Journal articles on the topic 'Variable Gain Amplifier (VGA)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Variable Gain Amplifier (VGA).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Alam, M. J., Mohammad Arif Sobhan Bhuiyan, Md Torikul Islam Badal, Mamun Bin Ibne Reaz, and Noorfazila Kamal. "Design of a low-power compact CMOS variable gain amplifier for modern RF receivers." Bulletin of Electrical Engineering and Informatics 9, no. 1 (2020): 87–93. http://dx.doi.org/10.11591/eei.v9i1.1468.
Full textSun, Zhengyu, and Yuepeng Yan. "Design of a 2 GHz Linear-in-dB Variable-Gain Amplifier with 80-dB Gain Range." Active and Passive Electronic Components 2014 (2014): 1–7. http://dx.doi.org/10.1155/2014/434189.
Full textArbet, Daniel, Viera Stopjaková, Martin Kováč, Lukáš Nagy, Matej Rakús, and Michal Šovčík. "130 nm CMOS Bulk-Driven Variable Gain Amplifier for Low-Voltage Applications." Journal of Circuits, Systems and Computers 26, no. 08 (2017): 1740003. http://dx.doi.org/10.1142/s0218126617400035.
Full textCortes, Fernando Paixão, and Sergio Bampi. "A 40 MHz 70 dB Gain Variable Gain Amplifier Design Using the gm/ID Design Method." Journal of Integrated Circuits and Systems 4, no. 1 (2009): 7–12. http://dx.doi.org/10.29292/jics.v4i1.290.
Full textZhang, Wei Jia, and Bo Wang. "A SiGe HBT Variable Gain Amplifier for Wireless Receiver System with On-Chip Filter." Applied Mechanics and Materials 155-156 (February 2012): 167–70. http://dx.doi.org/10.4028/www.scientific.net/amm.155-156.167.
Full textHu, Shan Wen, Tao Chen, Huai Gao, Long Xing Shi, and G. P. Li. "An Advanced Traveling Wave Matching Network for DC-12GHz Variable Gain Amplifier Design." Applied Mechanics and Materials 321-324 (June 2013): 331–35. http://dx.doi.org/10.4028/www.scientific.net/amm.321-324.331.
Full textLiu, Yu Yang. "A Novel Circuit Design of the Wideband VGA in CMOS." Advanced Materials Research 1049-1050 (October 2014): 682–86. http://dx.doi.org/10.4028/www.scientific.net/amr.1049-1050.682.
Full textdel Pino, J., Sunil L. Khemchandani, D. Galante-Sempere, and C. Luján-Martínez. "A Compact Size Wideband RF-VGA Based on Second Generation Controlled Current Conveyors." Electronics 9, no. 10 (2020): 1600. http://dx.doi.org/10.3390/electronics9101600.
Full textHu, Zhengfei, Li Zhang та Mindi Huang. "A 2.9 mm2 Highly Integrated Low Noise GPS Receiver in 0.18-μm CMOS Technology". Journal of Circuits, Systems and Computers 24, № 03 (2015): 1550036. http://dx.doi.org/10.1142/s021812661550036x.
Full textCHEN, ZHIMING, YUANJIN ZHENG, and XIAOJUN YUAN. "CMOS LOW-POWER ANALOGUE BASEBAND CIRCUITS FOR A NON-COHERENT LOW DATA RATE IR-UWB RECEIVER." Journal of Circuits, Systems and Computers 20, no. 01 (2011): 45–55. http://dx.doi.org/10.1142/s0218126611007062.
Full textPan, Quan, Xiongshi Luo, Zhenghao Li, et al. "A 26-Gb/s CMOS optical receiver with a reference-less CDR in 65-nm CMOS." Journal of Semiconductors 43, no. 7 (2022): 072401. http://dx.doi.org/10.1088/1674-4926/43/7/072401.
Full textLahiani, Sawssen, Samir Ben Salem, Houda Daoud, and Mourad Loulou. "A CMOS Low-Power Digital Variable Gain Amplifier Design for a Cognitive Radio Receiver “Application for IEEE 802.22 Standard”." Journal of Circuits, Systems and Computers 27, no. 09 (2018): 1850135. http://dx.doi.org/10.1142/s0218126618501359.
Full textZhang, Qingfeng, Chenxi Zhao, and Kai Kang. "A Wideband Reconfigurable CMOS VGA Based on an Asymmetric Capacitor Technique with a Low Phase Variation." Electronics 11, no. 5 (2022): 751. http://dx.doi.org/10.3390/electronics11050751.
Full textLanghammer, Lukas, Roman Sotner, Jan Dvorak, Jan Jerabek, and Peter A. Ushakov. "Novel Reconnection-Less Reconfigurable Filter Design Based on Unknown Nodal Voltages Method and Its Fractional-Order Counterpart." Elektronika ir Elektrotechnika 25, no. 3 (2019): 34–38. http://dx.doi.org/10.5755/j01.eie.25.3.23673.
Full textShin, Gibeom, Kyunghwan Kim, Kangseop Lee, Hyun-Hak Jeong, and Ho-Jin Song. "An E-Band 21-dB Variable-Gain Amplifier with 0.5-V Supply in 40-nm CMOS." Electronics 10, no. 7 (2021): 804. http://dx.doi.org/10.3390/electronics10070804.
Full textZhang, Da Hui, Ze Dong Nie, Feng Guan, and Lei Wang. "An Energy-Efficient Receiver for Human Body Communication." Applied Mechanics and Materials 195-196 (August 2012): 84–89. http://dx.doi.org/10.4028/www.scientific.net/amm.195-196.84.
Full textWang, Ming Fei, Peng Cao, Hui Yong Sun, and Ming Jin Xu. "Optimal Design of Broadband and Large Dynamic Range IF AGC Circuit." Advanced Materials Research 722 (July 2013): 194–97. http://dx.doi.org/10.4028/www.scientific.net/amr.722.194.
Full textNagulapalli, Rajasekhar, Khaled Hayatleh, and Steve Barker. "A VGA Linearity Improvement Technique for ECG Analog Front-End in 65nm CMOS." Journal of Circuits, Systems and Computers 29, no. 07 (2019): 2050113. http://dx.doi.org/10.1142/s0218126620501133.
Full textHan, Jingyu, Yu Jiang, Guiliang Guo, and Xu Cheng. "A Reconfigurable Analog Baseband Circuitry for LFMCW RADAR Receivers in 130-nm SiGe BiCMOS Process." Electronics 9, no. 5 (2020): 831. http://dx.doi.org/10.3390/electronics9050831.
Full textTang, Yuxuan, Yulang Feng, He Hu, et al. "A Wideband Noise and Harmonic Distortion Canceling Low-Noise Amplifier for High-Frequency Ultrasound Transducers." Sensors 21, no. 24 (2021): 8476. http://dx.doi.org/10.3390/s21248476.
Full textNam, Hyosung, Taejoo Sim, and Junghyun Kim. "A 2.4 GHz 20 W 8-channel RF Source Module with Solid-State Power Amplifiers for Plasma Generators." Electronics 9, no. 9 (2020): 1378. http://dx.doi.org/10.3390/electronics9091378.
Full textEsteban Eraso, Uxua, Carlos Sánchez-Azqueta, Concepción Aldea, and Santiago Celma. "A 19.5 GHz 5-Bit Digitally Programmable Phase Shifter for Active Antenna Arrays." Electronics 12, no. 13 (2023): 2862. http://dx.doi.org/10.3390/electronics12132862.
Full textZhang, Kai, Ting Li, Haisong Li, Jie He, and Weidong Xu. "Low-Power and High-Precision Readout Circuit Design for Micro-Electromechanical Systems (MEMS) Acceleration Sensors." Journal of Nanoelectronics and Optoelectronics 18, no. 2 (2023): 130–37. http://dx.doi.org/10.1166/jno.2023.3390.
Full textHyun, Eugin, Young-Seok Jin, and Jong-Hun Lee. "Design and Implementation of 24 GHz Multichannel FMCW Surveillance Radar with a Software-Reconfigurable Baseband." Journal of Sensors 2017 (2017): 1–11. http://dx.doi.org/10.1155/2017/3148237.
Full textZhao, Yinan, Jinwu Zhuang, Zhihao Ye, Zhiliang Qian, and Fang Peng. "Simulation of Steady-State Temperature Rise of Electric Heating Field of Wireless Sensor Circuit Fault Current Trigger." Journal of Sensors 2021 (September 30, 2021): 1–11. http://dx.doi.org/10.1155/2021/8359504.
Full textSotner, Roman, Jan Jerabek, Norbert Herencsar, Jiun-Wei Horng, Kamil Vrba, and Tomas Dostal. "Simple Oscillator with Enlarged Tunability Range Based on ECCII and VGA Utilizing Commercially Available Analog Multiplier." Measurement Science Review 16, no. 2 (2016): 35–41. http://dx.doi.org/10.1515/msr-2016-0006.
Full textMansour, Nehad, Mohamed Elnozahi, and Hani Ragaai. "Parasitic-Aware Simulation-Based Optimization Design Tool for Current Steering VGAs." Electronics 12, no. 1 (2022): 132. http://dx.doi.org/10.3390/electronics12010132.
Full textXu, Haojie, Jiarui Liu, Zhiyu Wang, Min Zhou, Jiongjiong Mo, and Faxin Yu. "An Area-Efficient and Programmable 4 × 25-to-28.9 Gb/s Optical Receiver with DCOC in 0.13 µm SiGe BiCMOS." Electronics 9, no. 6 (2020): 1032. http://dx.doi.org/10.3390/electronics9061032.
Full textAsl, S. Ali Hosseini, Behnam S. Rikan, Arash Hejazi, et al. "A Design of Analog Front-End with DBPSK Demodulator for Magnetic Field Wireless Network Sensors." Sensors 22, no. 19 (2022): 7217. http://dx.doi.org/10.3390/s22197217.
Full textdel Pino, Javier, Sunil L. Khemchandani, Mario San-Miguel-Montesdeoca, et al. "A 17.8–20.2 GHz Compact Vector-Sum Phase Shifter in 130 nm SiGe BiCMOS Technology for LEO Gateways Receivers." Micromachines 14, no. 6 (2023): 1184. http://dx.doi.org/10.3390/mi14061184.
Full textGeorge, Deepa, and Saurabh Sinha. "BiCMOS Colpitts oscillator for vector-sum interpolators." Microelectronics International 33, no. 2 (2016): 87–93. http://dx.doi.org/10.1108/mi-03-2015-0029.
Full textAbdalla, Kasim K. "Condition of phase angle for a new VDGA-based multiphase variable phase shift oscillator from 0o to 90o." International Journal of Electrical and Computer Engineering (IJECE) 10, no. 4 (2020): 3801. http://dx.doi.org/10.11591/ijece.v10i4.pp3801-3810.
Full textZhang, Dianwei, Fei Chu, Wu Wen, and Ze Cheng. "A large gain variable range, high linearity, lownoise, low DC offset VGAs used in BD system." MATEC Web of Conferences 355 (2022): 03050. http://dx.doi.org/10.1051/matecconf/202235503050.
Full textZhang, Jing Zhi. "A 520MHz Wideband Variable Gain Amplifier." Applied Mechanics and Materials 556-562 (May 2014): 1564–67. http://dx.doi.org/10.4028/www.scientific.net/amm.556-562.1564.
Full textBalteanu, F., and M. Cloutier. "Charge-pump controlled variable gain amplifier." Electronics Letters 34, no. 9 (1998): 838. http://dx.doi.org/10.1049/el:19980644.
Full textCho, Young-Kyun, Young-Deuk Jeon, and Jong-Kee Kwon. "Switched-Capacitor Variable Gain Amplifier with Operational Amplifier Preset Technique." ETRI Journal 31, no. 2 (2009): 234–36. http://dx.doi.org/10.4218/etrij.09.0208.0288.
Full textChoi, Ye-Ji, and Jee-Youl Ryu. "Design of Low-Power Variable Gain Amplifier." Journal of Institute of Control, Robotics and Systems 28, no. 1 (2022): 1–5. http://dx.doi.org/10.5302/j.icros.2022.21.0138.
Full textAsgari, Vahid, and Leonid Belostotski. "Wideband 28-nm CMOS Variable-Gain Amplifier." IEEE Transactions on Circuits and Systems I: Regular Papers 67, no. 1 (2020): 37–47. http://dx.doi.org/10.1109/tcsi.2019.2942492.
Full textChaudhry, Q., R. Alidio, G. Sakamoto, and T. Cisco. "A SiGe MMIC variable gain cascode amplifier." IEEE Microwave and Wireless Components Letters 12, no. 11 (2002): 424–25. http://dx.doi.org/10.1109/lmwc.2002.805533.
Full textThanachayanont, Apinunt. "Low-voltage compact CMOS variable gain amplifier." AEU - International Journal of Electronics and Communications 62, no. 6 (2008): 413–20. http://dx.doi.org/10.1016/j.aeue.2007.06.002.
Full textEl-Gabaly, A. M., and C. E. Saavedra. "Wideband variable gain amplifier with noise cancellation." Electronics Letters 47, no. 2 (2011): 116. http://dx.doi.org/10.1049/el.2010.3226.
Full textFloc'h, J. M., and L. Desclos. "Variable gain amplifier with traveling wave structure." Microwave and Optical Technology Letters 7, no. 12 (1994): 539–42. http://dx.doi.org/10.1002/mop.4650071203.
Full textChoi, Inyoung, Heesong Seo, and Bumman Kim. "Accurate dB-Linear Variable Gain Amplifier With Gain Error Compensation." IEEE Journal of Solid-State Circuits 48, no. 2 (2013): 456–64. http://dx.doi.org/10.1109/jssc.2012.2227606.
Full textCHA, S. "A CMOS IF Variable Gain Amplifier with Exponential Gain Control." IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences E88-A, no. 2 (2005): 410–15. http://dx.doi.org/10.1093/ietfec/e88-a.2.410.
Full textChang, C. C., M. L. Lin, and S. I. Liu. "CMOS current-mode exponential-control variable-gain amplifier." Electronics Letters 37, no. 14 (2001): 868. http://dx.doi.org/10.1049/el:20010593.
Full textMahdavi, S., A. Soltani, M. Jafarzadeh, and T. Moradi Khanshan. "A novel method to design variable gain amplifier." Journal of Fundamental and Applied Sciences 8, no. 2 (2016): 1003. http://dx.doi.org/10.4314/jfas.v8i2s147.
Full textDe Ridder, T., P. Ossieur, X. Yin, et al. "BiCMOS variable gain transimpedance amplifier for automotive applications." Electronics Letters 44, no. 4 (2008): 287. http://dx.doi.org/10.1049/el:20083101.
Full textFujimoto, Y., H. Tani, M. Maruyama, H. Akada, H. Ogawa, and M. Miyamoto. "A low-power switched-capacitor variable gain amplifier." IEEE Journal of Solid-State Circuits 39, no. 7 (2004): 1213–16. http://dx.doi.org/10.1109/jssc.2004.829919.
Full textThanachayanont, A., and P. Naktongkul. "Low-voltage wideband compact CMOS variable gain amplifier." Electronics Letters 41, no. 2 (2005): 51. http://dx.doi.org/10.1049/el:20057110.
Full textVintola, V. T. S., M. J. Matilainen, S. J. K. Kalajo, and E. A. Jarvinen. "Variable-gain power amplifier for mobile WCDMA applications." IEEE Transactions on Microwave Theory and Techniques 49, no. 12 (2001): 2464–71. http://dx.doi.org/10.1109/22.971637.
Full text