Journal articles on the topic 'Vapour compression system'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Vapour compression system.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Sairamakrishna, B., T. Gopala Rao, and N. Rama Krishna. "Cop Enhancement of Vapour Compression Refrigeration System." Indian Journal of Production and Thermal Engineering 1, no. 2 (June 10, 2021): 1–6. http://dx.doi.org/10.35940/ijpte.b2004.061221.
Full textB, Sairamakrishna, T. Gopala Rao, and Rama Krishna, N. "Cop Enhancement of Vapour Compression Refrigeration System." Indian Journal of Production and Thermal Engineering 1, no. 2 (June 10, 2021): 1–6. http://dx.doi.org/10.35940/ijpte.b2004.06122.
Full textM. M. Tayde, M. M. Tayde, Pranav Datar, Pankaj kumar, and Dr L. B. Bhuyar Dr. L. B. Bhuyar. "Optimum Choice of Refrigerant for Miniature Vapour Compression Refrigeration System." Indian Journal of Applied Research 3, no. 3 (October 1, 2011): 134–36. http://dx.doi.org/10.15373/2249555x/mar2013/42.
Full textRamanathan, Anand, and Prabhakaran Gunasekaran. "Simulation of absorption refrigeration system for automobile application." Thermal Science 12, no. 3 (2008): 5–13. http://dx.doi.org/10.2298/tsci0803005r.
Full textValchev, Slav, Nenko Nenov, and Vasil Georgiev. "Determination of coefficient of performance of mechanical vapour recompression heat pump." E3S Web of Conferences 112 (2019): 01013. http://dx.doi.org/10.1051/e3sconf/201911201013.
Full textWest, A. C., and S. A. Sherif. "Optimization of multistage vapour compression systems using genetic algorithms. Part 1: Vapour compression system model." International Journal of Energy Research 25, no. 9 (2001): 803–12. http://dx.doi.org/10.1002/er.723.
Full textLiang, Youcai, Zhibin Yu, and Wenguang Li. "A Waste Heat-Driven Cooling System Based on Combined Organic Rankine and Vapour Compression Refrigeration Cycles." Applied Sciences 9, no. 20 (October 11, 2019): 4242. http://dx.doi.org/10.3390/app9204242.
Full textOkafor, Victor. "THERMODYNAMIC ANALYSIS OF COMPRESSOR INLET AIR PRECOOLING TECHNIQUES OF A GAS TURBINE PLANT OPERATIONAL IN NIGERIA ENERGY UTILITY SECTOR." International Journal of Engineering Science Technologies 4, no. 2 (April 1, 2020): 13–24. http://dx.doi.org/10.29121/ijoest.v4.i2.2020.74.
Full textPatel, Brijesh H., and Lalit S. Patel. "Experimental Investigation of Sub Cooling Effect on Simple Vapour Compression System by Domestic Refrigerator." Indian Journal of Applied Research 3, no. 3 (October 1, 2011): 130–33. http://dx.doi.org/10.15373/2249555x/mar2013/41.
Full textMahmood, R. A., O. M. Ali, A. Al-Janabi, G. Al-Doori, and M. M. Noor. "Review of Mechanical Vapour Compression Refrigeration System Part 2: Performance Challenge." International Journal of Applied Mechanics and Engineering 26, no. 3 (August 26, 2021): 119–30. http://dx.doi.org/10.2478/ijame-2021-0039.
Full textSiddharth, Raju, Korody Jagannath, P. Kini Giridhar, and K. Kedlaya Vishnumurthy. "Design and Simulation of a Vapour Compression Refrigeration System Using Phase Change Material." MATEC Web of Conferences 144 (2018): 04002. http://dx.doi.org/10.1051/matecconf/201814404002.
Full textAly, Samir E. "Gas turbine total energy vapour compression desalination system." Energy Conversion and Management 40, no. 7 (May 1999): 729–41. http://dx.doi.org/10.1016/s0196-8904(98)00124-1.
Full textAkintunde, M. "Validation of a vapour compression refrigeration system design model." American Journal of Scientific and Industrial Research 2, no. 4 (August 2011): 504–10. http://dx.doi.org/10.5251/ajsir.2011.2.4.504.510.
Full textAlam, Ajaz, and Subodh Kumar. "Thermodynamic Analysis of Two-Stage Vapour Compression Refrigeration System." Global Sci-Tech 8, no. 3 (2016): 133. http://dx.doi.org/10.5958/2455-7110.2016.00016.1.
Full textChesi, Andrea, Giovanni Ferrara, Lorenzo Ferrari, and Fabio Tarani. "Analysis of a solar assisted vapour compression cooling system." Renewable Energy 49 (January 2013): 48–52. http://dx.doi.org/10.1016/j.renene.2012.01.068.
Full textKalbande, S. R., and Sneha Deshmukh. "Photovoltaic Based Vapour Compression Refrigeration System for Vaccine Preservation." Universal Journal of Engineering Science 3, no. 2 (May 2015): 17–23. http://dx.doi.org/10.13189/ujes.2015.030202.
Full textSaini, D. K., A. Baruah, and G. Sachdeva. "Vapour compression system analysis undergoing expansion in an ejector." Journal of Physics: Conference Series 1240 (July 2019): 012131. http://dx.doi.org/10.1088/1742-6596/1240/1/012131.
Full textKumar, S. Sathish, and A. Mani. "Desalination using spray tower and vapour compression refrigeration system." International Journal of Nuclear Desalination 2, no. 1 (2006): 89. http://dx.doi.org/10.1504/ijnd.2006.009507.
Full textChopra, Kapil, V. Sahni, and R. S. Mishra. "Thermodynamic and Sustainability Analysis of Vapour Compression Refrigeration System." Materials Focus 4, no. 5 (October 1, 2015): 392–96. http://dx.doi.org/10.1166/mat.2015.1266.
Full textSun, Da-Wen. "Evaluation of a combined ejector-vapour-compression refrigeration system." International Journal of Energy Research 22, no. 4 (March 25, 1998): 333–42. http://dx.doi.org/10.1002/(sici)1099-114x(19980325)22:4<333::aid-er369>3.0.co;2-0.
Full textSaji Raveendran, P., and P. C. Murugan. "Energy Conservation on Vapour Compression Refrigeration System using PCM." IOP Conference Series: Materials Science and Engineering 1084, no. 1 (March 1, 2021): 012106. http://dx.doi.org/10.1088/1757-899x/1084/1/012106.
Full textRiaz, Fahid, Kah Hoe Tan, Muhammad Farooq, Muhammad Imran, and Poh Seng Lee. "Energy Analysis of a Novel Ejector-Compressor Cooling Cycle Driven by Electricity and Heat (Waste Heat or Solar Energy)." Sustainability 12, no. 19 (October 4, 2020): 8178. http://dx.doi.org/10.3390/su12198178.
Full textSun, Zhili, Qi Cui, Qingzhao Liu, Caiyun Wang, Jiamei Li, and Lijie Yang. "Energetic and economic analysis of vapour compression refrigeration systems applied in different temperature ranges." HKIE Transactions 27, no. 3 (October 30, 2020): 135–45. http://dx.doi.org/10.33430/v27n3thie-2018-0035.
Full textKryłłowicz, Władysław, Krzysztof Kantyka, Włodzimierz Szewczyk, and Paweł Pełczyński. "Technical problems with compression units in mechanical vapour recompression systems." E3S Web of Conferences 70 (2018): 03006. http://dx.doi.org/10.1051/e3sconf/20187003006.
Full textNaik, Rudra, Linford Pinto, K. Rama Narasimha, and G. Pundarika. "Theoretical Studies on the Application of Pulsating Heat Pipe in Vapour Compression Refrigeration System." Applied Mechanics and Materials 592-594 (July 2014): 1801–6. http://dx.doi.org/10.4028/www.scientific.net/amm.592-594.1801.
Full textMa, Rui, Yu Ting Wu, Chun Xu Du, Xia Chen, De Lou Zhang, and Chong Fang Ma. "Space Vibration Simulation Test of Vapour Compression Heat Pump." Applied Mechanics and Materials 829 (March 2016): 46–51. http://dx.doi.org/10.4028/www.scientific.net/amm.829.46.
Full textAustin, N., P. M. Diaz, D. S. Manoj Abraham, and N. Kanthavelkumaran. "Environment Friendly Mixed Refrigerant to Replace R-134a in a VCR System with Exergy Analysis." Advanced Materials Research 984-985 (July 2014): 1174–79. http://dx.doi.org/10.4028/www.scientific.net/amr.984-985.1174.
Full textMahmood, Raid Ahmed, Omar M. Ali, and M. M. Noor. "Mechanical Vapour Compression Refrigeration System: Review Part 1: Environment Challenge." International Journal of Applied Mechanics and Engineering 25, no. 4 (December 1, 2020): 130–47. http://dx.doi.org/10.2478/ijame-2020-0054.
Full textDarwish, M. A., M. Abdel-Jawad, and Awad El-Hadek. "The mechanically driven heat recovery system of vapour compression desalters." Heat Recovery Systems and CHP 10, no. 5-6 (January 1990): 447–56. http://dx.doi.org/10.1016/0890-4332(90)90195-p.
Full textSarkar, Jahar. "Exergy analysis of vortex tube expansion vapour compression refrigeration system." International Journal of Exergy 13, no. 4 (2013): 431. http://dx.doi.org/10.1504/ijex.2013.058101.
Full textYataganbaba, Alptug, Ali Kilicarslan, and Irfan Kurtbas. "Irreversibility analysis of a two-evaporator vapour compression refrigeration system." International Journal of Exergy 18, no. 3 (2015): 340. http://dx.doi.org/10.1504/ijex.2015.072895.
Full textLiu, Yefeng, and Jun Yu. "Review of vortex tube expansion in vapour compression refrigeration system." IOP Conference Series: Earth and Environmental Science 153 (May 2018): 032021. http://dx.doi.org/10.1088/1755-1315/153/3/032021.
Full textSingh, Monika, and Prashant Somvanshi. "Thermodynamic analysis of vapour compression refrigeration system using alternative refrigerants." IOSR Journal of Mechanical and Civil Engineering 11, no. 1 (2014): 81–89. http://dx.doi.org/10.9790/1684-11158189.
Full textChembedu, Ganesh. "Combined Vapour Compression Refrigeration System with Ejector usage: A Review." IOSR Journal of Mechanical and Civil Engineering 14, no. 02 (March 2017): 81–83. http://dx.doi.org/10.9790/1684-1402038183.
Full textHussain, Taliv, Faisal Khan, Abdul Ahad Ansari, Prakhar Chaturvedi, and Syed Mohd Yahya. "Performance improvement of vapour compression refrigeration system using Al2O3 nanofluid." IOP Conference Series: Materials Science and Engineering 377 (June 2018): 012155. http://dx.doi.org/10.1088/1757-899x/377/1/012155.
Full textJin, Cong-zhuo, Qiao-li Chou, Dong-sheng Jiao, and Peng-cheng Shu. "Vapour Compression Flash seawater desalination system and its exergy analysis." Desalination 353 (November 2014): 75–83. http://dx.doi.org/10.1016/j.desal.2014.09.001.
Full textVali, Shaik Sharmas, Talanki Puttaranga Setty, and Ashok Babu. "Analytical computation of thermodynamic performance parameters of actual vapour compression refrigeration system with R22, R32, R134a, R152a, R290 and R1270." MATEC Web of Conferences 144 (2018): 04009. http://dx.doi.org/10.1051/matecconf/201814404009.
Full textNoor, D. N., H. Ibrahim, and F. Basrawi. "Environmental Assessment on Hybrid Solar Air Conditioning System in Tropical Region." MATEC Web of Conferences 225 (2018): 06016. http://dx.doi.org/10.1051/matecconf/201822506016.
Full textLee, Gilbong, Chul Woo Roh, Bong Soo Choi, Eunseok Wang, Ho-Sang Ra, Junhyun Cho, Young-Jin Baik, Young-Soo Lee, Hyungki Shin, and Beomjoon Lee. "Performance estimation of membrane dehumidification based on heat exchanger analogy approaches using ε-NTU model." International Journal of Low-Carbon Technologies 15, no. 2 (January 25, 2020): 299–307. http://dx.doi.org/10.1093/ijlct/ctz071.
Full textVerma, Abhishek, S. C. Kaushik, and S. K. Tyagi. "Thermodynamic Analysis of a Combined Single Effect Vapour Absorption System and tc-CO2 Compression Refrigeration System." HighTech and Innovation Journal 2, no. 2 (June 1, 2021): 87–98. http://dx.doi.org/10.28991/hij-2021-02-02-02.
Full textBolaji, B. O., and T. O. Falade. "Development of an Experimental Apparatus for Demonstrating Vapour Compression Refrigeration System." International Journal of Thermal and Environmental Engineering 4, no. 1 (June 1, 2011): 1–6. http://dx.doi.org/10.5383/ijtee.04.01.001.
Full textSanthana Krishnan, R., M. Arulprakasajothi, K. Logesh, N. Dilip Raja, and Mycherla Rajendra. "Analysis and Feasibilty of Nano-Lubricant in Vapour Compression Refrigeration System." Materials Today: Proceedings 5, no. 9 (2018): 20580–87. http://dx.doi.org/10.1016/j.matpr.2018.06.437.
Full textJani, D. B., Manish Mishra, and P. K. Sahoo. "Exergy analysis of solid desiccant-vapour compression hybrid air conditioning system." International Journal of Exergy 20, no. 4 (2016): 517. http://dx.doi.org/10.1504/ijex.2016.078106.
Full textUpadhyay, Neeraj. "Analytical Study of Vapour Compression Refrigeration System Using Diffuser and Subcooling." IOSR Journal of Mechanical and Civil Engineering 11, no. 3 (2014): 92–97. http://dx.doi.org/10.9790/1684-11379297.
Full textNelwan, L. O., R. P. A. Setiawan, M. Yulianto, Irfandi, M. Fachry, and D. Biksono. "Simulation on vapour compression heat pump system for rough rice drying." IOP Conference Series: Earth and Environmental Science 542 (August 7, 2020): 012042. http://dx.doi.org/10.1088/1755-1315/542/1/012042.
Full textVithya, P., G. Sriram, S. Arumugam, V. Adithiya, D. Anand Raj, V. Aswin, and R. Balaji. "Performance Estimation of Vapour Compression Refrigeration System using Real Gas Model." IOP Conference Series: Materials Science and Engineering 390 (July 30, 2018): 012111. http://dx.doi.org/10.1088/1757-899x/390/1/012111.
Full textZsembinszki, Gabriel, Alvaro de Gracia, Pere Moreno, Ricard Rovira, Miguel Ángel González, and Luisa F. Cabeza. "A novel numerical methodology for modelling simple vapour compression refrigeration system." Applied Thermal Engineering 115 (March 2017): 188–200. http://dx.doi.org/10.1016/j.applthermaleng.2016.12.059.
Full textRoy, Ranendra, and Bijan Kumar Mandal. "Thermodynamic Analysis of Modified Vapour Compression Refrigeration System Using R-134a." Energy Procedia 109 (March 2017): 227–34. http://dx.doi.org/10.1016/j.egypro.2017.03.050.
Full textMemet, Feiza, and Daniela Elena Mitu. "A Study Initiated because of the Global Warming from R-134a." Advanced Materials Research 837 (November 2013): 751–56. http://dx.doi.org/10.4028/www.scientific.net/amr.837.751.
Full textLiang, Kun, Zhaohua Li, Ming Chen, and Hanying Jiang. "Comparisons between heat pipe, thermoelectric system, and vapour compression refrigeration system for electronics cooling." Applied Thermal Engineering 146 (January 2019): 260–67. http://dx.doi.org/10.1016/j.applthermaleng.2018.09.120.
Full text