information (OSTI), January 1990. http://dx.doi.org/10.2172/7090201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Rainwater, James C. Vapor-liquid equilibrium of binary mixtures in the extended critical region :. Gaithersburg, MD: National Bureau of Standards, 1989. http://dx.doi.org/10.6028/nist.tn.1328.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bullin, J. A., and R. E. Frazier. Collection of VLE data for acid gas---alkanolamine systems using fourier transform infrared spectroscopy. [Vapor-liquid equilibrium]. Office of Scientific and Technical Information (OSTI), January 1992. http://dx.doi.org/10.2172/7026066.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Alexander, J., and L. Luu. MULTEQ: Equilibrium of an electrolytic solution with vapor-liquid partitioning and precipitation: Volume 1: User's manual, Revision 1. Office of Scientific and Technical Information (OSTI), May 1989. http://dx.doi.org/10.2172/6012064.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Morris, J., and C. Byers. Critical-region vapor-liquid equilibrium of the CH sub 4 -CO sub 2 -H sub 2 S system. Office of Scientific and Technical Information (OSTI), May 1990. http://dx.doi.org/10.2172/6933876.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Paulechka, Eugene, Vladimir Diky, and Abhijit Dutta. Evaluation of Experimental and Predicted Vapor-Liquid Equilibrium Data for Systems Relevant to Biomass Fast Pyrolysis and Catalytic Upgrading. National Institute of Standards and Technology, March 2021. http://dx.doi.org/10.6028/nist.ir.8357.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Paulechka, Eugene, Vladimir Diky, and Abhijit Dutta. Evaluation of Experimental and Predicted Vapor-Liquid Equilibrium Data for Systems Relevant to Biomass Fast Pyrolysis and Catalytic Upgrading. Office of Scientific and Technical Information (OSTI), March 2021. http://dx.doi.org/10.2172/1776562.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Betts, Stephen Ellsworth. Determination of vapor-liquid equilibrium data and decontamination factors needed for the development of evaporator technology for use in volume reduction of radioactive waste streams. Office of Scientific and Technical Information (OSTI), May 1993. http://dx.doi.org/10.2172/10185283.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Field, Paul E., and Roger J. Combs. Temperature Dependence of Wilson Coefficients: Vapor-Liquid Equilibria of Aqueous Ammonia. Fort Belvoir, VA: Defense Technical Information Center, January 2001. http://dx.doi.org/10.21236/ada391533.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography