Academic literature on the topic 'Vapour recovery system'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Vapour recovery system.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Vapour recovery system"
Bajko, Jaroslav, Jan Fišer, and Miroslav Jícha. "Condenser-Type Heat Exchanger for Compost Heat Recovery Systems." Energies 12, no. 8 (2019): 1583. http://dx.doi.org/10.3390/en12081583.
Full textKowalczyk, Tomasz, Paweł Ziółkowski, and Janusz Badur. "Exergy analysis of the Szewalski cycle with a waste heat recovery system." Archives of Thermodynamics 36, no. 3 (2015): 25–48. http://dx.doi.org/10.1515/aoter-2015-0020.
Full textDagilis, Vytautas, Liutauras Vaitkus, Algimantas Balcius, Juozas Gudzinskas, and Valdas Lukosevicius. "Low grade heat recovery system for woodfuel cogeneration plant using water vapour regeneration." Thermal Science 22, no. 6 Part A (2018): 2667–77. http://dx.doi.org/10.2298/tsci171020081d.
Full textDarwish, M. A., M. Abdel-Jawad, and Awad El-Hadek. "The mechanically driven heat recovery system of vapour compression desalters." Heat Recovery Systems and CHP 10, no. 5-6 (1990): 447–56. http://dx.doi.org/10.1016/0890-4332(90)90195-p.
Full textLiang, Youcai, Zhibin Yu, and Wenguang Li. "A Waste Heat-Driven Cooling System Based on Combined Organic Rankine and Vapour Compression Refrigeration Cycles." Applied Sciences 9, no. 20 (2019): 4242. http://dx.doi.org/10.3390/app9204242.
Full textKryłłowicz, Władysław, Krzysztof Kantyka, Włodzimierz Szewczyk, and Paweł Pełczyński. "Technical problems with compression units in mechanical vapour recompression systems." E3S Web of Conferences 70 (2018): 03006. http://dx.doi.org/10.1051/e3sconf/20187003006.
Full textOttaviano, S., C. Poletto, A. De Pascale, and M. Bianchi. "Experimental Analysis of Partial Evaporation Micro-ORC for low-temperature Heat Recovery." Journal of Physics: Conference Series 2511, no. 1 (2023): 012015. http://dx.doi.org/10.1088/1742-6596/2511/1/012015.
Full textLyubin, E. A., K. A. Zaynetdinov, and D. Yu Belov. "EVALUATION OF THE EFFECTIVENESS OF THE COMBINED MEMBRANE-EJECTOR VAPOUR RECOVERY SYSTEM." Petroleum Engineering 18, no. 3 (2020): 69. http://dx.doi.org/10.17122/ngdelo-2020-3-69-79.
Full textSrithar, K., T. Rajaseenivasan, M. Arulmani, R. Gnanavel, M. Vivar, and Manuel Fuentes. "Energy recovery from a vapour compression refrigeration system using humidification dehumidification desalination." Desalination 439 (August 2018): 155–61. http://dx.doi.org/10.1016/j.desal.2018.04.008.
Full textKesieme, Uchenna K., Nicholas Milne, Chu Yong Cheng, Hal Aral, and Mikel Duke. "Recovery of water and acid from leach solutions using direct contact membrane distillation." Water Science and Technology 69, no. 4 (2013): 868–75. http://dx.doi.org/10.2166/wst.2013.788.
Full textDissertations / Theses on the topic "Vapour recovery system"
Мовчан, Ірина Вікторівна. "Assessment of the environmental safety level of the fuel storage facility." Thesis, Національний авіаційний університет, 2020. https://er.nau.edu.ua/handle/NAU/49673.
Full textМовчан, Ірина Вікторівна. "Assessment of the environmental safety level of the fuel storage facility." Thesis, Національний авіаційний університет, 2020. http://er.nau.edu.ua/handle/NAU/43581.
Full textWijewardane, M. Anusha. "Exhaust system energy management of internal combustion engines." Thesis, Loughborough University, 2012. https://dspace.lboro.ac.uk/2134/9829.
Full textVenter, Cornelia. "Recovery of petrol vapour at a bulk storage facility." Diss., University of Pretoria, 2004. http://hdl.handle.net/2263/23524.
Full textṬāha, ʿUṯmān. "Commande automatique robustesse du générateur de vapeur REP." Vandoeuvre-les-Nancy, INPL, 1993. http://www.theses.fr/1993INPL1280.
Full textFEHLING, SIMON. "CO2 Refrigeration withIntegrated Ejectors : Modelling and Field Data Analysis ofTwo Ice Rinks and Two Supermarket Systems." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-299502.
Full textCheng, Yu-Tsung, and 鄭育宗. "The Assessment on the Efficiency of Vapor Recovery System in Gas Station." Thesis, 2006. http://ndltd.ncl.edu.tw/handle/24571904279267184146.
Full textGALOPPI, GIOVANNI. "DEVELOPMENT OF A RADIAL PISTON EXPANDER FOR VAPOR COMPRESSION CYCLES." Doctoral thesis, 2017. http://hdl.handle.net/2158/1082547.
Full textBooks on the topic "Vapour recovery system"
United States. Environmental Protection Agency. Emission Standards Division., ed. Technical guidance: Stage II vapor recovery systems for control of vehicle refueling emissions at gasoline dispensing facilities. U.S. Environmental Protection Agency, Office of Air and Radiation, Office of Air Quality Planning and Standards, 1991.
Find full textGreat Britain. Health and Safety Commission. Approved tank requirements: The provisions for bottom leading and vapour recovery systems of mobile containers carrying petrol : Carriage of dangerous goods by road regulations, 1996, Carriage of dangerous goods by rail regulations, 1996. HSE Books, 1996.
Find full textOffice, General Accounting. Air pollution: New approach needed to resolve safety issue for vapor recovery systems : report to the chairman, Subcommittee on Oversight and Investigations, Committee on Energy and Commerce, House of Representatives. GAO, 1991.
Find full textInstitute, Petroleum Equipment. Recommended Practices for Installation and Testing of Vapor Recovery Systems at Vehicle Fueling Sites. Petroleum Equipment Institute, 2003.
Find full textBook chapters on the topic "Vapour recovery system"
Babet, Fred H. "Cryogenic Marine Loading Vapor Recovery System." In Advances in Cryogenic Engineering. Springer US, 1998. http://dx.doi.org/10.1007/978-1-4757-9047-4_156.
Full textMinea, Vasile. "Thermal (Ejection) Vapor Compression Refrigeration and Air-Conditioning and Enhanced (Ejector) Heat Pump Systems." In Heat Recovery with Commercial, Institutional, and Industrial Heat Pumps. CRC Press, 2024. http://dx.doi.org/10.1201/9781003347415-5.
Full textWu, Mengmeng, and Lin Cao. "Field Test Analysis of a Novel Continuous Running Dual-Channel Condensation Gasoline Vapor Recovery System." In Environmental Science and Engineering. Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-13-9524-6_82.
Full textLiu, Daming, Yaqi Li, and Xudong Zhen. "Modeling Analysis of the Adsorption–Desorption Process of Activated Carbon Canister in On-board Refueling Vapor Recovery System." In Environmental Science and Engineering. Springer Nature Switzerland, 2025. https://doi.org/10.1007/978-3-031-84571-0_8.
Full textOgrodniczak, Pawel, Abdulnaser Sayma, and Martin T. White. "Pressure profile optimisation of a nozzle for wet-to-dry expansion." In Proceedings of the 7th International Seminar on ORC Power System (ORC 2023), 2024th ed. Editorial Universidad de Sevilla, 2024. http://dx.doi.org/10.12795/9788447227457_48.
Full textMartínez-Rodríguez, Guillermo, and Amanda L. Fuentes-Silva. "Solar Energy in Industrial Processes." In Chemical Vapor Deposition [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.97008.
Full textSubiantoro, Alison, and Kim Tiow Ooi. "Expansion Power Recovery in Refrigeration Systems." In Handbook of Research on Advances and Applications in Refrigeration Systems and Technologies. IGI Global, 2015. http://dx.doi.org/10.4018/978-1-4666-8398-3.ch019.
Full textLaterre, Antoine, Olivier Dumont, Vincent Lemort, and Francesco Contino. "SYSTEMATIC AND MULTI-CRITERIA OPTIMISATION OF SUBCRITICAL THERMALLY INTEGRATED CARNOT BATTERIES (TI-PTES) IN AN EXTENDED DOMAIN." In Proceedings of the 7th International Seminar on ORC Power System (ORC 2023), 2024th ed. Editorial Universidad de Sevilla, 2024. http://dx.doi.org/10.12795/9788447227457_19.
Full textToujani, Noureddine, Nahla Bouaziz, and Lakder Kairouani. "Performance Analysis of a New Combined Organic Rankine Cycle and Vapor Compression Cogeneration and Tri-Generation and Water Desalination." In Electrodialysis. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.91871.
Full text"Field Storage Tanks, Vapor Recovery System (VRS), and Tank Blanketing." In Petroleum and Gas Field Processing. CRC Press, 2015. http://dx.doi.org/10.1201/9780429021350-20.
Full textConference papers on the topic "Vapour recovery system"
Barber, Miriam, Adedamola Adelusi, and Stefano Tassinari. "The Impact of Oxygen Related Black Solids in Oil and Gas Production Systems." In CONFERENCE 2023. AMPP, 2023. https://doi.org/10.5006/c2023-18942.
Full textOgun, Kehinde M. "Corrosion of Casing Vapor Recovery Piping in Steam Flooding Operation." In CORROSION 2018. NACE International, 2018. https://doi.org/10.5006/c2018-11541.
Full textShargay, Cathleen, John Gebur, Vincent Wong, Tina Tajalli, and Thomas C. Willingham. "Corrosion Risks in Vapor Lines Going to Sulfur Recovery Unit Incinerators." In CORROSION 2016. NACE International, 2016. https://doi.org/10.5006/c2016-07586.
Full textBoivin, Joseph, and Scott Oliphant. "Sulfur Corrosion Due to Oxygen Ingress." In CORROSION 2011. NACE International, 2011. https://doi.org/10.5006/c2011-11120.
Full textZhang, Enhui, Junming Zhao, Zeping Wen, Lihe Wang, Jianbin Huang, and Fei Xu. "Design of an Active Vapor Recovery System and Simulation Analysis of Refueling Characteristics Under Refueling Conditions for Plug-in Hybrid Electric Vehicles." In 2025 6th International Conference on Mechatronics Technology and Intelligent Manufacturing (ICMTIM). IEEE, 2025. https://doi.org/10.1109/icmtim65484.2025.11041152.
Full textBulla, J. T., and J. T. Chikos. "Case History - FCCU Absorber Deethanizer Tower Hydrogen Blistering and Stepwise Cracking." In CORROSION 1989. NACE International, 1989. https://doi.org/10.5006/c1989-89264.
Full textVulloju, Sreedhar, S. Vineeth, K. V. N. Sai Gautam, M. Sathya Bhargav, and N. Kalyan. "Analysis of water recovery from atmospheric air with and wihout fan using vapour compression refrigeration system." In THE 8TH ANNUAL INTERNATIONAL SEMINAR ON TRENDS IN SCIENCE AND SCIENCE EDUCATION (AISTSSE) 2021. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0117560.
Full textDuan, Xili, Isa R. Haque, and Aloysius Ducey. "Thermal Energy Recovery From Small Sewage Treatment Plants in Northern Canadian Communities." In ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-72177.
Full textSenda, Franck M., and Robert T. Dobson. "A Natural Circulation Waste Heat Recovery System for High Temperature Gas-Cooled Reactor Used and/or Spent Fuel Tanks: Part I — Design Considerations and Theoretical Simulation." In ASME 2013 Power Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/power2013-98132.
Full textToma, Peter, Karl Miller, and J. Mark A. Hoddenbagh. "Reducing the Deposition of Scale in the Evaporator of a Mechanical Vapour Recompression System for Concentration of Pulp Mill Effluents." In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-39599.
Full textReports on the topic "Vapour recovery system"
Baker, R. W., J. E. Davidson, V. D. Helm, et al. Membrane vapor recovery systems. Phase 2, Progress report, 1 October 1991--29 September 1992. Office of Scientific and Technical Information (OSTI), 1992. http://dx.doi.org/10.2172/10164792.
Full textAsvapathanagul, Pitiporn, Leanne Deocampo, and Nicholas Banuelos. Biological Hydrogen Gas Production from Food Waste as a Sustainable Fuel for Future Transportation. Mineta Transportation Institute, 2022. http://dx.doi.org/10.31979/mti.2021.2141.
Full textAsvapathanagul, Pitiporn, Leanne Deocampo, and Nicholas Banuelos. Biological Hydrogen Gas Production from Food Waste as a Sustainable Fuel for Future Transportation. Mineta Transportation Institute, 2022. http://dx.doi.org/10.31979/mti.2022.2141.
Full text